04.04.2014 Views

Track A - Water Resources Center - University of Minnesota

Track A - Water Resources Center - University of Minnesota

Track A - Water Resources Center - University of Minnesota

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lori A. Krider<br />

Joseph A. Magner<br />

Jim Perry


Investigations<br />

• Temperature regimes <strong>of</strong><br />

groundwater-fed streams<br />

vs. surface water fed<br />

streams<br />

• Affect <strong>of</strong> air temperature<br />

on the water temperature<br />

in groundwater-fed<br />

streams<br />

• Implications for climate<br />

change<br />

• Use in guiding land<br />

management


Importance<br />

• Air temperatures are very influential on surface and<br />

groundwater temperatures (Erickson et al., 2000;<br />

Meisner et al., 1988)<br />

• <strong>Water</strong> temperatures dictate species composition and<br />

cold water habitat supports trout populations<br />

• No published work investigates this relationship in<br />

carbonate systems across watersheds<br />

• Other uses: relate water temperatures to trout growth<br />

patterns and diet; choose study sites when research is<br />

related to water temperature


Study Area<br />

• Southeastern <strong>Minnesota</strong>’s Driftless<br />

Region<br />

• Lacks glacial scouring; old valleys<br />

with dramatic changes in elevation<br />

• Carbonate rocks: made <strong>of</strong> easily<br />

eroded minerals<br />

• Karst geology: well-developed<br />

surface features such as springs and<br />

sinkholes<br />

• Incipient karst geology: seeps and<br />

groundwater recharge through<br />

infiltration


Temperature ( o C)<br />

Time Frame<br />

• “Present” data set<br />

• If climate change<br />

has been escalating<br />

in the past several<br />

decades, how far<br />

back will the<br />

measurements still<br />

represent present<br />

conditions?<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

Temperature Over Time, 1986 - 2008: Rochester IA<br />

(3-Month Moving Window Average)<br />

1998<br />

1998<br />

Year<br />

Rochester IA: approximately in the middle<br />

<strong>of</strong> our study streams


Data Details<br />

• 7 counties<br />

• 40 study streams<br />

Rice<br />

Goodhue<br />

Wabasha<br />

• 106 temperature<br />

loggers<br />

• 3,606 weekly<br />

averages<br />

Olmstead<br />

Winona<br />

Fillmore<br />

Houston


Data Source<br />

• <strong>Water</strong> temperature data<br />

• STORET, DNR, David Huff and Toby Dogwiler<br />

• Discrete and continuous -> weekly averages<br />

• Year-round, winter intensive or non-winter intensive<br />

• Air temperature data<br />

• NOAA weather stations<br />

• Thiessen polygons were created for six counties<br />

• Between 7.1 km and 53.8 km from the streams they were<br />

matched to


Statistical Analysis<br />

• Linear regression models<br />

(y = mx +b -> T w =B(T a )+A)<br />

• Produces R 2 value (0 – 1)<br />

• How well the model<br />

explains the variation in<br />

the data<br />

• Closer to one is better<br />

• Marginal R 2 improvements<br />

with non-linear models<br />

(between 0.0001 and<br />

0.135)<br />

http://www.unr.edu/math/events/index.html


Terminology<br />

• Regressions explained in terms <strong>of</strong> the project<br />

• Slope: how quickly water temperatures rise as a function<br />

<strong>of</strong> air temperatures<br />

• Intercept: temperature <strong>of</strong> the water when the air<br />

temperature becomes freezing<br />

• R 2 value: how much <strong>of</strong> the variation in stream<br />

temperature can be explained by air temperatures


Temporal Scale<br />

• What is best for regressions <strong>of</strong> groundwater-fed streams?<br />

