07.04.2014 Views

Solar Grade-Silicon, Ingot, Wafer Technology and ... - Displaybank

Solar Grade-Silicon, Ingot, Wafer Technology and ... - Displaybank

Solar Grade-Silicon, Ingot, Wafer Technology and ... - Displaybank

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>,<br />

<strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend<br />

(2008~2012)<br />

Jan 2009<br />

SAMPLE


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>,<br />

<strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Forecast<br />

(2008~2012)<br />

Jan 2009<br />

SAMPLE<br />

<strong>Displaybank</strong> Co., Ltd.<br />

8F 810, Yatap Leaders Bldg. 342-1 Yatap-dong,<br />

Bundang-gu, Seongnam-si, Gyeonggi-do, Korea 463-828<br />

Phone: (82) 31-704-7188, Fax: (82) 31-704-7187<br />

e-mail: Brad@displaybank.com<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Copyright 2009 <strong>Displaybank</strong> Co., Ltd.<br />

All rights reserved.<br />

No material contained in this report may be reproduced in whole or in part without the express written<br />

permission of <strong>Displaybank</strong> Co., Ltd. This report is intended for the sole <strong>and</strong> exclusive use of the original<br />

purchaser <strong>and</strong> may not be distributed or transferred in any form to any other person or entity.<br />

SAMPLE<br />

<strong>Displaybank</strong> Co., Ltd. provides the information in this report for informational purposes only <strong>and</strong> does not grant<br />

any express or implied warranty, guaranty, or representation concerning the information contained in this<br />

report, its merchantability, or its fitness for a particular purpose or function. Any reference to any specific<br />

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not<br />

necessarily constitute or imply its endorsement, recommendation, or favoring by <strong>Displaybank</strong> Co., Ltd. Neither<br />

<strong>Displaybank</strong> nor any of its affiliates shall be liable to you or any third party in damages of whatever kind that<br />

may result from any reliance on (or use of) any information contained in this report. By receiving this report, you<br />

acknowledge that any reliance on information contained in this report shall be at your sole risk <strong>and</strong> that no<br />

representations have been made to you that are inconsistent with the foregoing.<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

<br />

1. Introduction ....................................................................................................................................<br />

1.1 Renewable Energy <strong>and</strong> Photovoltaic .................................................................................................................<br />

1.2 Low-cost Strategy for <strong>Solar</strong> cell .........................................................................................................................<br />

1.3. Poly-<strong>Silicon</strong> Process ...........................................................................................................................................<br />

2. Poly-<strong>Silicon</strong> Technologies ..............................................................................................................<br />

2.1. Metallurgical <strong>Grade</strong>-<strong>Silicon</strong> (MG-Si) Process .................................................................................................<br />

2.2. <strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong> (SoG-Si) Process ..............................................................................................................<br />

2.3. Current Technologies (Simens Process) ...........................................................................................................<br />

2.3.1 Siemens Process Using TCS (TrichloroSilane)..........................................................................................<br />

2.3.2 Simens Process Using MS (Monosilane).................................................................................................<br />

2.3.3. Hydrogen Reduction Process Using Tetrachlorosilane ...........................................................................<br />

2.4. Alternative Technologies 1 (FBR, VLD, FSR Process) ...............................................................................<br />

2.4.1 Fluidized Bed Reactor (FBR) : MEMC, Wacker, REC etc. .....................................................................<br />

2.4.2 Vapor to Liquid Deposition (VLD) : Tokuyama ......................................................................................<br />

2.4.3 Free Space Reactor (FSR) : Joint <strong>Solar</strong> <strong>Silicon</strong> .......................................................................................<br />

2.5 Alternative Technologies 2 (Metallugical Process) .........................................................................................<br />

2.5.1 Acid Leaching ..........................................................................................................................................<br />

2.5.3 SOLSILC Process (Netherl<strong>and</strong>s, Norway) ..............................................................................................<br />

SAMPLE<br />

2.5.4 UMG-Si Process (Elkem, Norway) .........................................................................................................<br />

2.5.5 Vaccum Refining Process (Kawasaki Steel Corporation, Japan) .............................................................<br />

2.5.6 Dow Corning´s Route - NREL..............................................................................................................<br />

3. <strong>Ingot</strong>/ <strong>Wafer</strong> Process ....................................................................................................................<br />

3.1. <strong>Ingot</strong> Process ....................................................................................................................................................<br />

3.2.1 Czochralski Mehod (CZ) .........................................................................................................................<br />

3.2.2 Floating Zone Method (FZ) .....................................................................................................................<br />

3.3 Multicrystalline <strong>Ingot</strong> .......................................................................................................................................<br />

3.3.1 Block Casting Method ...........................................................................................................................<br />

3.3.2 Electromanetic Casting Process ...............................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

3.4 <strong>Wafer</strong>ing Process ...............................................................................................................................................<br />

3.5 New <strong>Wafer</strong> <strong>Technology</strong> .....................................................................................................................................<br />

3.5.1. Ribbon <strong>Wafer</strong> ................................................................................................................................................<br />

3.5.2. Ribbon <strong>Wafer</strong> (Type I) ............................................................................................................................<br />

3.5.3 Ribbon <strong>Wafer</strong> (Type Ⅱ) ..........................................................................................................................<br />

3.5.4 EFG (Edge-Defined Film Growth, type 1) ..............................................................................................<br />

3.5.5 SR (String Ribbon, type 1) .......................................................................................................................<br />

3.5.6 DW (Dentric Web, type 1) .......................................................................................................................<br />

3.5.7 RGS (Ribbon Growth on Substrate, type 2) .............................................................................................<br />

3.5.8 CDS (Crystallization on Dipped Substrate, type 2) .................................................................................<br />

3.5.9 SSP Ribbon ( <strong>Silicon</strong> sheets from powder ) .............................................................................................<br />

3.6 Thin <strong>Wafer</strong> .........................................................................................................................................................<br />

3.6.1. DFT (Direct Film Transfer) .....................................................................................................................<br />

3.6.2 SLIM (Stress-Induced Lift-off Method) ..................................................................................................<br />

4. Poly-<strong>Silicon</strong> Maker Trend ...........................................................................................................<br />

4.1. Current Producer .............................................................................................................................................<br />

4.1.1. Hemlock Semiconductor Corporations (HSC)........................................................................................<br />

4.1.2. Wacker Chemi .........................................................................................................................................<br />

