04.04.2014 Views

Track A - Water Resources Center - University of Minnesota

Track A - Water Resources Center - University of Minnesota

Track A - Water Resources Center - University of Minnesota

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lori A. Krider<br />

Joseph A. Magner<br />

Jim Perry


Investigations<br />

• Temperature regimes <strong>of</strong><br />

groundwater-fed streams<br />

vs. surface water fed<br />

streams<br />

• Affect <strong>of</strong> air temperature<br />

on the water temperature<br />

in groundwater-fed<br />

streams<br />

• Implications for climate<br />

change<br />

• Use in guiding land<br />

management


Importance<br />

• Air temperatures are very influential on surface and<br />

groundwater temperatures (Erickson et al., 2000;<br />

Meisner et al., 1988)<br />

• <strong>Water</strong> temperatures dictate species composition and<br />

cold water habitat supports trout populations<br />

• No published work investigates this relationship in<br />

carbonate systems across watersheds<br />

• Other uses: relate water temperatures to trout growth<br />

patterns and diet; choose study sites when research is<br />

related to water temperature


Study Area<br />

• Southeastern <strong>Minnesota</strong>’s Driftless<br />

Region<br />

• Lacks glacial scouring; old valleys<br />

with dramatic changes in elevation<br />

• Carbonate rocks: made <strong>of</strong> easily<br />

eroded minerals<br />

• Karst geology: well-developed<br />

surface features such as springs and<br />

sinkholes<br />

• Incipient karst geology: seeps and<br />

groundwater recharge through<br />

infiltration


Temperature ( o C)<br />

Time Frame<br />

• “Present” data set<br />

• If climate change<br />

has been escalating<br />

in the past several<br />

decades, how far<br />

back will the<br />

measurements still<br />

represent present<br />

conditions?<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

Temperature Over Time, 1986 - 2008: Rochester IA<br />

(3-Month Moving Window Average)<br />

1998<br />

1998<br />

Year<br />

Rochester IA: approximately in the middle<br />

<strong>of</strong> our study streams


Data Details<br />

• 7 counties<br />

• 40 study streams<br />

Rice<br />

Goodhue<br />

Wabasha<br />

• 106 temperature<br />

loggers<br />

• 3,606 weekly<br />

averages<br />

Olmstead<br />

Winona<br />

Fillmore<br />

Houston


Data Source<br />

• <strong>Water</strong> temperature data<br />

• STORET, DNR, David Huff and Toby Dogwiler<br />

• Discrete and continuous -> weekly averages<br />

• Year-round, winter intensive or non-winter intensive<br />

• Air temperature data<br />

• NOAA weather stations<br />

• Thiessen polygons were created for six counties<br />

• Between 7.1 km and 53.8 km from the streams they were<br />

matched to


Statistical Analysis<br />

• Linear regression models<br />

(y = mx +b -> T w =B(T a )+A)<br />

• Produces R 2 value (0 – 1)<br />

• How well the model<br />

explains the variation in<br />

the data<br />

• Closer to one is better<br />

• Marginal R 2 improvements<br />

with non-linear models<br />

(between 0.0001 and<br />

0.135)<br />

http://www.unr.edu/math/events/index.html


Terminology<br />

• Regressions explained in terms <strong>of</strong> the project<br />

• Slope: how quickly water temperatures rise as a function<br />

<strong>of</strong> air temperatures<br />

• Intercept: temperature <strong>of</strong> the water when the air<br />

temperature becomes freezing<br />

• R 2 value: how much <strong>of</strong> the variation in stream<br />

temperature can be explained by air temperatures


Temporal Scale<br />

• What is best for regressions <strong>of</strong> groundwater-fed streams?<br />

