31.03.2014 Views

User Guide Release 3.0 - Biomedical Simulations Resource ...

User Guide Release 3.0 - Biomedical Simulations Resource ...

User Guide Release 3.0 - Biomedical Simulations Resource ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PNEUMA <strong>Release</strong> <strong>3.0</strong> software described in this document is furnished by the <strong>Biomedical</strong> <strong>Simulations</strong><br />

<strong>Resource</strong> under the terms of a release agreement.<br />

PNEUMA may be used only under the terms of the release agreement.<br />

PNEUMA <strong>User</strong>’s <strong>Guide</strong><br />

Contact: pneuma.bmsr@gmail.com<br />

<strong>Release</strong> <strong>3.0</strong> – January 2013<br />

<strong>Release</strong> 2.0 – January 2011<br />

<strong>Release</strong> 1.1 – March 2003<br />

<strong>Release</strong> 1.0 – August 2002<br />

Beta <strong>Release</strong> – September 2001<br />

Supported by: NIH Grant P41-EB001978<br />

© 2013 <strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (BMSR)<br />

University of Southern California


PNEUMA <strong>Release</strong> Agreement<br />

Before you use PNEUMA, please read the following conditions for using our package.<br />

Thank you for your cooperation.<br />

<br />

<br />

<br />

<br />

PNEUMA is restricted to non-profit research and instructional purposes aimed at<br />

further knowledge in the area of cardiorespiratory system modeling and<br />

simulation. PNEUMA is supported by University of Southern California (USC)<br />

<strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (BMSR) (NIH Grant P41-EB001978 ).<br />

Any publications of research results that were obtained in part by the use of<br />

PNEUMA will contain proper acknowledgement of the BMSR at USC. Reprints<br />

of such publications will be sent to the BMSR for the record.<br />

I will not distribute PNEUMA, in whole or part, to others without the expressed<br />

permission of the BMSR.<br />

I understand that neither USC nor the BMSR make any warranties, expressed or<br />

implied, that PNEUMA is free of errors or is consistent with any standard of<br />

merchantability, or that it will meet my requirements for any particular<br />

application. I understand that PNEUMA should not be relied on for solving a<br />

problem whose incorrect solution could result in injury to a person or loss of<br />

property, and that if I do use PNEUMA in such a manner it is at my own risk. I<br />

understand that USC, the BMSR and the authors disclaim any and all liability for<br />

direct or consequential damages resulting from my use of PNEUMA.


Contents<br />

Getting Started……………………………………………………………….............<br />

Individual Model……………………………………………………………..............<br />

Overall Pneuma Model………………………………………………………............<br />

Open Pneuma…………………………………………………………………...........<br />

Constant Parameters………………………………………………………….............<br />

Adjustable Inputs…………………………………………………………….............<br />

Interventions…………………………………………………………………............<br />

Block Description……………………………………………………………............<br />

Contact and Support………………………………………………………….............<br />

Blocks Reference…………………………………………………………….............<br />

Overall Pneuma………………….……………………………………………...........<br />

Reflexes (Reflex_Ursino.mdl)……………………………………………….............<br />

Carotid Baroreceptors……………………………………………….……...........<br />

Chemoreflex…...…………………………………………………………...........<br />

Lung Stretch Receptors Reflex………………………………………….............<br />

Offsets……………………………………………………………………............<br />

Autonomic Control…………………………...….…………………………..............<br />

SA Node (SA_Node_Ursino.mdl)…………………..……………………….............<br />

-Sympathetic Control…………………………...………………….…..............<br />

Parasympathetic Control…………………………….…………………..............<br />

-Sympathetic Control of Peripheral Resistance (TPR_Ursino.mdl)….……............<br />