4.1.3. Renewable Energy Corporation (REC)...................................................................................................<br />

4.1.4. Tokuyama ................................................................................................................................................<br />

4.1.5. Monsanto Electronic Materials Company (MEMC)...............................................................................<br />

4.1.6. Mitsubishi Materials Corporation (MMC) ..............................................................................................<br />

SAMPLE<br />

4.1.7. Sumitomo ................................................................................................................................................<br />

4.2. New Entrants – Current Technologies ...........................................................................................................<br />

4.2.1. Silicium De Provence (SilPro) ................................................................................................................<br />

4.2.3. Other Korean...........................................................................................................................................<br />

4.2.4. Isofóton <strong>and</strong> ENDESA ............................................................................................................................<br />

4.2.5. Hoku Scientific .......................................................................................................................................<br />

4.2.6. M. Setek ..................................................................................................................................................<br />

4.2.7. LDK <strong>Solar</strong> ...............................................................................................................................................<br />

4.2.8. Emei ........................................................................................................................................................<br />

4.2.9. LuoYang China <strong>Silicon</strong> ...........................................................................................................................<br />

4.2.10. Sichuan Xinguang .................................................................................................................................<br />

4.2.11. Nitol <strong>Solar</strong> .............................................................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

4.3. New Entrants-Alternative Technologies .........................................................................................................<br />

4.3.1. Elkem <strong>Solar</strong> ............................................................................................................................................<br />

4.3.2. Joint <strong>Solar</strong> <strong>Silicon</strong> (JSSI)........................................................................................................................<br />

4.3.4. <strong>Solar</strong>value AG .........................................................................................................................................<br />

4.3.5. Dow Corning ..........................................................................................................................................<br />

4.3.6. Bécancour <strong>Silicon</strong> (BSI) .........................................................................................................................<br />

4.3.7. AE Polysilicon ........................................................................................................................................<br />

5. <strong>Ingot</strong>/<strong>Wafer</strong> Producers ................................................................................................................<br />

5.1. PCMP (Podolsky Chemical & Metallurgical Plant) .....................................................................................<br />

5.2. Pillar JSC ..........................................................................................................................................................<br />

5.3. PV Crystalox <strong>Solar</strong> ..........................................................................................................................................<br />

5.4. M. Setek ............................................................................................................................................................<br />

5.5. REC-Sitech, Scanwafer ...................................................................................................................................<br />

5.6. Wacker Shott <strong>Solar</strong> ..........................................................................................................................................<br />

5.7. MEMC ..............................................................................................................................................................<br />

5.8. <strong>Silicon</strong> Ltd (Soetlorodsk).................................................................................................................................<br />

5.9. Swiss <strong>Wafer</strong> ......................................................................................................................................................<br />

5.10. <strong>Solar</strong> World ....................................................................................................................................................<br />

5.11. Kyocera ...........................................................................................................................................................<br />

5.12. ASi Industries GmbH ....................................................................................................................................<br />

SAMPLE<br />

6. Poly-<strong>Silicon</strong> Market Forecast (2007~2012) ................................................................................<br />

6.1. Poly-<strong>Silicon</strong> Production & Capacity .............................................................................................................<br />

6.2. Poly-Silion supply & Dem<strong>and</strong> forecast for solar cell ....................................................................................<br />

6.3. Poly-<strong>Silicon</strong> Production & Capacity by company .........................................................................................<br />

6.4. Poly-<strong>Silicon</strong> Price (Contract, Spot) .................................................................................................................<br />

6.5. Poly-<strong>Silicon</strong> Revenue forecast (<strong>Solar</strong>) ............................................................................................................<br />

6.6. Poly-silicon Production Cost by <strong>Technology</strong> ..................................................................................................<br />

6.7. Poly-<strong>Silicon</strong> Capacity by Region .....................................................................................................................<br />

6.8. Poly-<strong>Silicon</strong> Production Forecast by Region .................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

6.9. Poly-<strong>Silicon</strong> production by technology ...........................................................................................................<br />

6.10. UMG-Si ...........................................................................................................................................................<br />

6.11. <strong>Ingot</strong>/<strong>Wafer</strong> Production .................................................................................................................................<br />

6.12. <strong>Wafer</strong> Revenue ...............................................................................................................................................<br />

7. Reference List ...............................................................................................................................<br />

8. Index ..............................................................................................................................................<br />

8.1. Table ..................................................................................................................................................................<br />

8.2. Figure ................................................................................................................................................................<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

1.3. Poly-silicon Process<br />

The solar grade-silicon <strong>and</strong> its wafer manufacturing technology can be<br />

summarized like the figure below. The process starts with metallurgical silicon,<br />

MG-Si, which has about 99% purity <strong>and</strong> undergoes gasification <strong>and</strong><br />

purification processes to obtain silane gas. The silane gas is extracted at high<br />

temperature to obtain solar grade-silicon, SoG-Si. The solar grade-silicon<br />

manufacturing process includes Siemens, FBR, <strong>and</strong> VLD methods. Details of<br />

these methods will be discussed in the following chapter.<br />

Figure 1.3.1. <strong>Silicon</strong> <strong>Solar</strong> Cell Manufacturing Process<br />

SAMPLE<br />

The silicon obtained from the above process is categorized into chip (chunk),<br />

granular, <strong>and</strong> powder (dust-like) shapes upon the manufacturing method. The<br />

silicon is melt again to produce ingot. Czochralski, CZ, method is used to<br />

manufacture monocrystalline ingot <strong>and</strong> heating furnace is used to manufacture<br />

multicrystalline ingot blocks. The monocrystalline ingot has limited diameter<br />

since it grow crystal vertically <strong>and</strong> needs to cut edges to produce rectangular<br />

wafers that its final wafer size is smaller than the one of multicrystalline ingot<br />

method. Currently, the maximum size of the monocrystalline silicon wafer is<br />

156 x 156mm.<br />

The solar grade-silicon must satisfy physical property requirements like the<br />

following. First requirement is the size of poly-silicon. The size is an extremely<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

important factor in determining silicon’s quality <strong>and</strong> unit cost. The poly-silicon<br />

is categorized into powder (dust-like) type which is smaller than several tens of<br />

um, granular type with several mm, <strong>and</strong> chunk (chip) type which is greater<br />

than several cm.<br />

For instance, the dust-like type manufactured by so-called free space method<br />

has the most effect on manufacturing cost cut among chemical methods using<br />

gas reactions. On the other h<strong>and</strong>, it has a shortcoming that it is difficult to<br />

regulate processes while melting silicon to grow crystals, which is a<br />

subsequent process, due to large specific surface areas <strong>and</strong> low density.<br />

