02.04.2014 Views

Chapter 3: THE FRIEDMANN MODELS

Chapter 3: THE FRIEDMANN MODELS

Chapter 3: THE FRIEDMANN MODELS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

We may write the density of the Universe at any R in terms of the present density (i.e.<br />

at R = R 0 ) which is parameterized by Ω 0 for the different components.<br />

(3.32)<br />

8πGρ<br />

3H<br />

2<br />

0<br />

⎛<br />

⎜Ω<br />

⎜<br />

⎝<br />

⎛ R ⎞<br />

⎜<br />

⎟<br />

⎝ R0<br />

⎠<br />

−3<br />

+ Ω<br />

⎛ R ⎞<br />

⎜<br />

⎟<br />

⎝ R0<br />

⎠<br />

−4<br />

+ Ω<br />

=<br />

0, m<br />

0, r<br />

0, Λ<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

We can introduce a new time coordinate, η, called the conformal time though we<br />

won’t encounter it much, such that<br />

(3.33)<br />

cdt<br />

d η =<br />

AR<br />

so that, indicating differentiation w.r.t η with a prime, the Freidmann equation<br />

becomes:<br />

(3.34)<br />

⎛ R′<br />

⎞<br />

⎜<br />

⎟<br />

⎝ R ⎠<br />

2<br />

8πGρ<br />

2<br />

= A R<br />

2<br />

c<br />

0 3<br />

2<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎛<br />

− k<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

We can now substitute in the expression above for ρ(R)<br />

⎛ R′<br />

⎞<br />

⎜<br />

⎟<br />

⎝ R0<br />

⎠<br />

2<br />

=<br />

H<br />

c<br />

2<br />

0<br />

2<br />

⎛<br />

⎜Ω<br />

⎜<br />

⎝<br />

0, Λ<br />

+ Ω<br />

0, m<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

−3<br />

+ Ω<br />

0, r<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

−4<br />

⎞<br />

⎟ 2<br />

A R<br />

⎟<br />

⎠<br />

2<br />

0<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

4<br />

⎛<br />

− k<br />

⎜<br />

⎝<br />

R<br />

R<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

and can clean this up with a = R/R 0 and substitute in the (3.27) relation:<br />

k H<br />

0<br />

(3.35) = ( Ω0,<br />

−1)<br />

2 2 2 tot<br />

R A c<br />

and rearrange to get:<br />

0<br />

2<br />

(3.36)<br />

a′<br />

2<br />

=<br />

k<br />

( ) ( 2<br />

4<br />

Ω<br />

)<br />

0, r<br />

+ Ω0,<br />

ma<br />

− ( Ω0,<br />

tot<br />

−1)<br />

a + Ω0,<br />

Λa<br />

Ω −1<br />

0<br />

This is straightforward to solve provided that Ω 0,Λ = 0 (see 3.6 below).<br />

Taking this equation and substituting in the relation for ρ(R) above (3.32) it is easy to<br />

show that H(R) is given by:<br />

2 2<br />

−3<br />

−4<br />

−2<br />

(3.37) H = H ( Ω + Ω a + Ω a − ( Ω −1)<br />

a )<br />

0<br />

0, λ<br />

0, m<br />

0, r<br />

0, tot<br />

This tells us the value of Hubble’s parameter at all epochs.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!