Variable Breathing Period (PNEUMA.mdl)…...…………………………….............<br />

Variable Heart Period (PNEUMA.mdl)….………………………….……….............<br />

Cardiovascular System (PNEUMA.mdl)…………………………………….............<br />

Neuromuscular Drive (NeuroMuscular.mdl)…………………………………...........<br />

Respiratory Muscle Activity (Pmus_Flow_Younes.mdl)……………………............<br />

Pleural Pressure (Pleural_Schuessler.mdl)…………………………………..............<br />

Gas Exchange and Transport (Gas_Exchange.mdl)…………………………............<br />

Dead Space (Dead_Space_Khoo.mdl)………………..………………………...........<br />

Alveolar Gas Exchange (Lungs_Khoo.mdl)……..………………………….............<br />

Cardiovasuclar Mixing, Convection and Dissociation (Cardio_Mix_Lange.mdl,<br />

Dissociation_Spencer.mdl).………………..……..……..…...…….…….…….…….<br />

Brain Compartment (Brain_Khoo.mdl)…………………………………….…….….<br />

Body Tissues Compartment (Body_Khoo.mdl)……………………………....……..<br />

Ventilatory Response (Vent_Drive_Khoo.mdl)……………………………....……..<br />

Upper Airway / State Change (State_UA_Khoo_Borbely.mdl)……………....……..<br />

Upper Airway………………………………………………….……….….…….<br />

Sleep Mechanism……………………………………………………..…...…….<br />

Metabolic Control (PNEUMA.mdl)..……………………………………..…...…<br />

Autonomic and Metabolic Interactions………………………………….……….<br />

Appendix I: Software Package..……………………………………………….……..<br />

Appendix II: Saved Data Files…...…………………………………………....……..<br />

Appendix III: Save/Load Date for Advance <strong>User</strong>s………..…………………………<br />

Appendix IV: Overall Parameter Set and Initial Conditions……………...…………<br />

2<br />

2<br />

2<br />

2<br />

6<br />

8<br />

9<br />

15<br />

15<br />

16<br />

17<br />

19<br />

20<br />

22<br />

24<br />

25<br />

27<br />

31<br />

33<br />

34<br />

35<br />

37<br />

40<br />

42<br />

48<br />

50<br />

53<br />

55<br />

57<br />

60<br />

62<br />

66<br />

68<br />

70<br />

72<br />

73<br />

75<br />

79<br />

86<br />

88<br />

91<br />

92<br />

94


2<br />

Getting Started<br />

Thank you for trying out PNEUMA and its modularized component models. Before using<br />

PNEUMA, please take a moment to read the <strong>Release</strong> Agreement first. To download the<br />

associated files or their updates, please go to bmsr.usc.edu and click on Software. Before<br />

you begin to use PNEUMA or its individual model components, please take a moment to<br />

make sure that you have downloaded the most recent files that you will be using. In<br />

Appendix I, there is a full list of files that are included in zipped format on the BMSR-<br />

PNEUMA web site. After you unzip the downloaded file, please refer to the appendix<br />

and check that you have the correct files.<br />

Individual Sub-Models<br />

PNEUMA is implemented using Simulink and Matlab version R2007b or higher (© The<br />

Mathworks Inc., Natick, MA), which provides a graphical programming environment that<br />

promotes modularization of the overall model into hierarchically smaller subsystems.<br />

This allows the user to customize parts of the overall model in accordance to his/her<br />

simulations needs. Alternatively, the user may also choose to focus on a specific<br />

PNEUMA block and use it to study the corresponding mechanism of interest. Therefore,<br />

depending on the user’s interest and needs, individual component blocks may be<br />

downloaded and used.<br />

Please refer to the reference and the “.m” file for variable names and values of each<br />

compartment. Some of the components are difficult to decompose into smaller modules<br />

and therefore may not be suitable for your application. If you have suggestions or would<br />

like to request modifications to PNEUMA components that would better suit your<br />

simulation needs, please feel free to send us feedback. Contact information is provided in<br />

the Support and Contact section of this manual.<br />

PNEUMA V.<strong>3.0</strong>: What’s New<br />

In Pneuma <strong>Release</strong> <strong>3.0</strong>, we have incorporated a metabolic component with autonomicmetabolic<br />

interactions into the existing integrative comprehensive simulation model. This<br />

metabolic component of PNEUMA is based on prior models of glucose-insulin regulation<br />

by Bergman et al. (1979) and free fatty acid (FFA) regulation by Roy and Parker (2006).<br />