Hence, the granular or chunk types appear proper considering subsequent<br />

processes. The granular type poly-silicon has a high filling density of crucible<br />

during crystal growth <strong>and</strong> enables continuous processes through fixed supply,<br />

but it also has large specific surface areas that it is difficult to h<strong>and</strong>le since it is<br />

easily contaminated by external environments. The poly-silicon manufactured<br />

by Siemens method is mostly chunk type. This type is easy to h<strong>and</strong>le in<br />

process, but has a low crucible filling density.<br />

The most important physical property of the poly-silicon is purity. The<br />

concentration of impurities within the poly-silicon has the biggest effect on the<br />

efficiency of solar cells <strong>and</strong> is the most critical variation in determining<br />

SAMPLE<br />

manufacturing costs. Impurities included within the silicon interior are generally<br />

divided into metal impurities <strong>and</strong> non-metal impurities. Major metal impurities<br />

include Fe, Al, Ti, Ca, Na, Zn, <strong>and</strong> Cu. Their inclusions may vary upon the<br />

initial silica materials <strong>and</strong> metallurgical silicon manufacturing processes. The<br />

poly-silicon must only include less than 1ppba metal impurities like the figure<br />

below in order to be used in solar cells.<br />

The second method creates trichlorosilane through metallurgical silicon <strong>and</strong><br />

hydrogenation processes.<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

3SiCl 4 + 2H 2 + Si = 4SiHCl 3<br />

This process spills mixture of tetrachlorosilane <strong>and</strong> hydrogen to the<br />

metallurgical silicon within a fluidized reactor usually at 500°C <strong>and</strong> 35 bars <strong>and</strong><br />

obtains trichlorosilane.<br />

Figure 2.10. Interior of Siemens Reactor<br />

The Siemens process has rather poor energy efficiency; it consumes a large<br />

amount of electricity to maintain extraction temperature at higher than 1,000℃<br />

during the process <strong>and</strong> has a great loss in amount of heat while continuously<br />

cooling down interior walls with circulating coolants to prevent Si extractions.<br />

Usually, it loses more than 90% of energy input in exterior cooling walls. The<br />

Siemens methods consumes about 60~150kWh in manufacturing 1 kg of<br />

SoG-Si. Hence, it installs several bars within the Siemens reactor in order to<br />

enhance the low efficiency (refer to figure 2.11).<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

2.4.2 Vapor to Liquid Deposition (VLD): Tokuyama<br />

VLD method produces trichlorosilane or monosilane gasses by reacting<br />

metallic silicon with either hydrochloric acid or hydrogen, <strong>and</strong> then produces<br />

liquid silicon directly from the gas. It is similar to the Siemens process in using<br />

trichlorosilane gasses, but it obtains liquid silicon as the gas undergoes a tubeshaped<br />

reactor with inductive heating to be restored.<br />

Figure 2.4.2 VLD Method Concept<br />

Source: Tokuyama<br />

Hence, VLD method has outst<strong>and</strong>ing efficiency <strong>and</strong> productivity. It has<br />

extraction speed 10 times faster than the conventional Siemens process, but<br />

is difficult to delete impurities. The Siemens process starts with obtaining<br />

semiconductor silicon with ultra high purity <strong>and</strong> is applied to the solar gradesilicon<br />

production by lowering the quality <strong>and</strong> enhancing the productivity. On<br />

the other h<strong>and</strong>, VLD process is suitable for the solar grade-silicon production<br />

which requires relatively lower quality <strong>and</strong> high productivity. The VLD process<br />

is currently known to be developed by Tokuyama, but has difficulties in terms<br />

of yield. Its energy efficiency is more than 5 times higher than the Siemens<br />

process.SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 2.19. Tube Reactor in Joint <strong>Solar</strong> <strong>Silicon</strong> (JSSi) Process<br />

Source: Joint <strong>Solar</strong> <strong>Silicon</strong><br />

The traditional Siemens process decomposes silane in silicon seed (U-rod),<br />

whereas the Joint <strong>Solar</strong> <strong>Silicon</strong> reactor decomposes silane in reactor’s interior<br />

space that it is called “free space reactor method”. The method supplies<br />

hydrogen <strong>and</strong> silane to the reactor’s interior <strong>and</strong> enters heat to walls to<br />

decompose silane away from the walls. Like in the Siemens process, the free<br />

space reactor method does not require equipments for silicon seed preheating<br />

<strong>and</strong> is able to prevent pollutions from graphite which composes the preheating<br />

equipments. The method uses monosilane rather than chlorosilane for raw<br />

materials because the monosilane enables low temperature processes <strong>and</strong><br />

decomposes well that it converts gasses to silicon in reactors with single<br />

process. However, the monosilane may possibly explode when it is in contact<br />

with oxygen that reactors must be designed carefully to prevent such outcome.<br />

It is also more expensive than trichlorosilane. The thermal decomposition<br />

reaction of silane is like the following.<br />

SiH 4 -> SiH 2 +H 2<br />

SiH 2 + SiH 4 –> Si 2 H 6<br />

SiH 2 +Si 2 H 6 -> Si 3 H 8<br />

The silicon powder manufactured through reactors undergoes high density<br />

process for easy h<strong>and</strong>ling, delivery, <strong>and</strong> loading. Here, the density increases<br />

from 50g/L to 500g/L. The figure below shows silicon powder that finished the<br />

high density process. The powder is melted <strong>and</strong> produced into ingot to be<br />

manufactured into final products.<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 2.5.1 Impurities in MG-Si: Equilibrium Distribution Coefficient<br />

Most impurities, except for phosphorus, boron, <strong>and</strong> carbon, have extremely<br />

small equilibrium distribution coefficient. This indicates that the impurities are<br />

concentrated in liquid phase silicon rather than in solid phase silicon in mushy<br />

zone. Hence, impurities tend to concentrate in areas where they are solidified<br />

at last.<br />

As shown in the figure below, impurities show the maximum solubility near<br />

melting point <strong>and</strong> the solubility radically declines as temperature drops. Hence,<br />

the metal impurities that exceed solubility during solidification processes are<br />

efficiently extracted through crystal boundaries or cracks in general. <strong>Silicon</strong> is<br />

insoluble to acids, whereas the metal impurities dissolve well in acids. Pickling<br />

process selectively eliminates the extracted metal impurities with acid.<br />

Figure 2.5.2 Metal Impurities Employment within <strong>Silicon</strong><br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