• Pilgrim et al. (1998): 36 surface water streams and 3<br />

groundwater-fed streams across MN<br />

• monthly produces highest R 2 (Apr. – Oct.)<br />

• Time lags up to 7 days for rivers up to 15 ft deep (Stefan and<br />

Pred’homme, 1993)<br />

• R 2 for a sub-set <strong>of</strong> our streams<br />

• 0.56 at monthly scale, April – October data<br />

• 0.86 at weekly scale, year-round data<br />

• Number <strong>of</strong> data points<br />

• 431 monthly averages, Apr. – Oct.<br />

• 1734 weekly averages, year-round


Results Summary & Comparison<br />

• Slopes, intercepts and R 2 varied much between streams<br />

• Slopes and intercepts were markedly different from<br />

values displayed by surface water fed streams<br />

Study Streams<br />

Slopes<br />

0.18 - 0.74<br />

Intercepts<br />

2.90 - 8.29<br />

Pilgrim et al.’s Study Streams<br />

Slopes<br />

0.85 - 1.15<br />

Intercepts<br />

-1.51 - 4.01


Average Weekly <strong>Water</strong> Temperature (C)<br />

Average Weekly <strong>Water</strong> Temperature (C)<br />

Exemplary Results<br />

20.00<br />

Snake Creek Weekly Linear Regression<br />

1999 - 2000, 2003, 2005, 2007<br />

y = 0.3218x + 7.3901<br />

R² = 0.591<br />

Winnebago Creek Weekly Linear Regression<br />

2000 - 2003 & 2008<br />

20<br />

y = 0.3424x + 6.93<br />

R² = 0.9771<br />

15.00<br />

15<br />

10.00<br />

10<br />

5.00<br />

5<br />

0.00<br />

0.00 5.00 10.00 15.00 20.00 25.00 30.00<br />

Average Weekly Air Temperature (C)<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20 25 30<br />

Average Weekly Air Temperature (C)<br />

Lowest R 2<br />

Highest R 2


Average Weekly <strong>Water</strong> Temperature (C)<br />

Lumped Model<br />

Our Study Streams<br />

Slope: 0.38<br />

Intercept: 6.63<br />

R 2 value: 0.83<br />

SE: 1.98<br />

SD: 4.79<br />

Pilgrim et al.’s Study Streams<br />

Slope: 0.97<br />

Intercept: 1.88<br />

All Streams Weekly Regression<br />

1999 - 2008<br />

25<br />

20<br />

15<br />

10<br />

5<br />

y = 0.3819x + 6.6257<br />

R² = 0.82913<br />

0<br />

-30 -20 -10 0 10 20 30<br />

Average Weekly Air Temperature (C)


Intercept<br />

Mechanisms <strong>of</strong> Control<br />

• Adapted from<br />

O’Driscoll and<br />

DeWalle (2004)<br />

• Our R 2 is<br />

considerably<br />

lower (vs. 0.89)<br />

• due to spatial<br />

and temporal<br />

differences<br />

• Protection vs.<br />

restoration<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Slope vs. Intercept<br />

All Streams Weekly Linear Regression<br />

Groundwater Control<br />

BSC<br />

NBC<br />

Gil C<br />

CSB<br />

Co C<br />

Ba C<br />

He C<br />

Be C<br />

y = -4.6744x + 8.1617<br />

R² = 0.3893<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Slope<br />

Ma BW<br />

Ru C<br />

No BW<br />

SD = 0.13, SE = 0.10<br />

Pi C<br />

Meteorological Control<br />

NFZR


Contributing Factors<br />

• Factors that affect the air-water temperature relationship<br />

• No/little effect on R 2 , slope or intercept<br />

• Number <strong>of</strong> weekly averages (< .0.08 for all)<br />

• Number <strong>of</strong> known springs within 50 m (< 0.07 for all)<br />

• Number <strong>of</strong> known springs within 250 m (< 0.005 for all)<br />

• Number <strong>of</strong> temperature loggers (< 0.11 for all)<br />

• Minor watershed area (acres) (< 0.14 for both R 2 & intercept)<br />

• Some effect on R 2 , slope or intercept<br />

• Minor watershed area vs. slope (R 2 = 0.36)


Groundwater vs. Surface <strong>Water</strong><br />

• Groundwater-fed streams have drastically different<br />

temperature regimes than surface water fed streams<br />

• Comparison between slopes and intercepts<br />

• Groundwater input doesn’t affect the strength <strong>of</strong> the airwater<br />