Changes in sympathetic activity from the autonomic portion of PNEUMA produce<br />

changes in epinephrine output, which in turn affects the metabolism of glucose, insulin<br />

and FFA. Inputs from the dietary intake of glucose and external interventions, such as<br />

insulin injections, have also been incorporated into the model. Also incorporated is<br />

autonomic “feedback” from the metabolic component to the rest of PNEUMA in the<br />

following way: changes in insulin level are assumed to lead to changes in sympathetic<br />

tone. The “Control Panel” along with other input panels have been improved to facilitate<br />

greater user interaction and control of the simulations


3<br />

References<br />

Bergman, R. N., Ider, Y. Z., Bowden, C.R.,and Cobelli,C.(1979).Quantitative estimation<br />

of insulin sensitivity. Am. J. Physiol. 236, E667–E677.<br />

Roy, A., and Parker, R. S. (2006). Dynamic modeling of free fatty acid, glucose, and<br />

insulin: an extended “Minimal Model”. Diabetes Technol. Ther. 8, 617–626.<br />

Using Pneuma<br />

To begin using Pneuma, unzip the “Pneuma<strong>Release</strong>3.zip” file and check that you have<br />

all the necessary files. For the list of files in “Pneuma<strong>Release</strong>3.zip” file, please refer to<br />

“Getting Started” section. After you have unzipped the file and you are ready to run the<br />

program in the MATLAB environment, make sure that you are in the directory where the<br />

unzipped files are located. To Open Pneuma, in the Matlab command prompt, type<br />

“PNEUMA_MAIN_CONTROL_PANEL”.<br />

If you are running Pneuma using a version of Matlab higher than Matlab75 (version<br />

2007b), a series of warnings may appear due to compatibility issues, but these warnings<br />

should disappear after the first time you open PNEUMA.


The Control Panel graphic user interface (GUI) will appear, as shown below.<br />

4


5<br />

Next, input the parameter values.<br />

Start Time: time to start the simulation. (default is zero seconds)<br />

End Time: end-time (in seconds) of the simulation (for example:<br />

3600*24*7 will end up with 7-day simulation.<br />

Max Step: the simulation is using variable integration time steps, and it<br />

requires that the user specify the maximum allowable time step. A large<br />

max time step is not recommended (the default is 0.01 second).<br />

Saved Sample Time: some of the parameter/variable values can be saved<br />

to data files after each simulation and the user has the option of specifying<br />

the sample time of the saved segment. If given value -1, it will be default<br />

sample time of the simulation which can be used for saving data with<br />

“Saved Segment Time” as 0.5 day. The suggested sample time for saving<br />

is 0.1 second for neural-cardio-respiratory system. The sample time for<br />

metabolic system is constant as 6 seconds.<br />

Saved Segment Time: each data file can be saved as long as the segment<br />

time. The suggested time is 7 days.<br />

The “Run” and “Stop” buttons allow the user to run and terminate the simulation.<br />

Currently, the Real Time Workshop allows the simulation to run using the accelerated<br />

mode even with standard Matlab Simulink package. So the “Run” operation will run in<br />

accelerated mode that allows the simulation to run faster. If the user prefers to execute<br />

the model in normal mode, it will have to be run under Simulink model itself rather than<br />

using that GUI button (see options under Simulation tab in Simulink model window). If<br />

you decide to stop the simulation before the End Time that you have specified, some<br />

data will be stored to files (Saved Sample Time option) and all the variables are in the<br />

workspace which can be saved later. The “Reset” button will reset all variable values to<br />

their defaults.<br />

Under “Open” menu, the user has three options. “Open Pneuma Model Ctrl+O” will<br />

show the Pneuma model in Simulink. <strong>User</strong> can explore the modules in Pneuma and<br />

incorporate other blocks if needed. “Open Display Panel Ctrl+D” allows the user to see<br />

the output from some of the more common measurements such as arterial blood pressure,<br />

heart rate and so on. Having achieved some familiarity with PNEUMA, the user may<br />

want to add more inputs to the display panel or create new displays. “Open Program<br />