3.2.2 Floating Zone Method (FZ)<br />

Floating zone method was developed by Keck <strong>and</strong> others in 1952. It manufactures<br />

silicon with the highest purity. Its basic principle includes partially melting long bar to<br />

produce liquid phase region. It moves the region following after the bar to grow<br />

monocrystal. Most impurities within silicon usually have equilibrium distribution<br />

coefficient less than 1 that the impurities are separated in the liquid phase region with<br />

CO/K concentration. The liquid phase region is cornered to move impurities towards<br />

the end of the bar simultaneously.<br />

Figure 3.2.3. Floating Zone Method Equipment<br />

SAMPLE<br />

As shown in the figure, the FZ method has no parts in contact with silicon<br />

liquid unlike the CZ method that it can fundamentally prevent pollutions from<br />

crucibles <strong>and</strong> obtain silicon with high quality. On the other h<strong>and</strong>, it requires a<br />

liquid phase to remain in-between solid phases as a surface tension that it has<br />

a limitation in a diameter of ingot to be manufactured. The method is generally<br />

used to manufacture silicon bars of several tens of mm. The maximum<br />

diameter of ingot using the currently developed floating zone method is about<br />

150 mm. Therefore, the FZ method is improper to be used commercially due<br />

to low productivity. Instead, it is used in special occasions when silicon with<br />

high purity is needed.<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 3.3.5. Comparison between Conventional Solidification Process <strong>and</strong> Electromagnetic<br />

Casting Method<br />

Unlike the ingot obtained by cooling in the conventional graphite crucible or a quartz<br />

crucible located within the graphite crucible, the FZ method obtains silicon with high<br />

quality by minimizing contacts with crucibles <strong>and</strong> hence preventing pollutions from the<br />

crucibles. Moreover, it enhances productivity by reducing replacement expenses spent<br />

in crucibles, which are disposed after a single or few uses, <strong>and</strong> enabling continuous<br />

operations (productivity in same time frame is about 5 times higher than HEM method<br />

<strong>and</strong> 7 to 15 times higher than Czochralski method). However, this technology has a<br />

difficulty in silicon application. <strong>Silicon</strong> has difficult electromagnetic induction due to low<br />

SAMPLE<br />

electric conductivity in solid phase. It is also difficult to expect processes with high<br />

efficiency since it melts silicon with high latent heat <strong>and</strong> melting point in water-cooling<br />

crucibles <strong>and</strong> loses a lot of heat. Therefore, the industry conducts research studies in<br />

order to resolve such issues <strong>and</strong> the method is sometime used in combination with the<br />

conventional refining process like the figure below. The figure shows a method that<br />

melts silicon through plasma melting to create liquid phase <strong>and</strong> enters it to a crucible.<br />

<strong>Silicon</strong> mostly displays nonconductive property in solid phase, but shows conductive<br />

property in liquid phase.<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 3.5.3. Post-Annealing Method for Temperature Stress Reduction (EFG Method)<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

3.5.3 Ribbon <strong>Wafer</strong> (Type Ⅱ)<br />

This method instantly deletes latent heat, which is generated on mushy<br />

interface during solidification of silicon, though cold substrates touching the<br />

silicon. Unlike the type I that deletes latent heat with radiant heat of solidified<br />

ribbon itself, the type II moves heat through large area substrates that it<br />

efficiently deletes latent heat, hence grows ribbon fast. The maximum speed to<br />

grow ribbon, Vp, is as follows.<br />

“a” is a valid heat delivery coefficient, “s” is a mushy interface area in a<br />

direction of ribbon growth, <strong>and</strong> “ T" is a temperature difference between liquid<br />

phase silicon <strong>and</strong> substrate. According to the equation, the maximum speed to<br />

grow ribbon is 600cm/sec when T is 160 o C. It rapidly creates ribbon by<br />

efficiently deleting the latent heat <strong>and</strong> has high productivity. However, it grows<br />

crystal starting from areas touching substrates that it has relatively smaller<br />

crystal structure with chaotic direction compared to the type II method. The<br />

type II method grows crystals at irregular speed which varies upon time. It has<br />

a fast crystal growing speed at initial solidification phases where liquid phase<br />

silicon touch substrates directly, but the speed slows down once ribbons are<br />

created because the latent heat generated from the mushy interface<br />

undergoes the created ribbon thickness <strong>and</strong> exits towards substrates. It is<br />

expressed in the following equation. “s(t)” is a location of mushy interface upon<br />

time.<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

4.1.3. Renewable Energy Corporation (REC)<br />

REC was newly established in the 90’s in Norway. It is a child company of<br />

Fornybar Energi AS from 1996 <strong>and</strong> has been focusing on renewable energy<br />

field. REC was found by merging Scanwafer AS, SolEnergy AS, <strong>and</strong> Fornybar<br />

Energi AS in November 2000. REC secures an idealistic corporate structure<br />

with completed vertical integrations in all fields of solar cell value chain,<br />

including poly-silicon, substrate, cell, module, installation, <strong>and</strong> drive, through<br />

its child companies like REC <strong>Silicon</strong>, REC <strong>Wafer</strong>, <strong>and</strong> REC <strong>Solar</strong>.<br />

Figure4.1.5. Vertically Integrated <strong>Solar</strong> Cell Business Structure of REC<br />

Source: REC<br />

SAMPLE<br />

REC manufactures about 6,150M/T in 2008 <strong>and</strong> seems possible to<br />

manufacture up to about 12,400M/T in 2009. It signed a long-term contract<br />

with Neo<strong>Solar</strong> Power from Taiwan to supply poly-silicon of about USD 450<br />

million worth until 2015. It also announced to construct additional monosilane<br />

production line in Singapore in 2007 to secure monosilane production of<br />

maximum 2,300M/T per year. Unlike other companies, REC used monosilane<br />

gas as raw materials to secure its own technology. It also solitarily developed<br />

closed-loop method...<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

4.2.7. LDK <strong>Solar</strong><br />

LDK <strong>Solar</strong> is a large silicon wafer maker. LDK purchased most of poly-silicon<br />

manufacturing technology <strong>and</strong> equipment from overseas <strong>and</strong> applied in<br />

production. It manufactures from poly-silicon to wafer. Its production base for<br />

solar grade-wafer is located in Xinyu, China. It is constructing a factory to<br />

annually produce 14,000 tons of poly-silicon through its child company, Jiangxi<br />

