09.04.2014 Views

Structure of the nervous system

Structure of the nervous system

Structure of the nervous system

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Structure</strong> <strong>of</strong> <strong>the</strong><br />

<strong>nervous</strong> <strong>system</strong><br />

• Central <strong>nervous</strong> <strong>system</strong> (CNS)<br />

– Brain<br />

– Spinal cord<br />

• Peripheral <strong>nervous</strong> <strong>system</strong> (PNS)<br />

– Cranial nerves<br />

–Spinal nerves<br />

– Autonomic nerves


Afferent<br />

Efferent<br />

Efferent


• Extend throughout CNS.<br />

Nerve fibers<br />

– Aggregated into functional units: fiber tracts.<br />

– Cluster <strong>of</strong> cell bodies: nucleus.<br />

• Bundled into fascicles and nerves in PNS.<br />

– Wrapped in connective tissue:<br />

• Endoneurium, perineurium, epineurium.<br />

• Blood vessels.<br />

– Cluster <strong>of</strong> cell bodies: ganglion.


Embryonic development<br />

<strong>of</strong> <strong>the</strong> neural tube<br />

• Hollow tube, filled with cerebrospinal fluid<br />

(CSF).<br />

• Brain:<br />

– Develops from anterior expansion <strong>of</strong> hollow tube.<br />

– Differentiated into three major ventricles.<br />

• Spinal cord:<br />

– Develops from remainder <strong>of</strong> hollow tube.<br />

– Differentiated into three embryonic layers.


Neurulation and<br />

neural crest


Neurula stage


Spinal nerves<br />

develop in<br />

conjunction<br />

with<br />

developing<br />

myotomes


Embryonic development<br />

<strong>of</strong> <strong>the</strong> spinal cord<br />

• Differentiated into three embryonic layers:<br />

– Inner germinal layer:<br />

• Active mitotic division.<br />

• CNS neuroblasts proliferate into mantle layer.<br />

– Middle mantle layer:<br />

• Neuron cell bodies congregate.<br />

• Form “gray matter”.<br />

– Outer marginal layer:<br />

• Neurons form dendrites and axons.<br />

• Myelin sheaths form “white matter”.


<strong>Structure</strong> <strong>of</strong> <strong>the</strong><br />

<strong>nervous</strong> <strong>system</strong><br />

• Central <strong>nervous</strong> <strong>system</strong> (CNS)<br />

– Brain<br />

– Spinal cord<br />

• Peripheral <strong>nervous</strong> <strong>system</strong> (PNS)<br />

– Cranial nerves<br />

– Spinal nerves<br />

– Autonomic nerves


Embryonic development<br />

<strong>of</strong> <strong>the</strong> brain<br />

• Develops embryonically as three vesicles:<br />

– Forebrain (prosencephalon):<br />

• Olfaction and vision.<br />

– Midbrain (mesencephalon):<br />

• Integration <strong>of</strong> input signals, especially visual.<br />

– Hindbrain (rhombencephalon):<br />

•Hearing<br />

• Coordination <strong>of</strong> movement, muscle tone, posture.<br />

• Integration in electromagnetic-generating and<br />

electromagnetic-detecting fishes.


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> brain<br />

• 3 embryonic regions form 5 functional regions:<br />

– Prosencephalon:<br />

• Telencephalon (~cerebrum, cerebral hemispheres).<br />

• Diencephalon.<br />

--- Cephalic flexure ---<br />

– Mesencephalon.<br />

--- Pontine flexure ---<br />

–Rhombencephalon:<br />

• Metencephalon (~cerebellum).<br />

• Myelencephalon (=medulla oblongata).<br />

--- Cervical flexure ---<br />

– Spinal cord.


• Neurons:<br />

Human brain development<br />

– Develop in fetus at >250,000/min.<br />

–At birth, ~trillion (10 9 ) neurons.<br />

– Few neurons added after birth.<br />

– Thereafter, neurons die at rate <strong>of</strong><br />

thousands/day.<br />

• Glial (neuroglial) cells:<br />

– Outnumber neurons 50:1.<br />

– Regulate internal environment<br />

<strong>of</strong> brain.<br />

• Blood flow.<br />

– Help to create and destroy<br />

neural circuits.<br />

it


<strong>Structure</strong> <strong>of</strong><br />

adult vertebrate brain<br />

(5) Myelencephalon l (posterior)<br />

(4) Metencephalon<br />

(3) Mesencephalon<br />

(2) Diencephalon<br />

(1) Telencephalon (anterior)


(5) Myelencephalon (medulla oblongata)<br />

• <strong>Structure</strong> similar to spinal cord:<br />

– External white matter, internal gray matter.<br />

– Central canal expanded: 4th ventricle.<br />

– Ro<strong>of</strong> thin, highly vascularized (posterior<br />

choroid plexus).<br />

• Gas, nutrient exchange.<br />

• Secretions.<br />

• Nerve fibers grouped by function:<br />

– Somatic sensory (dorsal, afferent)<br />

– Visceral sensory<br />

– Visceral motor<br />

– Somatic motor (ventral, efferent)