Status Ctrl+P” will show the Pneuma Progress module in Simulink, that displays the<br />

total duration of simulation, current simulation time and percentage of simulation<br />

completed, based on total duration of simulation and current simulation time.<br />

If the user wants to load or save the simulation workspace, click under “File” menu and<br />

two selections will show up. “Load Data Ctrl+L” opens the standard Matlab open file<br />

window, which allows the user to specify the data file and load the data into workspace.<br />

“Save Data Ctrl+S” opens the standard Matlab save file window, which allows saving<br />

the workspace data to the directory of user's choice.


6<br />

Constant Parameters<br />

When the user clicks on “CONSTANT PARAMETERS” button, another graphical<br />

interface will appear, as shown below:<br />

These are the constant parameters used in the model. The values may be changed before<br />

the simulation, if desired. It is recommended that these parameters be left at their default<br />

values. Each model subsystem is listed along with the constant parameter in that<br />

compartment. Each title button gives user the opportunity to open the Simulink<br />

implementation of that particular subsystem.


If the mouse cursor is placed and held at a particular box with number, the help text for<br />

the corresponding parameter will appear so that the user will know what physiological<br />

entity that parameter represents, as shown below:<br />

7


8<br />

Adjustable Parameters<br />

This panel allows the user to vary parameters before or during the simulation. Click on<br />

“ADJUSTABLE PARAMETERS” button and the following panel will appear:<br />

The user can adjust the value either by using the slider bar or by typing directly into the<br />

box. Both the “min” and the “max” values are shown for each slider bar. These values<br />

can be changed as well. But the values that fall within the default spans indicated are<br />

recommended, since these are consistent with physiologically feasible ranges.


9<br />

The above panel shows the parameters that may be altered in value while the simulation<br />

is being executed. Since the model is continually being revised, the actual parameters that<br />

can be adjusted may be different in different versions of the program.<br />

External Interventions<br />

Here, the user is permitted to apply a variety of external interventions to the model.<br />

Click on “EXTERNAL INTERVENTIONS” and the graphical panel opens up, shown<br />

below:<br />

The panel shows the interventions that have been included in the model at the present<br />

time. Before you run each intervention, please click “Reset” button on “Control Panel” to<br />

reload the original parameter set, then enter your new start/stop time and other parameters<br />

on the Control Panel, then go back to the External Interventions. Again, as this software<br />

gets updated, other interventions will be added.<br />

The followings are some typical examples for the interventions.<br />

A. Hypoxia. To simulate hypoxia, simply enter values into “Start Time” and “Duration<br />

Time” such as start at 800 sec with duration 300 sec, then enter value into “Change in<br />

PIO2” such as “-90” by default, then go back to Control Panel and click on “Run”<br />

button, make sure the simulation “End Time” is equal or longer than the hypoxia end<br />

time, shown below:


10<br />

B. Normocapnic Hypoxia. To simulate normocapnia in hypoxia, first click on check box<br />

of “Normocapnia”, then define the hypoxia condition as in Hypoxia, then give the<br />

same “Start Time” and “Duration” in CO2 Inhalation part as O2 Inhalation part, then<br />

go back to Control Panel and click on “Run” button, shown below:<br />

C. Non-Normocapnic Hypoxia. To simulate non-normocapnic including hypercapnic<br />

hypoxia, first click on check box of “Non-Normocapnia”, then define the hypoxia<br />

condition as in Hypoxia, then give the same “Start Time” and “Duration” in CO2<br />

Inhalation part as O2 Inhalation part, then enter value into “Change in PICO2” such<br />

as “40” by default, then go back to Control Panel and click on “Run” button, make<br />

sure the simulation “End Time” is equal or longer than the hypercapnia end time,<br />

shown below:


