06.04.2014 Views

A Comparison of Seafloor Classification Methods Through the Use ...

A Comparison of Seafloor Classification Methods Through the Use ...

A Comparison of Seafloor Classification Methods Through the Use ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>Comparison</strong> <strong>of</strong> <strong>Seafloor</strong> <strong>Classification</strong> <strong>Methods</strong> <strong>Through</strong> <strong>the</strong> <strong>Use</strong><br />

<strong>of</strong> Multibeam Sonar, Error Matrices and 3-Dimensional<br />

3<br />

Visualization: Case Study <strong>of</strong> Nehalem Bank, Oregon<br />

Andrew S. Lanier<br />

Marine Resource Management Program<br />

College <strong>of</strong> Oceanic and Atmospheric Sciences<br />

Oregon State University<br />

July 17 th , 2006


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

• Study Site and Data Set<br />

Description<br />

– Processing<br />

– Results<br />

• Benthic Habitat <strong>Classification</strong><br />

– Background<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future<br />

Implications<br />

• Acknowledgements<br />

Submersible<br />

dive images from<br />

Nehalem Bank<br />

July 17 th , 2006 MS Thesis Defense


Background<br />

Timeline <strong>of</strong> Significant Events<br />

Rockfish Conservation Area (May, 2006)<br />

MSA Reauthorized<br />

EFH evaluation mandated<br />

NMFS declares 9 groundfish<br />

species“Over-fished” –Implements<br />

Area Closures<br />

NMFS publishes Final EIS<br />

alternatives<br />

White = Regulatory<br />

Yellow = Non-Regulatory<br />

NMFS Litigation Re: EIS<br />

PEW Oceans Commission<br />

1 st EFH Maps published<br />

US Oceans Commission<br />

(Bellman et al, 2006)<br />

July 17 th , 2006 MS Thesis Defense


Active Tectonics and<br />

<strong>Seafloor</strong> Mapping Lab<br />

Motivation<br />

1 st Published EFH Map<br />

Thematic interpretation<br />

(Romsos, 2004)<br />

Data Gaps<br />

Scale and Resolution Issues<br />

My Role: To evaluate what<br />

kinds <strong>of</strong> analysis are possible<br />

when <strong>the</strong>re is a high density<br />

<strong>of</strong> different types (and quality)<br />

<strong>of</strong> data available<br />

(Romsos, 2004)<br />

July 17 th , 2006 MS Thesis Defense


Motivation<br />

Study Goals<br />

Identify <strong>the</strong> limitations <strong>of</strong> <strong>the</strong> multibeam sonar data set.<br />

<strong>Use</strong> <strong>the</strong> Nehalem Bank study site to address <strong>the</strong><br />

following questions:<br />

– Does <strong>the</strong> multibeam data provide an accurate depiction<br />

<strong>of</strong> <strong>the</strong> seafloor topography? What artifacts remain and<br />

propagate into <strong>the</strong> classified images and data layers?<br />

– How do you assess <strong>the</strong> quality <strong>of</strong> a benthic<br />

classification attempt when groundtruthing information<br />

is at a different scale <strong>of</strong> observation?<br />

July 17 th , 2006 MS Thesis Defense


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

• Study Site and Data Set<br />

Description<br />

– Processing<br />

– Results<br />

• Benthic Habitat <strong>Classification</strong><br />

– Background<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future<br />

Implications<br />

• Acknowledgements<br />

Multibeam<br />

Sidescan<br />

July 17 th , 2006 MS Thesis Defense


Active Remote Sensing<br />

Multibeam Sonar Principles<br />

Motion Corrections<br />

Sound reflection characteristics<br />

Common Artifacts<br />

July 17 th , 2006 MS Thesis Defense


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

– Benthic Habitat <strong>Classification</strong>s<br />

• <strong>Methods</strong> and Schemes<br />

• Study Site and Data Set Description<br />

– Processing<br />

– Results<br />

• <strong>Methods</strong> Tests and Results<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future Implications<br />