Poly<strong>Silicon</strong>. It uses Siemens method to manufacture poly-silicon. Fluor from<br />

the U.S. is in charge of the factory design, construction, <strong>and</strong> management. GT<br />

<strong>Solar</strong> from the U.S. is in charge of reactors <strong>and</strong> LXE <strong>Solar</strong> <strong>and</strong> CDI<br />

Engineering Solutions are in charge of trichlorosilane supply. Fluor is known to<br />

have invested total of USD 1.2 billion, which includes USD 1 billion for down<br />

payment, to the construction by Jiangxi Polysilicon. The poly-silicon factory by<br />

Jiangxi PV <strong>Silicon</strong> Hi-Tech was expected to be completed in June 2008 <strong>and</strong><br />

was scheduled to receive 400 tons of trichlorosilane per month from Jiangxi<br />

Ganzhong Chlorine & Caustic starting in May 2008. Sunways signed a<br />

contract to supply reactors to LDK <strong>and</strong> receive poly-silicon supplies from LDK.<br />

In addition, Jiangxi Poly<strong>Silicon</strong> independently manufactures trichlorosilane <strong>and</strong><br />

its production capacity is 90,000 ton/yr.<br />

Figure4.9. <strong>Solar</strong> Cell p-Si Manufactured by LDK<br />

Source: LDK<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

6.2. p-Si supply & Dem<strong>and</strong> forecast for solar cell<br />

The solar cell market recorded more than 40% average annual growth rate<br />

from 2007 to 3Q 2008 due to support policies by each nation’s government<br />

<strong>and</strong> the importance of PV business with global recognition in environmental<br />

issues. Such high growth rate resulted in shortages of poly-silicon, a raw<br />

material for crystalline solar cell. The spot price of short-term contract even<br />

went up to US$400/Kg. Numerous companies announce their plans to join the<br />

poly-silicon business which shows high earning rate.<br />

The figure below is data collected by analyzing 80 new entrants including the 7<br />

major global p-Si makers. It forecasts solar grade-silicon supply by three<br />

scenarios. The p-Si supply is projected to exceed dem<strong>and</strong> starting in 2009 <strong>and</strong><br />

record the highest supply surplus in 2010.<br />

However, the large-scale investments by the new entrants are likely to be<br />

delayed due to the global economic slump from 2009 to the first half of 2010. If<br />

the conventional p-Si maker’s production cuts are added here, it may create a<br />

reversed situation of the raw material shortages starting in 2011, after the<br />

supply surplus for a short period of time (2009 to 2010), like Scenario 2.<br />

Hence, the advanced conventional makers focus in product differentiation by<br />

enhancing quality <strong>and</strong> purity. They propel strategies to maintain a stable p-Si<br />

price.<br />

Figure6.2. <strong>Solar</strong> Cell p-Si Dem<strong>and</strong>/Supply Forecast<br />

MW<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

SAMPLE<br />

Cell Dem<strong>and</strong> (MW)<br />

Supply (MW, S1)<br />

Supply (MW, S2: Base)<br />

Supply (MW, S3)<br />

10,000<br />

5,000<br />

0<br />

2007 2008 2009F 2010F 2011F 2012F<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

6.3. p-Si Production & Capacity by company<br />

The table below shows production <strong>and</strong> capacity by group <strong>and</strong> maker. Each<br />

data is combined value of solar p-Si <strong>and</strong> electronics p-Si.<br />

Table 6.3. p-Si Production & Capacity by Company<br />

.<br />

Group<br />

Group 1<br />

Group 2<br />

Company Name<br />

Hemlock<br />

Wacker<br />

REC SGS (Moses Lake)<br />

Tokuyama<br />

MEMC Pasadena<br />

REC Asimi (Butte)<br />

MEMC Merano<br />

Mitsubishi Material<br />

Mitsubishi Polysilicon<br />

Osaka Titanium (Sumitomo Titanium)<br />

Group 1 Total<br />

Production<br />

Capacity<br />

2007 2008 2009 2010 2011 2012<br />

SAMPLE<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Group 3<br />

Group 2 Total<br />

SAMPLE<br />

Others in Group 3<br />

Group 3 Total<br />

Group 4(Others) Total<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

8. Index<br />

8.1. Table<br />

Table 1.1.1 Reneable Energy Investment <strong>and</strong> Generation Unit Cost ..........................................................................<br />

Table 2.1.1. Purity of Utilized Raw Materials by Carbo Process .............................................................................<br />

Table 2.1.2. Utilized Raw Material by Direct Reduction Project................................................................................<br />

Table 2.3.1.1 Characteristic of Siemens Method ......................................................................................................<br />

Table 2.3.1.1 Comparison of TCS-based Siemans <strong>and</strong> MS-based Siemens .............................................................<br />

Table 3-1. Property Comparison by <strong>Silicon</strong> <strong>Ingot</strong> Growth <strong>Technology</strong> ....................................................................<br />

Table 3.5.1. Manufacturing Unit Cost by <strong>Solar</strong> Cell Process (%) .............................................................................<br />

Table 3.5.2. Ribbon Growth Method Comparison ....................................................................................................<br />

Table 3.5.3.Property Comparison by Ribbon <strong>Technology</strong> ........................................................................................<br />

Table 4.2.1. Presented by DC Chemical ...................................................................................................................<br />

Table 4.2.2. p-Si Plant Construction Project Status of LuoYang ZhongGui .............................................................<br />

Table 4.2.3. Long-Terrn p-Si Supply Contract Status of Nitol <strong>Solar</strong> ........................................................................<br />

Table 4.3.1. Impurities Concentration of Bécancour <strong>Silicon</strong> UMG-Si .....................................................................<br />

Table 5.1. Monocrystalline <strong>Silicon</strong> Portfolio Manufactured by Podolsk ..................................................................<br />

Table 5.2. Monocrystalline <strong>Silicon</strong> <strong>Solar</strong> Cell Portfolio Manufactured by Podolsk .................................................<br />