11<br />

D. Normal Sleep. To simulate normal sleep, simply click on check box “Sleep Enable”,<br />

then go back to Control Panel and click on “Run” button. You can change the<br />

parameter set for sleep to simulation different interventions. For overnight sleep,<br />

make sure your “End Time” in Control Panel is longer than 3600*8+200 seconds (>8<br />

hrs) , shown below:<br />

E. OSA Sleep. To simulate obstructive sleep apnea (OSA) sleep, first click on check box<br />

“Sleep Enable”, then drag the slider button in “Upper Airway Mechanism” or directly<br />

enter value into “Pcrit” such as -2.66 which will simulate a moderate OSA, then go<br />

back to Control Panel and click on “Run” button. For overnight sleep, make sure your


12<br />

“End Time” in Control Panel is longer than 3600*9+200 seconds (>9 hrs) , shown<br />

below:<br />

F. CPAP with OSA Sleep. To simulate continuous positive airway pressure (CPAP),<br />

first set up OSA sleep as the above example in OSA Sleep. Then click on check box<br />

“CPAP”, enter values into “Start Time” and “Duration”, give values for the positive<br />

pressure such as 15 cmH2O, then go back to Control Panel and click on “Run”<br />

button. You can try 1 hour CPAP shown as below or overnight CPAP for OSA Sleep.<br />

In our model, the default mode is to repeat CPAP every night if the CPAP duration is<br />

longer than 1 day. For example, if the simulation runs for 30-day OSA sleep with 10-<br />

day CPAP, on in the middle of the 30-day run time simulation, then the CPAP “Start<br />

Time” could be 3600*24*10-1800 sec (which is 0.5 hour short than 10 days) and<br />

“Duration Time” could be 3600*24*10+3600*2 sec (which is 2 hours longer than 10<br />

days).


13<br />

G. Maneuvers. To simulate Mueller Maneuver, click on check box “Mueller Maneuver”,<br />

then use the default setup which can be entered with different values as you desire,<br />

then go back to Control Panel and click on “Run” button. To simulate Valsalva<br />

Maneuver, click on check box “Valsalva Maneuver”, then use the default setup which<br />

can be entered with different values as you desired, then go back to Control Panel and<br />

click on “Run” button, shown below:<br />

H. CSR-CHF Sleep. To simulate central sleep apnea (CSA characterized with Cheney-<br />

Stokes Respiration CSR) with congestive heart failure (CHF), first activate Sleep<br />

as in Normal Sleep. Then to change heart contractility, go to “Adjustable<br />

Parameters”, enter value such as “0.475*0.3” or drag the slider bar for


14<br />

“Gain_Emaxlv” and enter value such as “2392*0.3” or drag the slider bar for<br />

“Basal_Emaxlv” in “Heart Contractility” area, then increase chemoreflex gain such as<br />

increase “Peripheral Chemo-Gain” by directly entering value as “0.0063*6” (example<br />

value) or dragging the slider bar, then increase “Lung-Chemo Volume” by directly<br />

entering value as “0.588*1.5” (example value) or dragging the slider bar. Lastly, go<br />

back to Control Panel and click on the “Run” button, as shown below:<br />

These are brief descriptions to help the user get started using our package. Please feel free<br />

to explore the model. Since this is an open source environment, contribution of newer<br />

code or model will also help us to improve our implementation and to better suit the<br />

needs of other users as well.


15<br />

Block Description<br />

For the complete descriptions of all the individual Simulink model blocks, please refer to<br />

the “Blocks Reference” section.<br />

Contact and Support<br />

The whole model and its modularized components will be updated from time to time. So,<br />

please check the website for newer update or if you wish to join the mailing list,<br />

notification will be sent to you regarding our progress on the update.<br />

FAQ will be set up as we get more questions and comments. In the meantime, please<br />

send all your valuable comments and feedbacks to pneuma.bmsr@gmail.com. Once we<br />

have the solution, then we will post it in the forum so that other users can benefit from it.<br />

The PNEUMA project is supported by the USC <strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (NIH<br />

Grant P41-EB001978). Comments and feedback on all aspects of this software are<br />

welcome.