• Pilgrim et al. (1998): 36 surface water streams and 3<br />

groundwater-fed streams across MN<br />

• monthly produces highest R 2 (Apr. – Oct.)<br />

• Time lags up to 7 days for rivers up to 15 ft deep (Stefan and<br />

Pred’homme, 1993)<br />

• R 2 for a sub-set <strong>of</strong> our streams<br />

• 0.56 at monthly scale, April – October data<br />

• 0.86 at weekly scale, year-round data<br />

• Number <strong>of</strong> data points<br />

• 431 monthly averages, Apr. – Oct.<br />

• 1734 weekly averages, year-round


Results Summary & Comparison<br />

• Slopes, intercepts and R 2 varied much between streams<br />

• Slopes and intercepts were markedly different from<br />

values displayed by surface water fed streams<br />

Study Streams<br />

Slopes<br />

0.18 - 0.74<br />

Intercepts<br />

2.90 - 8.29<br />

Pilgrim et al.’s Study Streams<br />

Slopes<br />

0.85 - 1.15<br />

Intercepts<br />

-1.51 - 4.01


Average Weekly <strong>Water</strong> Temperature (C)<br />

Average Weekly <strong>Water</strong> Temperature (C)<br />

Exemplary Results<br />

20.00<br />

Snake Creek Weekly Linear Regression<br />

1999 - 2000, 2003, 2005, 2007<br />

y = 0.3218x + 7.3901<br />

R² = 0.591<br />

Winnebago Creek Weekly Linear Regression<br />

2000 - 2003 & 2008<br />

20<br />

y = 0.3424x + 6.93<br />

R² = 0.9771<br />

15.00<br />

15<br />

10.00<br />

10<br />

5.00<br />

5<br />

0.00<br />

0.00 5.00 10.00 15.00 20.00 25.00 30.00<br />

Average Weekly Air Temperature (C)<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20 25 30<br />

Average Weekly Air Temperature (C)<br />

Lowest R 2<br />

Highest R 2


Average Weekly <strong>Water</strong> Temperature (C)<br />

Lumped Model<br />

Our Study Streams<br />

Slope: 0.38<br />

Intercept: 6.63<br />

R 2 value: 0.83<br />

SE: 1.98<br />

SD: 4.79<br />

Pilgrim et al.’s Study Streams<br />

Slope: 0.97<br />

Intercept: 1.88<br />

All Streams Weekly Regression<br />

1999 - 2008<br />

25<br />

20<br />

15<br />

10<br />

5<br />

y = 0.3819x + 6.6257<br />

R² = 0.82913<br />

0<br />

-30 -20 -10 0 10 20 30<br />

Average Weekly Air Temperature (C)


Intercept<br />

Mechanisms <strong>of</strong> Control<br />

• Adapted from<br />

O’Driscoll and<br />

DeWalle (2004)<br />

• Our R 2 is<br />

considerably<br />

lower (vs. 0.89)<br />

• due to spatial<br />

and temporal<br />

differences<br />

• Protection vs.<br />

restoration<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Slope vs. Intercept<br />

All Streams Weekly Linear Regression<br />

Groundwater Control<br />

BSC<br />

NBC<br />

Gil C<br />

CSB<br />

Co C<br />

Ba C<br />

He C<br />

Be C<br />

y = -4.6744x + 8.1617<br />

R² = 0.3893<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9<br />

Slope<br />

Ma BW<br />

Ru C<br />

No BW<br />

SD = 0.13, SE = 0.10<br />

Pi C<br />

Meteorological Control<br />

NFZR


Contributing Factors<br />

• Factors that affect the air-water temperature relationship<br />

• No/little effect on R 2 , slope or intercept<br />

• Number <strong>of</strong> weekly averages (< .0.08 for all)<br />

• Number <strong>of</strong> known springs within 50 m (< 0.07 for all)<br />

• Number <strong>of</strong> known springs within 250 m (< 0.005 for all)<br />

• Number <strong>of</strong> temperature loggers (< 0.11 for all)<br />

• Minor watershed area (acres) (< 0.14 for both R 2 & intercept)<br />

• Some effect on R 2 , slope or intercept<br />

• Minor watershed area vs. slope (R 2 = 0.36)


Groundwater vs. Surface <strong>Water</strong><br />

• Groundwater-fed streams have drastically different<br />

temperature regimes than surface water fed streams<br />

• Comparison between slopes and intercepts<br />

• Groundwater input doesn’t affect the strength <strong>of</strong> the airwater<br />

