04.04.2014 Views

Spectral Classification of Stars

Spectral Classification of Stars

Spectral Classification of Stars

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Stellar<br />

<strong>Classification</strong><br />

<strong>Spectral</strong> Lines<br />

H<br />

Fe<br />

Na<br />

H<br />

Ca<br />

H<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Timeline:<br />

1890s<br />

Edward C. Pickering (1846-1919) and Williamina P. Fleming<br />

(1857-1911) label spectra alphabetically according to strength<br />

<strong>of</strong> Hydrogen (Balmer) lines, beginning with “A” (strongest).<br />

1890s<br />

Antonia Maury (1866-1952) developed a classification scheme based on<br />

the “width” <strong>of</strong> spectral lines. Would place “B” stars before “A” stars.<br />

1901<br />

Annie Cannon (1863-1941), brilliantly combined the above.<br />

Rearranged sequence, O before B before A, added decimal<br />

divisions (A0...A9) and consolidated classes. Led to<br />

classification scheme still used by astronomers today!<br />

OBAFGKM (Oh Be A Fine Guy/Girl, Kiss Me)<br />

“Early Type”<br />

<strong>Stars</strong><br />

“Late Type”<br />

<strong>Stars</strong><br />

Thursday, September 29, 2011


Timeline:<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

1901<br />

Annie Cannon (1863-1941), brilliantly combined the above.<br />

Rearranged sequence, O before B before A, added decimal<br />

divisions (A0...A9) and consolidated classes. Led to<br />

classification scheme still used by astronomers today!<br />

OBAFGKM (Oh Be A Fine Guy/Girl, Kiss Me)<br />

“Early Type” <strong>Stars</strong> : <strong>Stars</strong> near the beginning<br />

<strong>of</strong> Sequence<br />

“Late Type” <strong>Stars</strong> : <strong>Stars</strong> near the end <strong>of</strong><br />

the Sequence.<br />

One can mix the definitions: K0 star is an “early-type” K star. B9 is a “late-type” B star.<br />

1911-1914<br />

During 1990s<br />

Annie Cannon classified 200,000 spectra, listed in the Henry Draper Catalog.<br />

Catalog ID’s are “HD 39801” (ID for Betelgeuse in the constellation Orion).<br />

Two new letters added to Sequence for very cool, Brown-Dwarf stars.<br />

“L” spectral types (T=1300-2500 K) and “T” types (T < 1300 K).<br />

OBAFGKMLT (Oh Be A Fine Guy/Girl, Kiss Me - Less Talk !)<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hotter<br />

Cooler<br />

<strong>Spectral</strong> Type<br />

O<br />

B<br />

A<br />

F<br />

G<br />

K<br />

M<br />

L<br />

T<br />

Characteristics<br />

Hottest blue-white stars, few lines. Strong He II (He + ) absorption<br />

lines. He I (neutral helium) stronger).<br />

Hot blue-white. He I (neutral Helium), strongest at B2.<br />

H I (neutral Hydrogen) stronger.<br />

White stars. Balmer absorption lines strongest at A0 (Vega),<br />

weaker in later-type A stars. Strong Ca II (Ca + ) lines.<br />

Yellow-white stars. Ca II lines strengthen to later types. F-stars.<br />

Balmer lines strengthen to earlier type F-stars.<br />

Yellow stars (Sun is a G5 star). Ca II lines become stronger. Fe I<br />

(neutral iron) lines become strong.<br />

Cool orange stars. Ca II (H and K) lines strongest at K0, becoming<br />

weaker in later stars. Spectra dominated by metal absorption lines.<br />

Cool red stars. Spectra dominated by molecular absorption bands,<br />

e.g., TiO (titanium oxide). Neutral metal lines strong.<br />

Very cool, dark red (brown dwarfs). Brighter in Infrared than<br />

visible. Strong molecular absorption bands, e.g., CrH, FeH, water,<br />

CO. TiO weakening.<br />

Coolest stars. Strong methane (CH4), weakening CO bands.<br />

Thursday, September 29, 2011


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong>


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong>


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong>


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong>


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong>


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Physical Description<br />

Hydrogen when T < 9900 K<br />

Majority <strong>of</strong> electrons in<br />

ground state, n=1<br />

Hydrogen when T = 9900 K<br />

Majority <strong>of</strong> electrons in first excited, n=2 state,<br />

and capable <strong>of</strong> producing Balmer lines<br />

Hydrogen when T > 9900 K<br />

Majority <strong>of</strong> electrons unbound,<br />

ionized hydrogen.<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Physical Description<br />