Blocks Reference<br />

16


17<br />

PNEUMA V.<strong>3.0</strong><br />

Description<br />

PNEUMA is implemented using SIMULINK. The open architecture of PNEUMA allows<br />

to group models into hierarchies to create a simplified view of components or<br />

subsystems. High-level information is presented clearly and concisely, while detailed<br />

information is easily hidden in subsystems within the model hierarchy. Current<br />

PNEUMA implementation builds up on 557 model parameters and allows the tracing of<br />

93 model states. It is a hybrid model that simultaneously addresses fast and slow<br />

physiological processes (i.e. single heart beat and circadian rhythm) that are implemented<br />

in mixed discrete and continuous modes.<br />

The modular design of PNEUMA makes it possible to perform simulations in which<br />

specific physiological mechanisms are excluded or added in order to better determine<br />

their contribution to the closed-loop operation of the overall system of interconnected<br />

components. This allows the user to explore alternative models of physiologic function in<br />

silico, which could be very useful in circumventing the challenges of attempting to study<br />

the systems in question experimentally or clinically. As well, the modularity of<br />

PNEUMA enables users to replace one or more of the model blocks with their own<br />

modules of specific physiological components.<br />

General References:<br />

1. Cheng, L., and Khoo, M. C. K. Modeling the autonomic and metabolic effects of<br />

obstructive sleep apnea: a simulation study. Front Physiol 2:111, 2012. doi:<br />

10.3389/fphys.2011.00111.<br />

2. Cheng, L., Ivanova, O., Fan, H., and Khoo, M. C. K. An integrative model of<br />

respiratory and cardiovascular control in sleep-disordered breathing. Respiratory<br />

Physiology and Neurobiology 174, 4-28, 2010.


18<br />

Simulink Model. Overall Pneuma<br />

Maneuvers<br />

Double Click<br />

to load Initial Conditions<br />

200<br />

t_stop<br />

Progress<br />

Display<br />

Panel<br />

Variable Respiratory Rhythm<br />

Mech Vent Neural<br />

External Pressure<br />

Tidal Volume Vt<br />

Sleep/Awake<br />

PaO2<br />

PaCO2<br />

SAO2<br />

RespMus Drive<br />

Total Ventilatory Drive<br />

ftas<br />

Metabolic Control<br />

PbCO2<br />

ftas _v<br />

ftbs<br />

Central Neural Control<br />

ftp<br />

AI -Arousal Index<br />

PaCO2<br />

CaO2<br />

AI -Arousal Index<br />

fcs<br />

Cardiovascular System<br />

SI-Sleep Wake State Index<br />

Ppl<br />

Blood Flow<br />

deltaFtas<br />

REM<br />

Respiratory System


19<br />

Reflexes (Reflex_Ursino.mdl)<br />

Description<br />

The reflexes model includes the key cardiorespiratory reflexes: baroreflex, chemoreflex<br />

and lung stretch receptor influences on respiration and heart-rate control.<br />

Reflexes<br />

ABP<br />

D state<br />

Carotid<br />

Baroreceptors<br />

f cs<br />

P CO2<br />

P O2<br />

Chemoreflex<br />

f chemo<br />

V t<br />

Lung Stretch<br />

Receptors Reflex<br />

f ls


20<br />

Carotid Baroreceptors<br />

This block represents the pressor receptors that are located in the carotid sinus. In<br />

response to arterial blood pressure changes, it produces both parasympathetic and the<br />

sympathetic neural activity changes. During sleep, baro-sensitivity is assumed to<br />

increase slightly. The input for this compartment is the arterial blood pressure, ABP, and<br />

the output is the carotid sinus firing frequency, fcs.<br />

Carotid Baroreceptors Equation:<br />

<br />

P Pn<br />

<br />

fcs,<br />

min fcs,maxexp(<br />

<br />

kcs<br />

kcs<br />

fcs<br />

<br />

P P <br />

1<br />

exp(<br />

n Pn<br />

) <br />

kcs<br />

kcs<br />

<br />

Pn Pn _ sleep<br />

(1 AI ) SI<br />

kcs Kcs _ sleep<br />

(1 AI ) SI<br />

Pn<br />

<br />

) <br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Simulink Model: Baroreceptors