temperature correlation<br />

Our Study Streams<br />

R 2 values: range<br />

0.59 - 0.98<br />

R 2 values: lumped<br />

0.83<br />

Pilgrim et al. Study Streams<br />

R 2 values: range<br />

0.67 - 0.96<br />

R 2 values: lumped<br />

0.83


Other Findings<br />

• Could not provide concrete evidence that the amount <strong>of</strong><br />

groundwater input affects R 2 , slope, or intercept<br />

• Incomplete karst inventory database<br />

• Groundwater inputs are difficult to quantify accurately<br />

• Graphing slope vs. intercept suggests mechanisms for<br />

control<br />

• Asymptote near or above 0 o C water temperatures with<br />

air temperatures well below 0 o C<br />

• Surface water fed streams asymptote at 0 o C water<br />

temperatures with air temperatures at 0 o C


Groundwater Inflow<br />

• Most important<br />

determinant <strong>of</strong> water<br />

temperatures in<br />

groundwater-fed streams<br />

• Discharge<br />

• Lentz farm<br />

• Stream velocity<br />

• Shade<br />

• Source <strong>of</strong> resurgence<br />

• <strong>Water</strong> table vs. interflow<br />

Artisan spring on Ralph Lentz farm:<br />

400 gallons /minute


Implications for Climate Change<br />

• Streams in northerly climates do not always follow unity<br />

at air temperatures > 20 o C<br />

• Suggested by Mohensi & Stefan, 2000<br />

• Varies from stream to stream: some level slightly, some<br />

follow unity and some produce more scatter<br />

• Streams that follow unity and have high R 2 values are<br />

most promising as predictive tools<br />

• Streams with higher slopes and lower intercepts are<br />

more susceptible


Climate Change Continued<br />

• A1B SRES regional climate change scenario for central<br />

North America<br />

• 2.4 and 6.4 o C above 2000 conditions for the summer<br />

months (June – August) by the years 2080 – 2099 (IPCC<br />

Working Group I, 2007)<br />

• Transform marginal or near marginal habitat into unsuitable<br />

habitat<br />

• Restrict suitable summer habitat to directly downstream <strong>of</strong><br />

springs and expand suitable winter habitat (Meisner et al.,<br />

1988)


Management for Mitigation<br />

•Increase snow trapping in riparian areas<br />

•Provide riparian shading<br />

•Encourage stream deepening and<br />

narrowing<br />

•Reduce temperatures <strong>of</strong> shallow<br />

groundwater aquifer


Literature Cited<br />

• Brooks, K. N., P. F. Ffolliott, H. M. Gregersen, & L. F. DeBano. 2003. Hydrology and the Management <strong>of</strong><br />

<strong>Water</strong>sheds (3 rd ed.). Ames, Iowa: Iowa State <strong>University</strong> Press.<br />

• Coldwater Fish and Fisheries Working Group. 2010. Wisconsin Initiative on Climate Change Impacts. First<br />

Report: Released February 2011.<br />

• Cristea, N., & J. Janisch. 2007. Modeling the Effects <strong>of</strong> Riparian Buffer Width and Effective Shade and<br />

Stream Temperature. Environmental Assessment Program <strong>of</strong> the Washington State Department <strong>of</strong><br />

Ecology. Publication No. 07-03-028.<br />

• Erickson, T. R. & H. Stefan. 2000. Linear Air/<strong>Water</strong> Temperature Correlations for Streams During Open<br />

<strong>Water</strong> Periods. Journal <strong>of</strong> Hydrological Engineering 5(3): 317 – 321.<br />

• Intergovernmental Panel on Climate Change Working Group I. 2007. Contribution <strong>of</strong> the Working Group I<br />

to the Fourth Assessment Report <strong>of</strong> the Intergovernmental Panel on Climate Change, 2007. Accessed<br />

online 10 April 2011.<br />

• Meisner, J. D., Rosenfeld, J. S., & Regier. 1988. The Role <strong>of</strong> Groundwater in the Impact <strong>of</strong> Climate Warming<br />

on Stream Salmonines. Fisheries 13(3): 2 -8.<br />

• Mohensi, O., H. G. Stefan & T. R. Erickson. 1998. A nonlinear regression model for weekly stream<br />

temperatures. <strong>Water</strong> <strong>Resources</strong> Research 34: 2685 – 2692.<br />

• O’Driscoll, M. A., & DeWalle, D. R. 2004. Stream-Air Temperature Relationships as Indicators <strong>of</strong><br />

Groundwater Inputs. AWRA <strong>Water</strong>shed Update 2(6).<br />

• Pilgrim, J., X. Fang & H. Stefan. 1998. Stream Temperature Correlations with Air Temperatures in<br />

<strong>Minnesota</strong>: Implications for Climate Warming. Journal <strong>of</strong> the American <strong>Water</strong> <strong>Resources</strong> Association<br />

34(5): 1109 – 1121.<br />

• Stefan, H. G. & E. B. Preud’homme. 1993. Stream Temperature Estimation from Air Temperature. <strong>Water</strong><br />

<strong>Resources</strong> Bulletin 29(1): 27 – 46.