temperature correlation<br />

Our Study Streams<br />

R 2 values: range<br />

0.59 - 0.98<br />

R 2 values: lumped<br />

0.83<br />

Pilgrim et al. Study Streams<br />

R 2 values: range<br />

0.67 - 0.96<br />

R 2 values: lumped<br />

0.83


Other Findings<br />

• Could not provide concrete evidence that the amount <strong>of</strong><br />

groundwater input affects R 2 , slope, or intercept<br />

• Incomplete karst inventory database<br />

• Groundwater inputs are difficult to quantify accurately<br />

• Graphing slope vs. intercept suggests mechanisms for<br />

control<br />

• Asymptote near or above 0 o C water temperatures with<br />

air temperatures well below 0 o C<br />

• Surface water fed streams asymptote at 0 o C water<br />

temperatures with air temperatures at 0 o C


Groundwater Inflow<br />

• Most important<br />

determinant <strong>of</strong> water<br />

temperatures in<br />

groundwater-fed streams<br />

• Discharge<br />

• Lentz farm<br />

• Stream velocity<br />

• Shade<br />

• Source <strong>of</strong> resurgence<br />

• <strong>Water</strong> table vs. interflow<br />

Artisan spring on Ralph Lentz farm:<br />

400 gallons /minute


Implications for Climate Change<br />

• Streams in northerly climates do not always follow unity<br />

at air temperatures > 20 o C<br />

• Suggested by Mohensi & Stefan, 2000<br />

• Varies from stream to stream: some level slightly, some<br />

follow unity and some produce more scatter<br />

• Streams that follow unity and have high R 2 values are<br />

most promising as predictive tools<br />

• Streams with higher slopes and lower intercepts are<br />

more susceptible


Climate Change Continued<br />

• A1B SRES regional climate change scenario for central<br />

North America<br />

• 2.4 and 6.4 o C above 2000 conditions for the summer<br />

months (June – August) by the years 2080 – 2099 (IPCC<br />

Working Group I, 2007)<br />

• Transform marginal or near marginal habitat into unsuitable<br />

habitat<br />

• Restrict suitable summer habitat to directly downstream <strong>of</strong><br />

springs and expand suitable winter habitat (Meisner et al.,<br />

1988)


Management for Mitigation<br />

•Increase snow trapping in riparian areas<br />

•Provide riparian shading<br />

•Encourage stream deepening and<br />

narrowing<br />

•Reduce temperatures <strong>of</strong> shallow<br />

groundwater aquifer


Literature Cited<br />

• Brooks, K. N., P. F. Ffolliott, H. M. Gregersen, & L. F. DeBano. 2003. Hydrology and the Management <strong>of</strong><br />

<strong>Water</strong>sheds (3 rd ed.). Ames, Iowa: Iowa State <strong>University</strong> Press.<br />

• Coldwater Fish and Fisheries Working Group. 2010. Wisconsin Initiative on Climate Change Impacts. First<br />

Report: Released February 2011.<br />

• Cristea, N., & J. Janisch. 2007. Modeling the Effects <strong>of</strong> Riparian Buffer Width and Effective Shade and<br />

Stream Temperature. Environmental Assessment Program <strong>of</strong> the Washington State Department <strong>of</strong><br />

Ecology. Publication No. 07-03-028.<br />

• Erickson, T. R. & H. Stefan. 2000. Linear Air/<strong>Water</strong> Temperature Correlations for Streams During Open<br />

<strong>Water</strong> Periods. Journal <strong>of</strong> Hydrological Engineering 5(3): 317 – 321.<br />

• Intergovernmental Panel on Climate Change Working Group I. 2007. Contribution <strong>of</strong> the Working Group I<br />

to the Fourth Assessment Report <strong>of</strong> the Intergovernmental Panel on Climate Change, 2007. Accessed<br />

online 10 April 2011.<br />

• Meisner, J. D., Rosenfeld, J. S., & Regier. 1988. The Role <strong>of</strong> Groundwater in the Impact <strong>of</strong> Climate Warming<br />

on Stream Salmonines. Fisheries 13(3): 2 -8.<br />

• Mohensi, O., H. G. Stefan & T. R. Erickson. 1998. A nonlinear regression model for weekly stream<br />

temperatures. <strong>Water</strong> <strong>Resources</strong> Research 34: 2685 – 2692.<br />

• O’Driscoll, M. A., & DeWalle, D. R. 2004. Stream-Air Temperature Relationships as Indicators <strong>of</strong><br />

Groundwater Inputs. AWRA <strong>Water</strong>shed Update 2(6).<br />

• Pilgrim, J., X. Fang & H. Stefan. 1998. Stream Temperature Correlations with Air Temperatures in<br />

<strong>Minnesota</strong>: Implications for Climate Warming. Journal <strong>of</strong> the American <strong>Water</strong> <strong>Resources</strong> Association<br />

34(5): 1109 – 1121.<br />

• Stefan, H. G. & E. B. Preud’homme. 1993. Stream Temperature Estimation from Air Temperature. <strong>Water</strong><br />

<strong>Resources</strong> Bulletin 29(1): 27 – 46.