Afferent<br />

Efferent


(5) Myelencephalon (medulla oblongata)<br />

• Basic function: switchboard for autonomic receptors<br />

and effectors <strong>of</strong>:<br />

–Eye.<br />

– Pharyngeal arches and derivatives:<br />

• Gills, tongue, larynx<br />

– Visceral organs:<br />

• Heart<br />

• Respiratory organs<br />

•Digestive tract<br />

• Acoustico-lateralis <strong>system</strong>


(4) Metencephalon<br />

• Ro<strong>of</strong> enlarged into cerebellum.<br />

• Functions:<br />

– Coordination <strong>of</strong> skeletal muscles.<br />

– Rhythmic locomotory actions.<br />

– Posture.<br />

• Correlation between cerebellum size and amount &<br />

intricacy <strong>of</strong> body movements:<br />

– Small in lampreys, less active fishes, amphibians,<br />

reptiles.<br />

– Large in active fishes, birds, mammals.


(4) Metencephalon<br />

• Afferent nerves (via medulla oblongata) from:<br />

– Skeletal-muscle proprioceptors.<br />

– Acoustico-lateralis <strong>system</strong>.<br />

– Eye (via mesencephalon).<br />

– Cutaneous receptors.<br />

• Efferent nerves to skeletal muscles.<br />

• Reversal <strong>of</strong> gray and white matter:<br />

– Gray cortex.<br />

– Interior white nerve fibers.


(3) Mesencephalon<br />

• Ro<strong>of</strong> enlarged into optic lobes (=optic tectum).<br />

• Function: reception and integration <strong>of</strong> visual signals.<br />

– Fishes & amphibians:<br />

• Primary visual center.<br />

– Reptiles & birds:<br />

• Visual center, along with cerebrum (forebrain).<br />

– Mammals:<br />

• Secondary visual center.<br />

• Cerebrum is primary visual center.<br />

• Cranial nerves control eye movement.<br />

• Center <strong>of</strong> learning in lower vertebrates.


(2) Diencephalon<br />

• Subdivided d d into three regions:<br />

a) Ro<strong>of</strong>: epithalamus<br />

b) Walls: thalamus<br />

c) Floor: hypothalamus


Anterior<br />

Posterior


(a) Epithalamus<br />

• Three structures formed by evagination:<br />

–Paraphysis:<br />

• Present in vertebrate embryos.<br />

• Absent in adults.<br />

• Function unknown.<br />

–Parietal(=parapineal) and pineal (=epiphysis) bodies:<br />

• Primitive function: medial eye.<br />

• Pineal operational in lampreys and hagfishes.<br />

• Parietal operational in some lizards.<br />

– Derived function n <strong>of</strong> pineal body in amniotes:<br />

• Control <strong>of</strong> internal cycles (e.g., circadian rhythms).


Pineal body<br />

• Transduces neural information into endocrine<br />

information.<br />

• Secretes <strong>the</strong> hormone melatonin on circadian cycle:<br />

– High concentrations at night.<br />

– Low during day.<br />

• Tracks secondary lunar cycles:<br />

– Mating and reproductive cycles.<br />

– Immunocompetence.<br />

–Aging.<br />

g


(b) Thalamus<br />

• Important center for relay and integration <strong>of</strong><br />

signals between <strong>the</strong> cerebrum and midbrain /<br />

hindbrain.<br />

n.<br />

• Most important in mammals due to enlarged<br />

cerebrum.


(c) Hypothalamus<br />

• Three important functional regions:<br />

– Optic chiasma: optic stalks.<br />

– Control <strong>of</strong> <strong>the</strong> autonomic (“involuntary”) <strong>nervous</strong><br />

<strong>system</strong>:<br />

• Temperature regulation, O 2 / CO 2 balance.<br />

• Heart rate, breathing rate.<br />

• Biological clock: sleep rhythms, hormone<br />

cycles.<br />

– Interacts with epithalamus.<br />

• Emotional responses.<br />

– Neurohypophysis:<br />

• At tip <strong>of</strong> infundibulum.<br />

• “Posterior” (dorsal) portion <strong>of</strong> pituitary gland.


Formation <strong>of</strong> optic stalks


Neurohypophysis<br />

• Secretes many important hormones, such as:<br />

–Vasopressin: salt-water balance.<br />

– Oxytocin: stimulates t contraction ti <strong>of</strong> smooth muscle.<br />

• Mammary glands, uterus.<br />

• Humans: related to emotional, pair-bonding and<br />

stress-related responses.<br />

• Corresponding “anterior” (ventral) pituitary gland:<br />

– Adenohypophysis.<br />

– Derived from endoderm (ro<strong>of</strong> <strong>of</strong> mouth).<br />

– Many hormones.