Natural short-term declines in curly-leaf pondweed across a<br />

network <strong>of</strong> sentinel lakes: potential impacts <strong>of</strong> snowy winters<br />

Ray Valley, Steve Heiskary, Cindy Tomcko


Comprehensive report is in the<br />

works<br />

• Covers findings here<br />

in addition:<br />

• Correlations between<br />

water quality and<br />

curly-leaf growth and<br />

summer plant growth<br />

• Case studies<br />

• Suggested future<br />

investigations


Sustaining Lakes in a Changing Environment<br />

(SLICE)<br />

‣ 24 sentinel lakes; sites <strong>of</strong> cooperative<br />

long-term monitoring and research.<br />

DNR, PCA, USGS, SNF major<br />

partners<br />

‣ <strong>Water</strong> quality, zooplankton, aquatic<br />

plants, fish and continuous<br />

temperature data monitored since<br />

2008<br />

‣ Curly-leaf pondweed (CLP) occurs in<br />

14; annual spring surveys (pointintercept)<br />

in 11


Assessment Methods – Point Intercept<br />

• Conducted during the<br />

peak <strong>of</strong> growth (typically<br />

late May/Early June)<br />

• Rake throws at uniformly<br />

space points spaced 80-m<br />

apart.<br />

• % Frequency is correlated<br />

with % areal cover


Genesis: Serendipity<br />

• Noticed declines in CLP cover across<br />

most sentinel lakes since monitoring<br />

began in 2008.<br />

• Due to simultaneous declines across<br />

network, knew immediately that something<br />

environmental must be going on.


Curly-leaf declines<br />

37%<br />

decline<br />

overall<br />

80%<br />

95%


Decline in surface growth in Pearl<br />

Lake (Stearns Co.)<br />

22.6% 0.75% 0.5%


Hmm…


Curly-leaf pondweed life history<br />

‣ Invasive plant that’s<br />

been present in MN<br />

since 1907.<br />

‣ Can grow abundantly<br />

in spring then<br />

senesces in July<br />

‣ Algae blooms <strong>of</strong>ten<br />

follow senescence in<br />

productive lakes


Curly-leaf distribution<br />

‣ Documented in 730 lakes;<br />

probably occurs in many<br />

more<br />

‣ Most are found in the<br />

central transition forest<br />

landtype (min <strong>of</strong> 5% <strong>of</strong> all<br />

lakes w/ DNR ID#’s).<br />

‣ Speculation that range is<br />

expanding northward


Curly-leaf pondweed life history<br />

‣ Produces turion<br />

propagules in summer.<br />

‣ Turion production is<br />

correlated with<br />

temperature and<br />

photoperiod<br />

‣ Turions sprout in fall<br />

and plant overwinters<br />

green<br />

‣ Boom-bust growth in<br />

south, not so in the<br />

north<br />

‣ Good info on life<br />

history; not on<br />

ecosystem effects


Conservation value in the South<br />

‣ In many SW prairie lakes<br />

and urban lakes, CLP is<br />

one <strong>of</strong> only a few plant<br />

spp. that grow<br />

‣ Supports vegetation<br />

dependent native fish<br />

communities in the SW<br />

(e.g., largemouth bass,<br />

bluegill, northern pike)<br />

‣ Killing the plant in these<br />

lakes may do more harm<br />

than good in terms <strong>of</strong><br />

habitat and WQ if no<br />

natives come in behind.


Back to the question – Curlyleaf<br />

declines – what might be<br />

going on here?


37%<br />

decline<br />

overall<br />

Curly-leaf declines


Growing Season<br />

Differences?


Growing<br />

Degree<br />

Days<br />

Departure<br />

from<br />

Normal


Nah that’s not it –<br />

2010 was actually<br />

very warm and CLP<br />

growth was lowest<br />

we’ve seen


Links to spring water<br />

temperatures?<br />

In other words, cooler<br />

springs = less growth?


Nah that’s not it –<br />

spring water temps<br />

have gotten warmer<br />

since 2008


Spring <strong>Water</strong> Temperatures (°C<br />

Ice-<strong>of</strong>f - May 31st)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

2008<br />

2009<br />

2010<br />

4<br />

2<br />

0<br />

St. Olaf Pearl St. James Portage Peltier


Links to ice cover<br />

duration?<br />

In other words,<br />

increases in ice-cover<br />

duration = reduced<br />

growth?