<strong>Stars</strong> are not composed <strong>of</strong> pure hydrogen, but<br />

nearly all atoms (mostly H, He, and metals =<br />

anything not H or He).<br />

Typically 1 He atom for every 10 H atoms<br />

(and even fewer metals).<br />

Helium (and metals) provide more electrons,<br />

which can recombine with ionized H.<br />

So, it takes higher temperatures to achieve<br />

same degree <strong>of</strong> H ionization when He and<br />

metals are present.<br />

Abundance is = log10(Nelement/NH) + 12.<br />

I.e., Abudance <strong>of</strong> Oxygen = 8.83, which means:<br />

8.83 = log10(NO/NH) + 12<br />

NO/NH = 10 8.83 - 12 = 0.000676 ≈1/1480<br />

There is one Oxygen atom<br />

for every 1480 H atoms !<br />

Most Abundant Elements in the Solar Photosphere.<br />

Element Atomic # Log Relative Abundance<br />

H 1 12.00<br />

He 2 10.93 ± 0.004<br />

O 8 8.83 ± 0.06<br />

C 6 8.52 ± 0.06<br />

Ne 10 8.08 ± 0.06<br />

N 7 7.92 ± 0.06<br />

Mg 12 7.58 ± 0.05<br />

Si 14 7.55 ± 0.05<br />

Fe 26 7.50 ± 0.05<br />

S 16 7.33 ± 0.11<br />

Al 13 6.47 ± 0.07<br />

Ar 18 6.40 ± 0.06<br />

Ca 20 6.36 ± 0.02<br />

Ng 11 6.33 ± 0.03<br />

Ni 28 6.25 ± 0.04<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Physical Description<br />

In 1925, Cecilia Payne (1900-1979) calculate the relative abundances <strong>of</strong> 18 elements in<br />

stellar atmospheres (one <strong>of</strong> the most brilliant PhD theses ever in astronomy).<br />

Thursday, September 29, 2011


Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

How would you measure a star’s mass ?<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

How would you measure a star’s mass ?<br />

Answer: Kepler’s Laws. Works well for binary stars.<br />

m1<br />

r1<br />

+<br />

=<br />

r2<br />

m2<br />

R =<br />

m1r1 + m2r2<br />

m1 + m2<br />

= 0<br />

m1<br />

m2<br />

r2<br />

= =<br />

r1<br />

a2<br />

a1<br />

Thursday, September 29, 2011


Animations <strong>of</strong> binary <strong>Stars</strong>:<br />

http://astro.ph.unimelb.edu.au/s<strong>of</strong>tware/binary/binary.htm<br />

http://abyss.uoregon.edu/~js/applets/eclipse/eclipse.htm<br />

Thursday, September 29, 2011


Binary <strong>Stars</strong><br />

Term binary was first used by<br />

Sir Williams Herschel in 1802.<br />

"If, on the contrary, two stars should really be situated very near each<br />

other, and at the same time so far insulated as not to be materially<br />

affected by the attractions <strong>of</strong> neighbouring stars, they will then compose<br />

a separate system, and remain united by the bond <strong>of</strong> their own mutual<br />

gravitation towards each other. This should be called a real double star;<br />

and any two stars that are thus mutually connected, form the binary<br />

sidereal system which we are now to consider."<br />

Thursday, September 29, 2011


Binary <strong>Stars</strong><br />

Two <strong>Stars</strong> in Albireo<br />

system.<br />

Thursday, September 29, 2011


Binary <strong>Stars</strong><br />

Sirius A<br />

brightest star in the sky<br />

m = -1.46.<br />

In 1844, Friedrich Bessel deduced<br />

it was a binary.<br />

In 1862 Alvan Graham Clark<br />

discovered the companion.<br />

Sirius B<br />

m = 8.30<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

How would you measure a star’s mass ?<br />

angle <strong>of</strong> inclination<br />

For circular orbits, v1 = 2πa1/P<br />

m1<br />

=<br />

v2<br />

Plane <strong>of</strong> Sky<br />

Orbital Plane<br />

m2<br />

m2<br />

Determine radial component <strong>of</strong> velocities,<br />

vr, using doppler-shifted spectral lines.<br />

v1r=v1 sin(i) & v2r=v2 sin(i)<br />

v1<br />

To Earth<br />

m1<br />

m2<br />

=<br />

v2r / sin(i)<br />

v1r / sin(i)<br />

=<br />

v2r<br />

v1r<br />

Therefore, we can determine the mass ratio<br />

without knowing the angle <strong>of</strong> inclination !<br />

m1<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

How would you measure a star’s mass ?<br />

Need one other equation to relate m1 and m2. Comes from Kepler’s 3rd law, replace a = a1 + a2<br />