Natural short-term declines in curly-leaf pondweed across a<br />

network <strong>of</strong> sentinel lakes: potential impacts <strong>of</strong> snowy winters<br />

Ray Valley, Steve Heiskary, Cindy Tomcko


Comprehensive report is in the<br />

works<br />

• Covers findings here<br />

in addition:<br />

• Correlations between<br />

water quality and<br />

curly-leaf growth and<br />

summer plant growth<br />

• Case studies<br />

• Suggested future<br />

investigations


Sustaining Lakes in a Changing Environment<br />

(SLICE)<br />

‣ 24 sentinel lakes; sites <strong>of</strong> cooperative<br />

long-term monitoring and research.<br />

DNR, PCA, USGS, SNF major<br />

partners<br />

‣ <strong>Water</strong> quality, zooplankton, aquatic<br />

plants, fish and continuous<br />

temperature data monitored since<br />

2008<br />

‣ Curly-leaf pondweed (CLP) occurs in<br />

14; annual spring surveys (pointintercept)<br />

in 11


Assessment Methods – Point Intercept<br />

• Conducted during the<br />

peak <strong>of</strong> growth (typically<br />

late May/Early June)<br />

• Rake throws at uniformly<br />

space points spaced 80-m<br />

apart.<br />

• % Frequency is correlated<br />

with % areal cover


Genesis: Serendipity<br />

• Noticed declines in CLP cover across<br />

most sentinel lakes since monitoring<br />

began in 2008.<br />

• Due to simultaneous declines across<br />

network, knew immediately that something<br />

environmental must be going on.


Curly-leaf declines<br />

37%<br />

decline<br />

overall<br />

80%<br />

95%


Decline in surface growth in Pearl<br />

Lake (Stearns Co.)<br />

22.6% 0.75% 0.5%


Hmm…


Curly-leaf pondweed life history<br />

‣ Invasive plant that’s<br />

been present in MN<br />

since 1907.<br />

‣ Can grow abundantly<br />

in spring then<br />

senesces in July<br />

‣ Algae blooms <strong>of</strong>ten<br />

follow senescence in<br />

productive lakes


Curly-leaf distribution<br />

‣ Documented in 730 lakes;<br />

probably occurs in many<br />

more<br />

‣ Most are found in the<br />

central transition forest<br />

landtype (min <strong>of</strong> 5% <strong>of</strong> all<br />

lakes w/ DNR ID#’s).<br />

‣ Speculation that range is<br />

expanding northward


Curly-leaf pondweed life history<br />

‣ Produces turion<br />

propagules in summer.<br />

‣ Turion production is<br />

correlated with<br />

temperature and<br />

photoperiod<br />

‣ Turions sprout in fall<br />

and plant overwinters<br />

green<br />

‣ Boom-bust growth in<br />

south, not so in the<br />

north<br />

‣ Good info on life<br />

history; not on<br />

ecosystem effects


Conservation value in the South<br />

‣ In many SW prairie lakes<br />

and urban lakes, CLP is<br />

one <strong>of</strong> only a few plant<br />

spp. that grow<br />

‣ Supports vegetation<br />

dependent native fish<br />

communities in the SW<br />

(e.g., largemouth bass,<br />

bluegill, northern pike)<br />

‣ Killing the plant in these<br />

lakes may do more harm<br />

than good in terms <strong>of</strong><br />

habitat and WQ if no<br />

natives come in behind.


Back to the question – Curlyleaf<br />

declines – what might be<br />

going on here?


37%<br />

decline<br />

overall<br />

Curly-leaf declines


Growing Season<br />

Differences?


Growing<br />

Degree<br />

Days<br />

Departure<br />

from<br />

Normal


Nah that’s not it –<br />

2010 was actually<br />

very warm and CLP<br />

growth was lowest<br />

we’ve seen


Links to spring water<br />

temperatures?<br />

In other words, cooler<br />

springs = less growth?


Nah that’s not it –<br />

spring water temps<br />

have gotten warmer<br />

since 2008


Spring <strong>Water</strong> Temperatures (°C<br />

Ice-<strong>of</strong>f - May 31st)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

2008<br />

2009<br />

2010<br />

4<br />

2<br />

0<br />

St. Olaf Pearl St. James Portage Peltier


Links to ice cover<br />

duration?<br />

In other words,<br />

increases in ice-cover<br />

duration = reduced<br />

growth?