• Acknowledgements<br />

Graphic Here <strong>of</strong> MB Survey<br />

+ Processing Steps<br />

(Base maps by J. Chaytor)<br />

July 17 th , 2006 MS Thesis Defense


Data Specifics:<br />

– Collected using University <strong>of</strong><br />

Washington RV Thomas G.<br />

Thompson, using Kongsberg Simrad<br />

EM300 Sonar a 30 kHz frequency<br />

(August, 2002).<br />

– Collected over a period <strong>of</strong> 3 days and<br />

covers an area <strong>of</strong> approximately 375<br />

km 2<br />

– 135 one degree (1x1) acoustic beams<br />

(swath width ~1.5X water depth)<br />

– Effective EM300 depth range ~100m<br />

to ~3000m<br />

Topographic Processing Steps:<br />

MBedit MBvelocitytool MBtide<br />

Nehalem Bank Data<br />

Tide Corrections<br />

Scientist Cave<br />

July 17 th , 2006 MS Thesis Defense


Nehalem Bank Backscatter Data<br />

Nehalem Bank Backscatter Data<br />

Backscatter Processing<br />

• Angle filter to correct for <strong>the</strong> influence <strong>of</strong> grazing angle on <strong>the</strong> grey level reflectance values (MBbackanglecorrect)<br />

July 17 th , 2006 MS Thesis Defense


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

• Study Site and Data Set<br />

Description<br />

– Processing<br />

– Results<br />

• Benthic Habitat <strong>Classification</strong><br />

– Background<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future<br />

Implications<br />

• Acknowledgements<br />

Model <strong>of</strong> <strong>Classification</strong> Procedures<br />

Topographic<br />

BTM<br />

BTM Classified<br />

Image<br />

DEM<br />

Qualitative<br />

Assessment<br />

Reference<br />

Points<br />

Error Matrices<br />

Quantitative<br />

Assessment<br />

SIM<br />

SIM Classified<br />

Image<br />

Backscatter<br />

Backscatter<br />

Image<br />

Dive<br />

Interpretation<br />

Textural<br />

Analysis<br />

Classified<br />

Image<br />

Qualitative<br />

Assessment<br />

Input Data Set<br />

Analysis Method<br />

Result<br />

Assessment<br />

July 17 th , 2006 MS Thesis Defense


Benthic <strong>Classification</strong> <strong>Methods</strong><br />

<strong>Seafloor</strong> <strong>Classification</strong> efforts falls behind that <strong>of</strong> terrestrial classification because <strong>of</strong> <strong>the</strong><br />

nature <strong>of</strong> collecting observational data under water (Difficult to collect, $$$, Time)<br />

Types <strong>of</strong> data available:<br />

– Sample collection, <strong>the</strong> acquisition <strong>of</strong> remotely sensed data (sidescan sonar, multibeam<br />

sonar, seismic), and observational video groundtruth data<br />

Common types <strong>of</strong> classification:<br />

By single variable<br />

– Depth<br />

– Substrate<br />

Image classification techniques:<br />

– Spatial analysis<br />

• Spatial filtering<br />

• Digital Elevation Model (DEM) derivatives (slope, aspect, plan, pr<strong>of</strong>ile)<br />

Previous work on <strong>the</strong> Oregon seafloor Conducted @ Heceta Bank ( Nasby-Lucas et<br />

al., 2002; Whitmire, 2003).<br />

July 17 th , 2006 MS Thesis Defense


Benthic Terrain Modeler <strong>Classification</strong><br />

<strong>Classification</strong> Process<br />

Definition <strong>of</strong> Zones<br />

Crests –<br />

•High points in <strong>the</strong> terrain<br />

•values greater than one standard deviation<br />

from <strong>the</strong> mean in <strong>the</strong> positive direction.<br />

• Depressions –<br />

•Low points in <strong>the</strong> terrain<br />

•Values greater than one standard deviation<br />

from <strong>the</strong> mean in <strong>the</strong> negative direction.<br />

• Flats –<br />

•Flat points in <strong>the</strong> terrain<br />

•values that are within one standard deviation<br />

<strong>of</strong> <strong>the</strong> mean. Flats have a slope that is 5.<br />