Nope not it either –<br />

duration <strong>of</strong> ice cover<br />

has gotten shorter<br />

since 2008 (34 fewer<br />

days in St. James<br />

between 2008 and<br />

2010)


Days <strong>of</strong> Ice<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

2008<br />

2009<br />

2010<br />

40<br />

20<br />

0<br />

St. Olaf Pearl St. James Portage Peltier


Links to snow cover?<br />

In other words,<br />

increases in snow cover<br />

early in winter =<br />

reduced growth?


EUREKA!!


Dec. + Jan. Snowfall (in) Departure from 1971-2000<br />

Normal<br />

40<br />

St. Olaf Pearl St. James Portage Peltier<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year


Findings<br />

• Winters during most <strong>of</strong> the 2000’s were<br />

less snowy than normal<br />

• Easy winters for CLP expansion<br />

• Last few winters have been snowier than<br />

normal.<br />

• Stressful on overwintering CLP plants<br />

needing light for basal metabolism


What did 2011 bring?


Dec. + Jan. Snowfall (in) Departure from<br />

1971-2000 Normal<br />

Winter was even snowier<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

2000 2002 2004 2006 2008 2010 2012<br />

Year<br />

St. Olaf Pearl St. James Portage Peltier


Curly-leaf declines leveled <strong>of</strong>f


Implications <strong>of</strong> Climate Change<br />

• Winters and ice-cover will be shorter<br />

(Fang and Stefan 2000, 2009)<br />

• Regional variability on effects on the<br />

underwater environment:<br />

• Dependent on water levels, eutrophication,<br />

and winter snowfall (Danylchuk and Tonn<br />

2003)


Winters may get snowier in the<br />

north; rainier in the South


Critical Temp Thresholds<br />

High turion production; rapid senescence<br />

Turions start to form


Temperature Mediation <strong>of</strong> CLP<br />

‣ Some northern lakes never get warm<br />

enough to facilitate high turion production<br />

and rapid senescence.<br />

‣ CLP exists in northern lakes but rarely at<br />

high levels and usually all-yr round.<br />

‣ As climate change increases summer<br />

temperatures, so too can conditions<br />

conducive to abundant CLP growth


Summary<br />

• Winter possibly plays some role in limiting curly-leaf<br />

pondweed growth<br />

• Results from 2011 neither refute nor confirm a<br />

relationship. Follow up studies are needed.<br />

• Future CLP status in the north may depend on<br />

interplay <strong>of</strong> changes in snowfall and summer water<br />

temperatures


Suggested Future Investigations<br />

• A more comprehensive analysis <strong>of</strong> the response <strong>of</strong><br />

biota to curly-leaf proliferation.<br />

• Controlled studies in well-defined sites (e.g.<br />

mesocosm studies) could allow for improved<br />

understanding <strong>of</strong> curly-leaf response to snow cover<br />

• The correlation <strong>of</strong> curly-leaf cover to water quality<br />

varies among lakes. The sentinel lakes may provide<br />

a good opportunity to better quantify and model the<br />

impact <strong>of</strong> curly-leaf senescence on lake water<br />

quality – take advantage <strong>of</strong> our free data!!


Acknowledgments<br />

• DNR Area Fisheries & Fisheries Research Unit<br />

• Master Naturalist Program<br />

• MPCA <strong>Water</strong> Monitoring Unit<br />

• MN Climate Working Group<br />

Funding – DNR Game and Fish Fund, Environment and<br />

Natural Resource Trust Fund, Sportfish Restoration,<br />

MPCA, Volunteers


EARLY-WINTER<br />

INVERTEBRATE POPULATIONS<br />

IN TROUT STREAMS<br />

OF SOUTHEASTERN MN<br />

Jane Louwsma Mazack, <strong>University</strong> <strong>of</strong> <strong>Minnesota</strong>


Acknowledgements<br />

Will French<br />

Jennifer Biederman<br />

Pat Sherman<br />

Lori Krider<br />

Bruce Vondracek<br />

Jim Perry<br />

Len Ferrington<br />

Petra Kranzfelder<br />

Jessica Miller


Introduction<br />

Groundwater-fed streams in southeastern <strong>Minnesota</strong><br />

are recreationally and economically valuable


Introduction<br />

Trout streams in SE MN are thermally buffered by<br />

groundwater input<br />

Cooler summer temperatures<br />

Warmer winter temperatures<br />

Gribben Creek


Introduction<br />

Cold-adapted (stenotherm) insects are <strong>of</strong>ten<br />

abundant in these streams<br />

Diamesa grow at stream temperatures from 2-10 o C<br />

Stenotherm genera include:<br />

Diamesa<br />

Prodiamesa<br />

Micropsectra<br />

Brachycentrus<br />

Adult Diamesa (Chironomidae)