21<br />

Input: ABP Arterial Blood Pressure<br />

Output: f cs Carotid Sinus firing frequency<br />

Variables: P n Center pressure for sigmoidal function<br />

k cs Parameter for sigmoidal slope control<br />

f cs,min Lower threshold for sigmoidal function<br />

f cs,max Upper saturation for sigmoidal function<br />

Pn Pressure change in sleep<br />

Slope change in sleep<br />

kcs


22<br />

Chemoreflex<br />

Description<br />

The inputs to the chemoreflexes are Oxygen (O2) and Carbon Dioxide (CO2) levels in<br />

the arterial blood. This reflex affects both the heart rate and the peripheral vasculatures.<br />

Inputs for this block are the oxygen and carbon dioxide partial pressure, PaO2 and<br />

PaCO2. Output is the chemoreceptors firing, fac.<br />

Chemoreflex Equations:<br />

<br />

chemo<br />

PaO<br />

, Pa<br />

2 CO2<br />

where<br />

<br />

<br />

_____ <br />

Pa <br />

O Pa<br />

f f<br />

2 O2<br />

chemo,min<br />

chemo,max<br />

exp<br />

<br />

kchemo<br />

<br />

<br />

PaCO<br />

<br />

K<br />

ln 2<br />

f<br />

_____ <br />

______ <br />

<br />

<br />

<br />

Pa Pa<br />

<br />

O O<br />

PaCO2<br />

<br />

1<br />

exp<br />

2 2 <br />

kchemo<br />

<br />

<br />

<br />

K<br />

<br />

<br />

K K<br />

<br />

<br />

K<br />

H<br />

H<br />

H<br />

PaO<br />

80<br />

<br />

2<br />

1.2<br />

<br />

30 <br />

1.6<br />

if Pa<br />

if 40 Pa<br />

if Pa<br />

O2<br />

O2<br />

80<br />

O2<br />

40<br />

80<br />

df<br />

chemo<br />

dt<br />

1<br />

<br />

<br />

chemo<br />

<br />

<br />

f<br />

chemo<br />

<br />

chemo<br />

<br />

Reference: Ursino, M, A mathematical model of CO2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.


23<br />

Inputs: PaCO2 Arterial CO2 partial pressure<br />

PaO2 Arterial O2 partial pressure<br />

Output: fchemo Chemoreceptor firing<br />

Variables: fchemo,max Lower saturation for the sigmoidal function<br />

fchemo,min Upper saturation for the sigmoidal function<br />

_____<br />

Pa O2 Center point in the sigmoidal function<br />

kchemo Slope control parameter for the sigmoidal<br />

function<br />

_____<br />

Pa CO2 Normalizing PaCO2 value<br />

KH<br />

Constant value for the static response<br />

f<br />

Constant value for the static response<br />

τchemo Time constant for the chemoreflex<br />

Simulink Model: Chemoreflex


24<br />

Lung Stretch Receptor Reflex<br />

Lung inflation or deflation can produce changes in heart rate through the lung stretch<br />

receptors. The input for this block is the tidal volume, Vt. The output is the lung stretch<br />

receptor activity, fls.<br />

Lung Stretch Receptors Reflex Equations<br />

<br />

lung GlungVT<br />

df<br />

lung<br />

dt<br />

1<br />

<br />

<br />

lung<br />

<br />

<br />

f<br />

lung<br />

<br />

lung<br />

<br />

Reference: Ursino, M, A mathematical model of CO 2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Simulink Model: Lung Stretch Receptors Reflex<br />