Bathymetric Position Index<br />

July 17 th , 2006 MS Thesis Defense


Benthic Terrain Modeler <strong>Classification</strong><br />

<strong>Classification</strong> Process<br />

<strong>Classification</strong> Dictionary<br />

July 17 th , 2006 MS Thesis Defense


SIM <strong>Classification</strong><br />

Surface Interpretation Method<br />

<strong>Use</strong>s a randomly sited set <strong>of</strong> points<br />

interpreted in <strong>the</strong> 3D environment<br />

Model <strong>of</strong> <strong>Classification</strong> Process<br />

•1 st Calculation <strong>of</strong> spatial indices<br />

•2 nd Multiple derived spatial analysis indices<br />

are condensed using PCA and intersected<br />

with <strong>the</strong> interpreted points to create<br />

classification signatures.<br />

•3 rd The signatures are used in a maximum<br />

likelihood classification algorithm to group<br />

<strong>the</strong> values into classes.<br />

July 17 th , 2006 MS Thesis Defense


Topographic <strong>Classification</strong> Results<br />

BTM<br />

SIM<br />

July 17 th , 2006 MS Thesis Defense


Topographic <strong>Classification</strong> Results<br />

Class<br />

Description<br />

Topographic Classified Area<br />

1<br />

Narrow<br />

Depression<br />

500<br />

3DSIM<br />

BTM Tool<br />

2<br />

3<br />

Depression Local<br />

Crest<br />

Depression<br />

Gentle Slope<br />

4 Crest Depression<br />

5 Crest Ridgetop<br />

6 Crest Plateau<br />

Area (10^9 meters)<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

7 Crest Hillslope<br />

8<br />

9<br />

10<br />

Open Slope<br />

Depression<br />

Open Slope<br />

Crest<br />

Open Shelf<br />

Slope<br />

100<br />

50<br />

0<br />

0.00<br />

1 2 3 4 5 6 7 8 9<br />

1 2 3 4 5 6 7 8 9 10<br />

Class<br />

July 17 th , 2006 MS Thesis Defense


Topographic <strong>Classification</strong> Results<br />

Qualitative <strong>Comparison</strong><br />

Summary<br />

BTM<br />

Strengths<br />

• Fine structural detail<br />

Weaknesses<br />

• Bank edges<br />

SIM<br />

Strengths<br />

• Fine structural detail<br />

• Bank edges<br />

Weaknesses<br />

• Sonar Artifacts<br />

July 17 th , 2006 MS Thesis Defense


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

– Benthic Habitat <strong>Classification</strong>s<br />

• <strong>Methods</strong> and Schemes<br />

• Study Site and Data Set Description<br />

– Processing<br />

– Results<br />

• <strong>Methods</strong> Tests and Results<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future Implications<br />

• Acknowledgements<br />

Model <strong>of</strong> <strong>Classification</strong> Procedures<br />

Topographic<br />

BTM<br />

BTM Classified<br />

Image<br />

DEM<br />

Qualitative<br />

Assessment<br />

Reference<br />

Points<br />

Error Matrices<br />

SIM<br />

SIM Classified<br />

Image<br />

Backscatter<br />

Backscatter<br />

Image<br />

Dive<br />

Interpretation<br />

Textural<br />

Analysis<br />

Classified<br />

Image<br />

Qualitative<br />

Assessment<br />

Input Data Set<br />

Analysis Method<br />

Quantitative<br />

Assessment<br />

Result<br />

Assessment<br />

July 17 th , 2006 MS Thesis Defense


Quantitative Assessment <strong>Methods</strong><br />

• Introduction<br />

– Reference Data<br />

• <strong>Methods</strong><br />

– Reference Points Created<br />

and Interpreted<br />

– Compared to <strong>the</strong> results<br />

from <strong>the</strong> classification<br />

methods.<br />

– An error matrix was<br />

completed for each<br />

classified grid.<br />

3D Perspective View <strong>of</strong> Nehalem Bank<br />

July 17 th , 2006 MS Thesis Defense


Quantitative Assessment Results<br />

July 17 th , 2006 MS Thesis Defense


Quantitative Assessment Results<br />

Error Matrices (Simplified <strong>Classification</strong>)<br />

Error Matrices Statistics<br />

KHAT


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

– Benthic Habitat <strong>Classification</strong>s<br />

• <strong>Methods</strong> and Schemes<br />

• Study Site and Data Set Description<br />

– Processing<br />

– Results<br />

• <strong>Methods</strong> Tests and Results<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future Implications<br />

• Acknowledgements<br />

Model <strong>of</strong> <strong>Classification</strong> Procedures<br />

Topographic<br />

BTM<br />

BTM Classified<br />

Image<br />

DEM<br />

Qualitative<br />

Assessment<br />

Reference<br />

Points<br />

Error Matrices<br />

SIM<br />

SIM Classified<br />

Image<br />

Backscatter<br />

Backscatter<br />

Image<br />

Dive<br />

Interpretation<br />

Textural<br />

Analysis<br />

Classified<br />

Image<br />

Qualitative<br />

Assessment<br />

Input Data Set<br />

Analysis Method<br />

Quantitative<br />

Assessment<br />

Result<br />

Assessment<br />

July 17 th , 2006 MS Thesis Defense


Backscatter Image <strong>Classification</strong><br />

Textural Analysis<br />

Nehalem Bank backscatter image documents an unusual<br />

phenomenon.<br />

Textural Analysis relies only on characteristic patterns <strong>of</strong> reflectance.<br />