Nope not it either –<br />

duration <strong>of</strong> ice cover<br />

has gotten shorter<br />

since 2008 (34 fewer<br />

days in St. James<br />

between 2008 and<br />

2010)


Days <strong>of</strong> Ice<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

2008<br />

2009<br />

2010<br />

40<br />

20<br />

0<br />

St. Olaf Pearl St. James Portage Peltier


Links to snow cover?<br />

In other words,<br />

increases in snow cover<br />

early in winter =<br />

reduced growth?


EUREKA!!


Dec. + Jan. Snowfall (in) Departure from 1971-2000<br />

Normal<br />

40<br />

St. Olaf Pearl St. James Portage Peltier<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year


Findings<br />

• Winters during most <strong>of</strong> the 2000’s were<br />

less snowy than normal<br />

• Easy winters for CLP expansion<br />

• Last few winters have been snowier than<br />

normal.<br />

• Stressful on overwintering CLP plants<br />

needing light for basal metabolism


What did 2011 bring?


Dec. + Jan. Snowfall (in) Departure from<br />

1971-2000 Normal<br />

Winter was even snowier<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

St. Olaf Pearl St. James Portage Peltier


Curly-leaf declines leveled <strong>of</strong>f


Implications <strong>of</strong> Climate Change<br />

• Winters and ice-cover will be shorter<br />

(Fang and Stefan 2000, 2009)<br />

• Regional variability on effects on the<br />

underwater environment:<br />

• Dependent on water levels, eutrophication,<br />

and winter snowfall (Danylchuk and Tonn<br />

2003)


Winters may get snowier in the<br />

north; rainier in the South


Critical Temp Thresholds<br />

High turion production; rapid senescence<br />

Turions start to form


Temperature Mediation <strong>of</strong> CLP<br />

‣ Some northern lakes never get warm<br />

enough to facilitate high turion production<br />

and rapid senescence.<br />

‣ CLP exists in northern lakes but rarely at<br />

high levels and usually all-yr round.<br />

‣ As climate change increases summer<br />

temperatures, so too can conditions<br />

conducive to abundant CLP growth


Summary<br />

• Winter possibly plays some role in limiting curly-leaf<br />

pondweed growth<br />

• Results from 2011 neither refute nor confirm a<br />

relationship. Follow up studies are needed.<br />

• Future CLP status in the north may depend on<br />

interplay <strong>of</strong> changes in snowfall and summer water<br />

temperatures


Suggested Future Investigations<br />

• A more comprehensive analysis <strong>of</strong> the response <strong>of</strong><br />

biota to curly-leaf proliferation.<br />

• Controlled studies in well-defined sites (e.g.<br />

mesocosm studies) could allow for improved<br />

understanding <strong>of</strong> curly-leaf response to snow cover<br />

• The correlation <strong>of</strong> curly-leaf cover to water quality<br />

varies among lakes. The sentinel lakes may provide<br />

a good opportunity to better quantify and model the<br />

impact <strong>of</strong> curly-leaf senescence on lake water<br />

quality – take advantage <strong>of</strong> our free data!!


Acknowledgments<br />

• DNR Area Fisheries & Fisheries Research Unit<br />

• Master Naturalist Program<br />

• MPCA <strong>Water</strong> Monitoring Unit<br />

• MN Climate Working Group<br />

Funding – DNR Game and Fish Fund, Environment and<br />

Natural Resource Trust Fund, Sportfish Restoration,<br />

MPCA, Volunteers


EARLY-WINTER<br />

INVERTEBRATE POPULATIONS<br />

IN TROUT STREAMS<br />

OF SOUTHEASTERN MN<br />

Jane Louwsma Mazack, <strong>University</strong> <strong>of</strong> <strong>Minnesota</strong>


Acknowledgements<br />

Will French<br />

Jennifer Biederman<br />

Pat Sherman<br />

Lori Krider<br />

Bruce Vondracek<br />

Jim Perry<br />

Len Ferrington<br />

Petra Kranzfelder<br />

Jessica Miller


Introduction<br />

Groundwater-fed streams in southeastern <strong>Minnesota</strong><br />

are recreationally and economically valuable


Introduction<br />

Trout streams in SE MN are thermally buffered by<br />

groundwater input<br />

Cooler summer temperatures<br />

Warmer winter temperatures<br />

Gribben Creek


Introduction<br />

Cold-adapted (stenotherm) insects are <strong>of</strong>ten<br />

abundant in these streams<br />

Diamesa grow at stream temperatures from 2-10 o C<br />

Stenotherm genera include:<br />

Diamesa<br />

Prodiamesa<br />

Micropsectra<br />

Brachycentrus<br />

Adult Diamesa (Chironomidae)