Table 5.3. <strong>Solar</strong> Cell <strong>Wafer</strong> St<strong>and</strong>ared Manufactured by Pillar JSC .........................................................................<br />

Table 5.4. Kyocera’s Expansion Plan........................................................................................................................<br />

Table 6.1. p-Si production & Capacity by Section .....................................................................................................<br />

Table 6.2. <strong>Solar</strong> Cell p-Si Dem<strong>and</strong>/Supply Forecast ..................................................................................................<br />

Table 6.3. p-Si Production & Capacity by Company ................................................................................................<br />

Table 6.4. p-Si Price Forecast ($/Kg).........................................................................................................................<br />

Table 6.5. p-Si Revenue .............................................................................................................................................<br />

SAMPLE<br />

Table 6. 6. Manufacturing Cost Ratio by Method ($/Kg) ..........................................................................................<br />

Table 6.7. poly-<strong>Silicon</strong> Capacity by Region ..............................................................................................................<br />

Table 6.8. poly-<strong>Silicon</strong> Production Forecast by Region.............................................................................................<br />

Table 6.10. UMG-Si Capacity by Company ..............................................................................................................<br />

Table 6.11. <strong>Ingot</strong>/<strong>Wafer</strong> Production ...........................................................................................................................<br />

Table 6.12. <strong>Wafer</strong> Revenue ........................................................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

8.2. Figure<br />

Figure 1.1.1 Long-Term Forecast of Power Generation Volume by Global Energy Source .......................................<br />

Figure 1.1.2 Potential Energy Volume of the Earth ....................................................................................................<br />

Figure 1.1.3 Types of <strong>Solar</strong> Cell .................................................................................................................................<br />

Figure 1.1.4. Rouch Comparison of Generation Unit Cost by Power Source .............................................................<br />

Figure 1.1.5. Module Manufacturing Unit Cost upon Cell Efficiency ........................................................................<br />

Figure 1.1.6. Composition Ratio of <strong>Solar</strong> Cell Manufacturing Unit Cost ...................................................................<br />

Figure 1.1.7 <strong>Wafer</strong> <strong>and</strong> Module Manufacturing Unit Cost upon p-Si Manufacturing 1 Unit Cost .............................<br />

Figure 1.2.1. <strong>Silicon</strong> <strong>Solar</strong> Cell Value Chain ..............................................................................................................<br />

Figure 1.2.2. <strong>Technology</strong> Direction for Inexpensive <strong>Solar</strong> Cell Material ...................................................................<br />

Figure 1.3.1. <strong>Silicon</strong> <strong>Solar</strong> Cell Manufacturing Process .............................................................................................<br />

Figure 1.3.2. Monocrystalline <strong>Ingot</strong> Manufacturing Process ......................................................................................<br />

Figure 1.3.3. Polycrystalline <strong>Silicon</strong> <strong>Wafer</strong> Manufacturing Process ...........................................................................<br />

Figure 2.1. Market Share <strong>and</strong> Forecast of p-Si Manufacturing <strong>Technology</strong> ...............................................................<br />

Figure 2.2. Metal Impurity Concentration Limit of <strong>Solar</strong> Cell p-Si ...........................................................................<br />

Figure 2.3. Nonmetal Impurity Concentration Limit of <strong>Solar</strong> Cell p-Si .....................................................................<br />

Figure 2.1.1. MG <strong>Silicon</strong> Manufacturing Process (Elkem).........................................................................................<br />

Figure 2.1.2. SiO Equilibrium Vapor Pressure upon Temperature ..............................................................................<br />

Figure 2.1.3 Achro Used in <strong>Silicon</strong> Reduction (ECN)................................................................................................<br />

Figure 2.1.4. Carbothermic Reduction (ECN) ............................................................................................................<br />

Figure 2.2.1. Environmental Variatios Need to be Considered in Each Process .........................................................<br />

Figure 2.9. Basic Structure of Bell-jar Reactor Used in Siemens Method ..................................................................<br />

Figure 2.10. Interior of Siemens Reactor ..................................................................................................................<br />

Figure 2.11. U-Bar Arragement Inside of Siemens Reactor ......................................................................................<br />

Figure 2.12. <strong>Silicon</strong> U-Bar Manufactured by Siemens Method ................................................................................<br />

SAMPLE<br />

Figure 2.13. <strong>Silicon</strong> Chunk Obrained by Pulverizing <strong>Silicon</strong> U-Bar ........................................................................<br />

Figure 2.3.2.1 Deposition Principle of TCS-based <strong>and</strong> MS-based ...........................................................................<br />

Figure 2.4.1 Fluidized Bed Reactor ..........................................................................................................................<br />

Figure 2.4.2 VLD Method Concept ..........................................................................................................................<br />

Figure 2.4.3 <strong>Silicon</strong> Production Plant in Tokuyaman Using VLD Method ..............................................................<br />

Figure 2.4.4 Property of <strong>Ingot</strong> Refined Using VLD Method ....................................................................................<br />

Figure 2.19. Tube Reactor in Joint <strong>Solar</strong> <strong>Silicon</strong> (JSSi) Process ..............................................................................<br />

Figure 2.20. <strong>Silicon</strong> Underwent High-Density Process ............................................................................................<br />

Figure 2.5.1 Impurities in MG-Si: Equilibrium Distribution Coefficient .................................................................<br />

Figure 2.5.2 Metal Impurities Employment within <strong>Silicon</strong> ......................................................................................<br />

Figure 2.5.3 Acid Leaching Process Outline .............................................................................................................<br />

Figure 2.5.4. SOLSILC Project Structure Map .........................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 2.5.5. SOLSILC Process Outline ...................................................................................................................<br />

Figure 2.5.6. 100 kW Pilot Arc Furnace <strong>and</strong> Eduction Process ................................................................................<br />

Figure 2.5.7.Crystalox furnace (SINTEF) for Directional Solidification .................................................................<br />

Figure 2.28. Elkem Process Outline .........................................................................................................................<br />

Figure 2.29. μ-PCD Lifetime Estimation of <strong>Wafer</strong> Manufactured with p-Si Mixed with 0, 33, 50, <strong>and</strong> 100 %<br />

of Elkem’s UMG-Si to Conventional p-Si ................................................................................................................<br />

Figure 2.30. Efficiency of <strong>Solar</strong> Cell Manufactured by Mixing Conventioanl <strong>Silicon</strong> with UMG-Si ......................<br />