Grey Level Co-occurrence Matrices (GLCM)<br />

– <strong>Use</strong>d to calculate statistical indices<br />

Indices used in this study were: (based upon Cochrane & Lafferty, 2001; Diaz, 1999)<br />

– Homogeneity – How alike are <strong>the</strong> pixels within a neighborhood<br />

– Entropy – How ordered are <strong>the</strong> pixels within a neighborhood<br />

July 17 th , 2006 MS Thesis Defense


Textural Analysis <strong>Methods</strong><br />

Backscatter Image <strong>Classification</strong><br />

• Match submersible dive groundtruth data to <strong>the</strong><br />

backscatter imagery (Overlaid on DEM)<br />

Submersible Dive Interpretation<br />

by Natalie Strom, (2006)<br />

• Each Habitat is characterized using a two<br />

letter code. The first letter represents > 50%<br />

<strong>of</strong> <strong>the</strong> field <strong>of</strong> view and <strong>the</strong> second letter must<br />

represent > 20%.<br />

•Each habitat section must occur for at least<br />

10 seconds <strong>of</strong> <strong>the</strong> video transect.<br />

July 17 th , 2006 MS Thesis Defense


Backscatter Image <strong>Classification</strong><br />

<strong>Methods</strong> (cont.)<br />

Compute GLCM derived indices<br />

Create training sites<br />

Produce classification signatures<br />

Classify using <strong>the</strong> Maximum Likelihood<br />

clustering algorithm<br />

July 17 th , 2006 MS Thesis Defense


Strengths<br />

Rocky Ridges, Low Relief Mud, Mixed Class<br />

Weaknesses<br />

Shadows, Noise, Data Gaps Classified incorrectly<br />

Textural Analysis Results<br />

Strengths<br />

Rock Types Distinguished<br />

Weaknesses<br />

Low Relief Mud, Shadows<br />

July 17 th , 2006 MS Thesis Defense


Thesis Outline<br />

• Introduction<br />

– Background & Motivation<br />

– Multibeam Sonar Principles<br />

– Benthic Habitat <strong>Classification</strong>s<br />

• <strong>Methods</strong> and Schemes<br />

• Study Site and Data Set Description<br />

– Processing<br />

– Results<br />

• <strong>Methods</strong> Tests and Results<br />

– Topographic <strong>Classification</strong><br />

– Quantitative Assessment<br />

– Backscatter <strong>Classification</strong><br />

• Discussion <strong>of</strong> Results<br />

• Conclusions and Future Implications<br />

• Acknowledgements<br />

Model <strong>of</strong> <strong>Classification</strong> Procedures<br />

Topographic<br />

BTM<br />

BTM Classified<br />

Image<br />

DEM<br />

Qualitative<br />

Assessment<br />

Reference<br />

Points<br />

Error Matrices<br />

SIM<br />

SIM Classified<br />

Image<br />

Backscatter<br />

Backscatter<br />

Image<br />

Dive<br />

Interpretation<br />

Textural<br />

Analysis<br />

Classified<br />

Image<br />

Qualitative<br />

Assessment<br />

Input Data Set<br />

Analysis Method<br />

Quantitative<br />

Assessment<br />

Result<br />

Assessment<br />

July 17 th , 2006 MS Thesis Defense


Discussion<br />

Data Set<br />

• Topographic Data<br />

– Processing<br />

–Results<br />

– Knowledge extent<br />

• Backscatter Data<br />

– Processing<br />

–Results<br />

– Knowledge extent<br />

July 17 th , 2006 MS Thesis Defense


Topographic<br />

<strong>Classification</strong><br />

• Both methods<br />

– Semi-automated<br />

– Moderate success<br />

• Quality Assessments<br />

– Qualitative<br />

– Quantitative<br />

Discussion<br />

July 17 th , 2006 MS Thesis Defense


Backscatter <strong>Classification</strong><br />

Discussion<br />

Dive interpretations<br />

– Correctly sited on landscape<br />

Textural Analysis<br />

– Using GLCM’s<br />

Mixed Results<br />

– worked well for Dive 3430<br />

– somewhat poorly for Dive 3431<br />

Sidescan imagery changes <strong>the</strong><br />

picture, and our perception <strong>of</strong><br />

<strong>the</strong> area<br />

Final interpretation<br />

– EM300 imagery is likely imaging<br />

subsurface seafloor characteristics<br />