A Conceptual Model<br />

Climate ?<br />

Geomorphology<br />

Riparian zone<br />

Land use<br />

Thermal<br />

buffering<br />

capacity<br />

Aquatic<br />

Invertebrate<br />

community<br />

Trout growth<br />

& abundance


Research Questions<br />

1. What is the diversity, composition, and<br />

heterogeneity <strong>of</strong> winter invertebrate communities<br />

in groundwater-fed trout streams?<br />

2. What is the relationship between stream thermal<br />

regime and invertebrate community<br />

characteristics?<br />

3. What is the relationship between invertebrate<br />

communities and winter trout diet and condition?


Sampling Sites<br />

12 stream reaches in southeastern <strong>Minnesota</strong>


Sampling Methods<br />

Early, mid, and late winter samples<br />

Paired with brown trout diets<br />

In each sample event:<br />

5 Hess samples<br />

10 minute dipnet sample<br />

10 minutes pupal exuviae collection


Sample Analyses<br />

Simpson’s Index with jack-knifing<br />

Measure <strong>of</strong> population diversity (D)<br />

Range from 0 < D < 1<br />

• 0 represents no diversity<br />

• 1 represents infinite diversity<br />

Whittaker’s Percentage Similarity<br />

Measure <strong>of</strong> within-reach heterogeneity<br />

Range from 0 to 1<br />

• 0 represents complete heterogeneity<br />

• 1 represents complete homogeneity


Question 1<br />

1. What is the diversity, composition, and<br />

heterogeneity <strong>of</strong> winter invertebrate communities<br />

in groundwater-fed trout streams?


Number <strong>of</strong> Genera Present<br />

Community Characteristics<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

73.6<br />

individuals/<br />

meter 2<br />

761<br />

individuals/<br />

meter 2<br />

10<br />

0<br />

Sample Site


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

R² = 0.8012<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25 30 35<br />

Number <strong>of</strong> Genera Present


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Sample Site


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Sample Site


Community Characteristics<br />

North Branch<br />

Trout Run<br />

4% 2% EPT<br />

4% 2%<br />

11%<br />

19%<br />

23%<br />

EPT<br />

Stenotherms<br />

30%<br />

71%<br />

Diptera<br />

Other<br />

8%<br />

51%<br />

94%<br />

51%


Whittaker's Similarity<br />

Community Characteristics<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Sample Site


Question 2<br />

1. What is the relationship between stream thermal<br />

regime and invertebrate community<br />

characteristics?<br />

Adult Diamesa (Chironomidae)


Slope <strong>of</strong> water-air temperature regression<br />

Stream Thermal Regime<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

y = -0.0004x + 0.5306<br />

R² = 0.5924<br />

0.1<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Density (Individuals/m 2 )


Question 3<br />

1. What is the relationship between invertebrate<br />

communities and winter trout diet and condition?


Delta Wr<br />

Trout Condition<br />

Mean Delta Wr<br />

15<br />

10<br />

5<br />

A<br />

AB<br />

A<br />

F=11.78<br />

P


Delta Wr<br />

Diversity (Simoson's Index)<br />

Trout Condition<br />

1<br />

15<br />

10<br />

5<br />

A<br />

Mean Delta Wr<br />

AB<br />

A<br />

F=11.78<br />

P


Conclusion<br />

1. Early-winter trout stream invertebrate communities<br />

exhibit a wide range <strong>of</strong> diversity, heterogeneity,<br />

and density.<br />

2. Streams with lower temperature variability tend to<br />

have larger early-winter invertebrate communities.<br />

3. In preliminary analysis, the least diverse<br />

invertebrate community reflected the highest rate<br />

<strong>of</strong> overwinter brown trout growth.


Conclusion<br />

Climate ?<br />

Geomorphology<br />

Riparian zone<br />

Land use<br />

Thermal<br />

buffering<br />

capacity<br />

Aquatic<br />

Invertebrate<br />

community<br />

Trout growth<br />

& abundance

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!