a = a1 + a2 = (P/2π) v1 + (P/2π)v2 = (P/2π) (v1+v2)<br />

Kepler’s 3rd law, (P 2 = 4π 2 a 3 / GM ), becomes<br />

m1 + m2 = (P/2πG) (v1+v2) 3<br />

Substituting v1 = v1r /sin(i), the angle <strong>of</strong> inclination.<br />

m1 + m2 = (P/2πG) (v 1r+v2r) 3<br />

sin 3 (i)<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

How would you measure a star’s mass ?<br />

Combine our two formula:<br />

m1<br />

m2<br />

=<br />

v2r / sin(i)<br />

v1r / sin(i)<br />

=<br />

v2r<br />

v1r<br />

m1 + m2 = (P/2πG) (v 1r+v2r) 3<br />

sin 3 (i)<br />

To get (rearranging terms):<br />

m2 3<br />

(m1 + m2) 2 sin 3 (i)<br />

P<br />

=<br />

2πG<br />

v1r 3<br />

This is the mass function, depends only on the period, P, and radial<br />

velocity, v1r. In practice, only a spectrum for one star in binary pair is<br />

available. Mass function sets a lower limit on m2. In rare cases <strong>of</strong> eclipsing<br />

spectroscopic binaries, i ≈90 o and both masses can be measured directly.<br />

Thursday, September 29, 2011


Eclipsing Binaries:<br />

http://www.astro.cornell.edu/academics/courses/astro101/herter/<br />

java/eclipse/eclipse.htm<br />

Thursday, September 29, 2011


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Mass-Luminosity relation


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram<br />

This is the Hertzprung-<br />

Russell (HR) diagram, which<br />

is a stellar classification<br />

system developed by Ejnar<br />

Hertzprung and Henry<br />

Norris Russel in Denmark<br />

around 1910.<br />

Ejnar Hertzsprung<br />

Henry Norris Russell<br />

The HR diagram relates the<br />

magnitudes and colors <strong>of</strong><br />

stars as a function <strong>of</strong> their<br />

temperature and luminosity.<br />

Thursday, September 29, 2011


Henry Norris Russell’s<br />

first diagram<br />

Thursday, September 29, 2011


<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Enormous Range in Stellar Radii !<br />

If stars cool over time as they contract, there should be a<br />

relation between their temperatures and luminosities.<br />

R =<br />

1<br />

T 2<br />

√<br />

L<br />

4πσ<br />

Hertzsprung (1873-1967) found that stars <strong>of</strong> Late type<br />

(G and later) have a large range in luminosity. If two<br />

stars <strong>of</strong> the same spectral type (same Temperature)<br />

then more luminous star is larger.<br />

Giants: <strong>Stars</strong> with big radii & Dwarfs: <strong>Stars</strong> with small radii.<br />

Our Sun is a G5 dwarf.<br />

Similar Conclusions reached by Henry Russell (1877-1957)<br />

Thursday, September 29, 2011


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram


Thursday, September 29, 2011<br />

<strong>Spectral</strong> <strong>Classification</strong> <strong>of</strong> <strong>Stars</strong><br />

Hertzsprung-Russell Diagram


Brighter<br />

30,000 K 10,000 K 7500 K 6000 K 5000 K 4000 K 3000 K<br />

Luminosity<br />

Text<br />

HR diagram where data points<br />

show measurements from<br />

22,000 real stars from the<br />

Hipparcos satellite.<br />

(Lines are Theoretical,<br />

expected luminosities and<br />

temperatures <strong>of</strong> stars)<br />

Temperature: Hotter<br />

Color Index: B-V<br />

Thursday, September 29, 2011


Brighter<br />

HR diagram<br />

Absolute Magnitude (M)<br />

(Luminosity)<br />

<strong>Spectral</strong><br />

Type<br />

Hotter<br />

Temperature (Color, B-V)<br />

Thursday, September 29, 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!