EM300 Imagery AMS 150 Sidescan Imagery<br />

July 17 th , 2006 MS Thesis Defense


Conclusions<br />

Study Goals<br />

• Identify <strong>the</strong> limitations <strong>of</strong> <strong>the</strong> multibeam sonar data<br />

set. <strong>Use</strong> <strong>the</strong> Nehalem Bank study site to address <strong>the</strong><br />

following questions:<br />

– 5m cell size resolution over <strong>the</strong> entire region, with ~ 2m<br />

cell size possible in shallow regions.<br />

• Questions addressed at beginning:<br />

– 1. Does <strong>the</strong> MBES data provide an accurate depiction <strong>of</strong><br />

<strong>the</strong> seafloor topography? What artifacts remain and<br />

propagate into <strong>the</strong> classified images and data layers?<br />

• The multibeam imagery provided a detailed view <strong>of</strong> <strong>the</strong><br />

landscape down to <strong>the</strong> Macroscale habitat features.<br />

• The artifacts that remain in <strong>the</strong> final image include nadir regions,<br />

swath overlap, turn artifacts.<br />

July 17 th , 2006 MS Thesis Defense


Conclusions<br />

Study Goals<br />

2. How do you assess <strong>the</strong> quality <strong>of</strong> a<br />

benthic classification attempt when<br />

groundtruthing information is at a<br />

different scale <strong>of</strong> observation?<br />

– Qualitative evaluation is possible<br />

– 3D GIS environment<br />

– Error matrices<br />

• can be used to iteratively evaluate<br />

<strong>the</strong> methods and results.<br />

– Limit <strong>the</strong> assessment to <strong>the</strong> areas<br />

where groundtruth information is<br />

available<br />

July 17 th , 2006 MS Thesis Defense


Future Implications and Research Directions<br />

For Sonar Image <strong>Classification</strong><br />

– Automated classification a possibility? Not yet.<br />

– Provided a method for <strong>the</strong> assessment <strong>of</strong> topographic accuracy that can<br />

be used on any multibeam data set.<br />

For Marine Resource Management<br />

– The presence <strong>of</strong> <strong>the</strong> Nehalem Bank topographic classification and<br />

bathymetric data set will play a large role in <strong>the</strong> future investigations in<br />

benthic ecology by dictating <strong>the</strong> locations where <strong>the</strong> fur<strong>the</strong>r exploration<br />

is needed.<br />

• Future investigations <strong>of</strong> EFH at a smaller scale is possible using <strong>the</strong> data<br />

sets produced from this study<br />

– Future Research Questions:<br />

• Where have <strong>the</strong> impacts <strong>of</strong> an activity like trawling been concentrated in<br />

<strong>the</strong> Nehalem Bank region?<br />

• Does <strong>the</strong> structural diversity <strong>of</strong> topographic habitats in <strong>the</strong> bank top region<br />

provide a natural refuge from those actions, and if so, what is <strong>the</strong> true<br />

population <strong>of</strong> fish in those areas?<br />

July 17 th , 2006 MS Thesis Defense


• Major Advisor: Chris Goldfinger<br />

• Committee Members: Dawn<br />

Wright, Waldo Wakefield, Skip<br />

Roechefort<br />

• Funding Agencies:<br />

NOAA NWFSC<br />

CIMRS<br />

NOAA Coastal Services Center<br />

• Active Tectonics and <strong>Seafloor</strong><br />

Mapping Crew<br />

• Fellow COAS students<br />

• My Family<br />

• Fiancé: Jessica Cardinal<br />

Acknowledgments<br />

July 17 th , 2006 MS Thesis Defense


Misc Info<br />

• Error Matrix Statistics<br />

July 17 th , 2006 MS Thesis Defense


Benthic <strong>Classification</strong><br />

Benthic habitat: is a seafloor region that can be characterized using <strong>the</strong> physical gradients <strong>of</strong> several<br />

variables, including depth, substrate, slope, roughness, and morphology, (may also include oceanographic<br />

factors such as temperature, salinity, nutrient flux, and biogenic content).<br />