Figure 2.5.9. Kawasaki Steel <strong>Silicon</strong> Refining Process ............................................................................................<br />

Figure 2.5.10. Kawasaki Steel <strong>Silicon</strong> Refining Process Map ..................................................................................<br />

Figure 2.5.11. Phosphorus Deletion Ratio in Electron beam Refining Process ........................................................<br />

Figure 2.5.12. 1st Impurities Distribution of <strong>Ingot</strong> with Completed Directional Solidification ...............................<br />

Figure 2.5.13. Boron Deletion in Plasma Process upon Hydrogen <strong>and</strong> Vapor Addition ...........................................<br />

Figure 2.5.14. Vapor Pressure Curve by Element upon Temperature .......................................................................<br />

Figure 2.5.15. NREL Process Outline (modified HEM) ...........................................................................................<br />

Figure 2.5.16. Modified HEM Reactor of Bench Scale ............................................................................................<br />

Figure 2.5.17. HEM amd 60kg <strong>Silicon</strong> <strong>Ingot</strong> Used in NREL Experiment ................................................................<br />

Figure 3.1. Cell <strong>Technology</strong> Shares ..........................................................................................................................<br />

Figure 3.2.1. Czochralski Growth Equipment ..........................................................................................................<br />

Figure 3.2.2. Monocrystalline <strong>Ingot</strong> Manufacturing Process through Czochraliski Growth .................................<br />

Figure 3.2.3. <strong>Ingot</strong> Diameter Change upon Czochralski Growth Speed ...................................................................<br />

Figure 3.2.3. Floating Zone Method Equipment .......................................................................................................<br />

Figure 3.3.1. Polycrystalline <strong>Ingot</strong> Manufacturing Method ......................................................................................<br />

Figure 3.9. Dislocation Defect Distribution <strong>and</strong> Efficiency Distribution .................................................................<br />

Figure 3.10. p-Si Manufactured by Block Casting Method ......................................................................................<br />

Figure 3.3.4. Electromagnetic Continuous Casting Method ..................................................................................<br />

Figure 3.3.5. Comparison between Conventional Solidification Process <strong>and</strong> Electromagnetic Casting Method .....<br />

SAMPLE<br />

Figure 3.3.6. Plasma Refining Process Using Electromagnetic Casting Method .....................................................<br />

Figure 3.14. <strong>Solar</strong> Cell <strong>Wafer</strong> Manufacturing Process ..............................................................................................<br />

Figure 3.15. <strong>Silicon</strong> <strong>Wafer</strong> Manufacturing Process <strong>and</strong> Cut Loss ............................................................................<br />

Figure 3.16. Polycrystalline <strong>Silicon</strong> Blocking Process .............................................................................................<br />

Figure 3.17. <strong>Silicon</strong> <strong>Ingot</strong> Sawing Process <strong>and</strong> Loss Ratio by Process ....................................................................<br />

Figure 3.18. <strong>Silicon</strong> Block Cut Process ....................................................................................................................<br />

Figure 3.19. Polycrystalline <strong>Silicon</strong> Block after 1 st Cut ............................................................................................<br />

Figure 3.20. <strong>Solar</strong> Cell <strong>Silicon</strong> <strong>Wafer</strong> Thickness <strong>and</strong> Cut Loss Variations ...............................................................<br />

Figure 3.5.1. Meniscus Shape Category ( M1,M2: Type1, M3: Type2 ) ...............................................................<br />

Figure 3.5.2. Crystal Growth Direction Category .....................................................................................................<br />

Figure 3.5.3. Post-Annealing Method for Temperature Stress Reduction (EFG Method) ........................................<br />

Figure 3.24. Edge-defined Film-fed Growth (EFG) Method Outline .......................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure 3.25. EFG Growth Equipment <strong>and</strong> Substrate Manufactured in Octagonal Pilars ..........................................<br />

Figure 3.26. Substrate Manufactured by EFG (EFG-Cell 125 x 125 mm) ...............................................................<br />

Figure 3.27. <strong>Solar</strong> Cell Efficiency Using EFG <strong>Wafer</strong> ...............................................................................................<br />

Figure 3.5.7. SR Method Process Outline .................................................................................................................<br />

Figure 3.5.8. SR Method Equipment ........................................................................................................................<br />

Figure 3.5.9. Dendritic Web Equipment ...................................................................................................................<br />

Figure 3.5.10. Ribbon <strong>Solar</strong> Cell Efficiency by <strong>Technology</strong> (Lab scale) .................................................................<br />

Figure 3.5.11. RGS Growth Equipment ....................................................................................................................<br />

Figure 3.5.11. Crystal Growth <strong>and</strong> Temperature Distribution in RGS Method ........................................................<br />

Figure 3.5.12. Crystal Structure Comparison in RGS Method upon Growth Condition ..........................................<br />

Figure 3.5.12. RGS <strong>Wafer</strong> Thickness (a) <strong>and</strong> Growth Speed (b) upon Initial Substrate Temperature ...................<br />

Figure 3.5.13. Shunting Mechanisms in RGS Method .............................................................................................<br />

Figure 3.5.14. RGS Substrate Efficiency ..................................................................................................................<br />

Figure 3.5.15. CDS <strong>Wafer</strong> Manufactured by Sharp (Substrate Size: 156 x 156 mm) ...............................................<br />

Figure 3.5.16. <strong>Silicon</strong> <strong>Wafer</strong> Manufacturing Process Using CDS ............................................................................<br />

Figure 3.5.17. <strong>Wafer</strong> Size <strong>and</strong> Production Volume Variation through CDS Method .............................................<br />

Figure 3.5.18. CDS <strong>Wafer</strong>’s Flat IPF Mapping Result .............................................................................................<br />

Figure 3.5.19. <strong>Solar</strong> Cell Efficiency Using CDS <strong>Wafer</strong> .........................................................................................<br />

Figure 3.5.20. <strong>Solar</strong> Cell Module Using CDS <strong>Wafer</strong> ................................................................................................<br />

Figure 3.5.21. SSP Process Outline ..........................................................................................................................<br />

Figure 3.5.22. <strong>Silicon</strong> ribbon of 20 cm .....................................................................................................................<br />

Figure 3.5.23. SSP Sheet Underwent Recrystalization Process ................................................................................<br />

Figure 3.5.24. SSP Sheet’s Detailed Structure a.Top b. Section c. Bottom ............................................................<br />