(1) Telencephalon<br />

• Ancestral function: primary olfactory center.<br />

– Secondary center: memory, learning, orientation.<br />

• Derived function in mammals and birds:<br />

– “Higher” brain functions.<br />

– Expanded d cerebral hemispheres.<br />

h<br />

• Wrap around posterior brain regions.<br />

• Reversal <strong>of</strong> gray and white matter.<br />

– Taken over control <strong>of</strong> many o<strong>the</strong>r functions:<br />

• Vision: color vision.<br />

• Coordination: highly integrated movement.<br />

• Memory: learning, emotional responses.


(1) Telencephalon<br />

• Subdivided into three regions:<br />

–Paleopallium: olfaction.<br />

• Dominant in fishes.<br />

• Reduced in amniotes.<br />

– Archipallium: memory and navigation.<br />

• Hippocampus in all vertebrates.<br />

• Largest in cetaceans, primates.<br />

– Neopallium: cerebral hemispheres.<br />

• Thin layer in fishes, amphibians.<br />

• Enlarged in reptiles.<br />

• Dominant in birds, mammals (neocortex).


Functional regions<br />

<strong>of</strong> <strong>the</strong> neocortex in mammals<br />

• Regions:<br />

(1) Frontal: includes speech center<br />

(Broca’s area), coordinates<br />

breathing and vocalization.<br />

(2) Parietal: includes somatosensory<br />

integration area.<br />

(3) Temporal: includes auditory region.<br />

(4) Occipital: includes visual region.<br />

• Allocations <strong>of</strong> particular functions to<br />

regions are overly simplistic.


Somatosensory cortex:


Ventral view


Limbic <strong>system</strong><br />

• = “Reptilian brain”.<br />

• Functions: fear, hunger, fighting/fleeing, memory,<br />

sensory input, and sexual behavior.<br />

• <strong>Structure</strong> is progressive in vertebrates:<br />

– Primitively, main function is processing olfactory<br />

stimuli.<br />

– Somewhat developed in fishes, amphibians.<br />

– Full development in <strong>the</strong> early reptiles.<br />

• Mammalian and avian limbic <strong>system</strong>s st not much<br />

different from crocodilian.


Limbic <strong>system</strong><br />

– Derived function in humans, primates, and many<br />

o<strong>the</strong>r mammals:<br />

• Regulation <strong>of</strong> emotional processes.<br />

– Humans: join “higher” mental functions (reasoning)<br />

with “lower” functions (fear, pleasure).<br />

• Accounts for why:<br />

– Sexual behavior and eating seem pleasurable.<br />

– Mental stress causes high blood pressure.<br />

–Etc.<br />

• Disorders in regulating mechanisms lead to craving and<br />

addiction behavioral disorders.


Evolutionary development<br />

<strong>of</strong> <strong>the</strong> brain<br />

• Cephalochordates (e.g., amphioxus) have slight dilation<br />

<strong>of</strong> neural tube in head: cerebral vesicle.<br />

• Gene expression patterns and microanatomy indicate:<br />

–Diencephalon:<br />

• Small region homologous with vertebrate lateral<br />

eyes.<br />

• Lamellar ar organ homologous ogous with vertebrate rat pineal<br />

photoreceptors.<br />

– Small midbrain.<br />

– Hindbrain.


Trends in vertebrate brains<br />

• Ancestral (“lower” vertebrates):<br />

– Posterior brain well developed.<br />

– Straight tube, large ventricles.<br />

– Cerebellum enlarged.<br />

• Derived (“higher” vertebrates):<br />

– Anterior brain well developed.<br />

– Ventricles reduced, walls thickened. Cerebral<br />

hemispheres enlarged .<br />

–Brain highly folded and elaborated.<br />

– Increased regionalization; functions shifted<br />

forward.<br />

– Enhanced limbic <strong>system</strong>.


Trends in vertebrate brains<br />

• New elements added to existing elements, ra<strong>the</strong>r<br />

than replacing <strong>the</strong>m.<br />

– Newer elements control older elements.<br />

– “Higher” <strong>nervous</strong> <strong>system</strong>:<br />

• Superimposed control circuits.<br />

• More complicated behaviors.<br />

• Repeated and parallel increases in relative brain<br />

size within major groups.<br />

– Teleost brains almost 2x size <strong>of</strong> shark brains.<br />

– “Higher” teleost brains almost 2x size <strong>of</strong> “lower”<br />

teleost brains.<br />

– Etc.


Brain size<br />

• Brain size is relatively larger in more derived<br />

vertebrate groups.<br />

• But brain size is highly hl correlated with body size<br />

(allometry).


• Increases in brain size<br />

over evolutionary time:<br />

– Average increases.<br />

– Widening size<br />

distributions.<br />

– Few replacements <strong>of</strong><br />

smaller-brained by<br />

larger-brained<br />

animals.<br />

Brain size


Brain size in hominoids<br />

Homo sapiens<br />

Homo erectus<br />

Australopi<strong>the</strong>cus afarensis<br />

olume<br />

Brain vo<br />

Body weight


Brain size in hominoids

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!