Habitat <strong>Classification</strong> Schemes<br />

By Scale<br />

Using Nautical charts and existing<br />

geological maps (Greene, 2005)<br />

Towards Process<br />

An idealized scheme to reflect influence<br />

<strong>of</strong> environmental conditions (Valentine et<br />

al., 2004)<br />

Habitat classes were categorized into ei<strong>the</strong>r<br />

<strong>of</strong> four groups:<br />

• megahabitats (10’s <strong>of</strong> km’s – 1km)<br />

• mesohabitats (1km - 10’s <strong>of</strong> meters)<br />

• macrohabitats (10’s <strong>of</strong> meters to 1m)<br />

• microhabitats (1m to 1cm).<br />

A hierarchy <strong>of</strong> attributes can be associated<br />

with a single seafloor region<br />

Their scheme recognized <strong>the</strong> eight<br />

<strong>the</strong>mes <strong>of</strong>:<br />

– seabed topography<br />

– sediment dynamics<br />

– texture<br />

– grain size<br />

– Roughness<br />

– fauna and flora<br />

– habitat association and usage<br />

– habitat recovery from disturbance<br />

Those <strong>the</strong>mes are fur<strong>the</strong>r attributed by a<br />

sequence <strong>of</strong> modifiers that address habitat<br />

characteristics in increasing levels <strong>of</strong> detail<br />

July 17 th , 2006 MS Thesis Defense


Discussion<br />

Final <strong>Classification</strong> Scheme<br />

• Greene et al. (2005) scheme<br />

was chosen to define broad<br />

zones in <strong>the</strong> landscape.<br />

Based upon Mega-Habitat<br />

definitions.<br />

– Previous EFH maps use it<br />

– No process information is<br />

available (Valentine et al.,<br />

2004)<br />

• Intersect <strong>the</strong> fine scale<br />

structures delineated using <strong>the</strong><br />

BTM tool<br />

July 17 th , 2006 MS Thesis Defense


What are <strong>the</strong> benefits to classification <strong>of</strong> using a 3D perspective? Is it<br />

possible to quantitatively compare two different classifications <strong>of</strong> <strong>the</strong><br />

data using observations in a 3D environment?<br />

Can <strong>the</strong> texture <strong>of</strong> multibeam sonar backscatter imagery be used to<br />

classify homogeneous regions <strong>of</strong> substrate on <strong>the</strong> seafloor given <strong>the</strong><br />

Nehalem Bank data set and <strong>the</strong> available groundtruthing data<br />

sources?<br />

July 17 th , 2006 MS Thesis Defense


Study Goal<br />

3. What are <strong>the</strong> benefits to classification<br />

<strong>of</strong> using a 3D perspective? Is it<br />

possible to quantitatively compare two<br />

different classifications <strong>of</strong> <strong>the</strong> data<br />

using observations in a 3D<br />

environment?<br />

Conclusions<br />

Calculating error matrix statistics allows for<br />

<strong>the</strong> evaluation <strong>of</strong> each result individually,<br />

while also making it possible for comparison<br />

among different results.<br />

Dives were correctly placed in <strong>the</strong> landscape<br />

where <strong>the</strong>y could be used to guide <strong>the</strong><br />

textural classification <strong>of</strong> backscatter<br />

imagery.<br />

<strong>Use</strong> <strong>of</strong> <strong>the</strong> 3D environment helped to colocate<br />

different data sets on <strong>the</strong> bathymetry,<br />

while also providing an opportunity to<br />

perform quantitative assessments through <strong>the</strong><br />

use <strong>of</strong> error matrices.<br />

July 17 th , 2006 MS Thesis Defense


4. Can <strong>the</strong> texture <strong>of</strong> multibeam sonar<br />

backscatter imagery be used to classify<br />

homogeneous regions <strong>of</strong> substrate on <strong>the</strong><br />

seafloor given <strong>the</strong> Nehalem Bank data set<br />

and <strong>the</strong> avaailable groundtruthing data<br />

sources?<br />

– The presence <strong>of</strong> two sources <strong>of</strong><br />

imagery helped to evaluate what<br />

was actually being imaged in <strong>the</strong><br />

environment.<br />

Conclusions<br />

July 17 th , 2006 MS Thesis Defense

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!