Figure 3.6.1. Thin Film <strong>Silicon</strong> <strong>Wafer</strong> Manufactured by DFT <strong>Technology</strong> ..............................................................<br />

Figure 3.6.2. DFT <strong>Wafer</strong>ing <strong>Technology</strong> Outline .....................................................................................................<br />

Figure 3.6.3. Cleaving Stage Process Concept .........................................................................................................<br />

SAMPLE<br />

Figure 3.6.4.Characteristics of DFT <strong>Wafer</strong> Manufactured by PolyMax <strong>and</strong> <strong>Solar</strong> Cell Manfactured by<br />

Conventional <strong>Wafer</strong> ..................................................................................................................................................<br />

Figure 3.6.5. Thin Film <strong>Wafer</strong> Manufacturing <strong>Technology</strong> Concept Using SLIM Method ......................................<br />

Figure3.6.6. <strong>Solar</strong> Cell I-V Property Using <strong>Wafer</strong> Manufactured by SLIM Method ................................................<br />

Figure 4.1.1. p-Si Manufacturing Process Used in HSC ...........................................................................................<br />

Figure4.1.2. Semiconductor <strong>and</strong> <strong>Solar</strong> Cell p-So Manufactured by HSC .................................................................<br />

Figure 4.1.3. p-Si Production Plant Currently Being Constructed in Burghausen, Germany .................................<br />

Figure4.1.4. p-Si Production Plan of Wacker Chemi ................................................................................................<br />

Figure4.1.5. Vertically Integrated <strong>Solar</strong> Cell Business Structure of REC .................................................................<br />

Figure4.1.6. Moses Lake Construction .....................................................................................................................<br />

Figure4.1.7. <strong>Silicon</strong> Production system from Raw Materials to Final Products <strong>and</strong> Business Filed of<br />

Tokuyama .................................................................................................................................................................<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09


<strong>Solar</strong> <strong>Grade</strong>-<strong>Silicon</strong>, <strong>Ingot</strong>, <strong>Wafer</strong> <strong>Technology</strong> <strong>and</strong> Market Trend (2008~2012)<br />

Figure4.2.1. p-Si Factory Currently Being Constructed in Saint Aubin, France .......................................................<br />

Figure4.9. <strong>Solar</strong> Cell p-Si Manufactured by LDK ....................................................................................................<br />

Figure 4.2.2. Monocrystalline <strong>Silicon</strong> <strong>Ingot</strong> Manufactured by Emei ........................................................................<br />

Figure 4.3.1. UMG-Si Manufacturing Process of Elkem <strong>Solar</strong> ................................................................................<br />

Figure 4.3.2. NEDO Melting Refinign Method Outline ...........................................................................................<br />

Figure 4.3.3. Electron Beam Melting <strong>and</strong> Plasma Melting Concept .........................................................................<br />

Figure4.3.4. Electron Bean Melting Equipment Developed by NEDO ....................................................................<br />

Figure4.3.5. <strong>Solar</strong> Cell p-Si Manufacturing Process Used by <strong>Solar</strong>value AG ..........................................................<br />

Figure4.16. UMG-Si Sold by Dow Corning .............................................................................................................<br />

Figure5.1. Monocrystalline <strong>Solar</strong> Cell <strong>Silicon</strong> <strong>Ingot</strong> Growth Using Czochralski Method .......................................<br />

Figure5.3. Polycrystalline <strong>Silicon</strong> Block Manufactured by PV Crystalox ................................................................<br />

Figure5.4. M. Setek’s Monocrystalline <strong>Silicon</strong> <strong>Ingot</strong> <strong>and</strong> <strong>Wafer</strong> Manufacturing Process ........................................<br />

Figure5.5. Monocrystalline <strong>Ingot</strong> <strong>and</strong> <strong>Wafer</strong> Manufactured by M. Setek .................................................................<br />

Figure5-6. Business Department at Glomfjord Plant ................................................................................................<br />

Figure5-7. REC Scan <strong>Wafer</strong>’s <strong>Ingot</strong> Formation Equipment <strong>and</strong> Polycrystalline <strong>Wafer</strong> ............................................<br />

Figure5.8. WACKER SCHOTT <strong>Solar</strong>’s Busienss Field ............................................................................................<br />

Figure5.9. MEMC’s <strong>Silicon</strong> <strong>Solar</strong> Cell Business Field .............................................................................................<br />

Figure 5.10. Swiss <strong>Wafer</strong>s AG’s HEM Equipment <strong>and</strong> Manufactured Polycrystalline <strong>Ingot</strong> ...................................<br />

Figure 5.11. <strong>Solar</strong>World’s Business Field .................................................................................................................<br />

Figure5.12. <strong>Solar</strong> Cell Panel Using 180μm Polycrystallin <strong>Silicon</strong> <strong>Wafer</strong> .................................................................<br />

Figure5.13. Ersol’s Production Capacity ..................................................................................................................<br />

Figure 6.1. p-Si Production & Capacity by Section ..................................................................................................<br />

Figure6.2. <strong>Solar</strong> Cell p-Si Dem<strong>and</strong>/Supply Forecast ................................................................................................<br />

Figure6.3. p-Si Price Forecast ($/Kg) ........................................................................................................................<br />

Figure6.4. poly-<strong>Silicon</strong> Revenue ...............................................................................................................................<br />

Figure6.5. Siemens Method Manufacturing Cost Ratio .............................................................................................<br />

SAMPLE<br />

Figure6.6. Manufacturing Cost Raito by Method ($/Kg) ..........................................................................................<br />

Figure6.7. poly-<strong>Silicon</strong> Capacity by Region ..............................................................................................................<br />

Figure6.8. poly-<strong>Silicon</strong> Production Forecast by Region ............................................................................................<br />

Figure6.9. poly-<strong>Silicon</strong> Production Forecast by Region (2008,2012) ......................................................................<br />

Figure6.10. poly-<strong>Silicon</strong> Production by <strong>Technology</strong> ................................................................................................<br />

Figure6.11. UMG-Si Capacity ..................................................................................................................................<br />

Figure6.12. <strong>Ingot</strong>/<strong>Wafer</strong> Production .........................................................................................................................<br />

Figure6.132. <strong>Wafer</strong> Revenue ....................................................................................................................................<br />

- End of report –<br />

All Contents of this report remain the property of <strong>Displaybank</strong><br />

Jan’09

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!