A Conceptual Model<br />

Climate ?<br />

Geomorphology<br />

Riparian zone<br />

Land use<br />

Thermal<br />

buffering<br />

capacity<br />

Aquatic<br />

Invertebrate<br />

community<br />

Trout growth<br />

& abundance


Research Questions<br />

1. What is the diversity, composition, and<br />

heterogeneity <strong>of</strong> winter invertebrate communities<br />

in groundwater-fed trout streams?<br />

2. What is the relationship between stream thermal<br />

regime and invertebrate community<br />

characteristics?<br />

3. What is the relationship between invertebrate<br />

communities and winter trout diet and condition?


Sampling Sites<br />

12 stream reaches in southeastern <strong>Minnesota</strong>


Sampling Methods<br />

Early, mid, and late winter samples<br />

Paired with brown trout diets<br />

In each sample event:<br />

5 Hess samples<br />

10 minute dipnet sample<br />

10 minutes pupal exuviae collection


Sample Analyses<br />

Simpson’s Index with jack-knifing<br />

Measure <strong>of</strong> population diversity (D)<br />

Range from 0 < D < 1<br />

• 0 represents no diversity<br />

• 1 represents infinite diversity<br />

Whittaker’s Percentage Similarity<br />

Measure <strong>of</strong> within-reach heterogeneity<br />

Range from 0 to 1<br />

• 0 represents complete heterogeneity<br />

• 1 represents complete homogeneity


Question 1<br />

1. What is the diversity, composition, and<br />

heterogeneity <strong>of</strong> winter invertebrate communities<br />

in groundwater-fed trout streams?


Number <strong>of</strong> Genera Present<br />

Community Characteristics<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

73.6<br />

individuals/<br />

meter 2<br />

761<br />

individuals/<br />

meter 2<br />

10<br />

0<br />

Sample Site


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

R² = 0.8012<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25 30 35<br />

Number <strong>of</strong> Genera Present


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Sample Site


Diversity (Simpson's Index)<br />

Community Characteristics<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Sample Site


Community Characteristics<br />

North Branch<br />

Trout Run<br />

4% 2% EPT<br />

4% 2%<br />

11%<br />

19%<br />

23%<br />

EPT<br />

Stenotherms<br />

30%<br />

71%<br />

Diptera<br />

Other<br />

8%<br />

51%<br />

94%<br />

51%


Whittaker's Similarity<br />

Community Characteristics<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Sample Site


Question 2<br />

1. What is the relationship between stream thermal<br />

regime and invertebrate community<br />

characteristics?<br />

Adult Diamesa (Chironomidae)


Slope <strong>of</strong> water-air temperature regression<br />

Stream Thermal Regime<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

y = -0.0004x + 0.5306<br />

R² = 0.5924<br />

0.1<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Density (Individuals/m 2 )


Question 3<br />

1. What is the relationship between invertebrate<br />

communities and winter trout diet and condition?


Delta Wr<br />

Trout Condition<br />

Mean Delta Wr<br />

15<br />

10<br />

5<br />

A<br />

AB<br />

A<br />

F=11.78<br />

P


Delta Wr<br />

Diversity (Simoson's Index)<br />

Trout Condition<br />

1<br />

15<br />

10<br />

5<br />

A<br />

Mean Delta Wr<br />

AB<br />

A<br />

F=11.78<br />

P


Conclusion<br />

1. Early-winter trout stream invertebrate communities<br />

exhibit a wide range <strong>of</strong> diversity, heterogeneity,<br />

and density.<br />

2. Streams with lower temperature variability tend to<br />

have larger early-winter invertebrate communities.<br />

3. In preliminary analysis, the least diverse<br />

invertebrate community reflected the highest rate<br />

<strong>of</strong> overwinter brown trout growth.


Conclusion<br />

Climate ?<br />

Geomorphology<br />

Riparian zone<br />

Land use<br />

Thermal<br />

buffering<br />

capacity<br />

Aquatic<br />

Invertebrate<br />

community<br />

Trout growth<br />

& abundance

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!