Inputs: Vt Tidal volume<br />

Output: fls Lung stretch receptors firing rate<br />

Variables: Gls Constant gain<br />

Τls Time constant


25<br />

Offsets (CNS Response in PNEUMA.mdl)<br />

Offsets for Autonomic Control are the central nervous system response to the partial<br />

blood pressure of carbon dioxide and oxygen in the cerebral circulation. The input for<br />

this block are partial arterial blood pressure PaCO2 and PaO2. The outputs are the<br />

offsets for autonomic control, Offset res,vein,heart , respectively.<br />

Offsets Equations<br />

Offset <br />

d<br />

d<br />

res, vein, heart san, spn, sbn O2 sa, O2 sp, O2sb CO2 sa, CO2 sp, CO2sb<br />

O2 sa, O2 sp, O2sb<br />

dt<br />

CO2 sa, CO2 sp, CO2sb<br />

dt<br />

1<br />

( O 2 sa, O2 sp, O2 sb<br />

Wsa , sp,<br />

sb )<br />

<br />

isc<br />

1<br />

[ CO 2 sa, CO2 sp, CO2 sb<br />

gccsa, sp, sb<br />

( PaCO 2<br />

PaCO 2n<br />

)]<br />

<br />

cc<br />

W X /(1 exp(( P - PO2 n ) / kisc ))<br />

sa, sp, sb sa, sp, sb aO2 sa, sp, sb sa, sp,<br />

sb<br />

Reference: Ursino, M, A mathematical model of CO 2 effect on cardiovascular<br />

regulation. American Journal of Physiology - Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Inputs: PaCO2 Arterial CO2 partial pressure<br />

PaO2<br />

Arterial O2 partial pressure<br />

Output: Offset res,vein,heart CNS Response as offsets of autonomic<br />

control<br />

Variables:<br />

X sa<br />

Saturation for the offset of α-sympathetic<br />

activity on peripheral resistance<br />

θ san<br />

Nominal level of offset of α-sympathetic<br />

activity on peripheral resistance<br />

PO2n sa Central point for the sigmoidal function<br />

kisc sa<br />

Parameter of α-sympathetic activity on<br />

peripheral resistance<br />

X sb<br />

Saturation for the offset of -sympathetic<br />

activity<br />

θ sbn<br />

Nominal level of offset of -sympathetic<br />

activity<br />

PO2n sb Central point for the sigmoidal function<br />

kisc sb<br />

Parameter of -sympathetic activity<br />

X sp<br />

Saturation for the offset of α-sympathetic<br />

activity on peripheral resistance<br />

Nominal level of offset of α-sympathetic<br />

θ spn


26<br />

PO2n sp<br />

kisc sp<br />

τ isc<br />

τ cc<br />

activity on peripheral resistance<br />

Central point for the sigmoidal function<br />

Parameter of α-sympathetic activity on<br />

unstressed volume of veins<br />

Time constant for oxygen response<br />

Time constant for carbon dioxide response<br />

Simulink Model: Offsets (CNS Response)<br />

-C-<br />

theta _sa_n<br />

1<br />

PaO 2<br />

f(u)<br />

Wsa_Fcn<br />

1/tao _isc<br />

1/tao _isc<br />

1<br />

s<br />

theta_O2_sa<br />

1<br />

Offset _Resistance<br />

2<br />

PaCO 2<br />

-C-<br />

PaCO 2_n<br />

-K-<br />

Gain 2<br />

1/tao _cc<br />

1/tao _cc<br />

1<br />

s<br />

theta_CO2_sa<br />

-C-<br />

theta _sp_n<br />

f(u)<br />

Wsp_Fcn1<br />

1/tao _isc<br />

1/tao _isc1<br />

1<br />

s<br />

theta_O2_sp<br />

2<br />

Offset _veins<br />

-K-<br />

Gain 1<br />

1/tao _cc<br />

1/tao _cc1<br />

1<br />

s<br />

theta_CO2_sp<br />

-C-<br />

theta _sb_n<br />

f(u)<br />

Wsb_Fcn2<br />

1/tao _isc<br />

1/tao _isc2<br />

1<br />

s<br />

theta_O2_sb<br />

3<br />

Offset _heart<br />

gcc_sb<br />

Gain 3<br />

1/tao _cc<br />

1/tao _cc2<br />

1<br />

s<br />

theta_CO2_sb


27<br />

Autonomic Control (submodels refer to Autonomic.mdl)<br />

Description<br />

Influences from the central respiratory control (RSA), baroreflexes, chemoreflexes and<br />

lung stretch receptors reflexes are integrated in this compartment and these inputs<br />

determine the total -sympathetic, -sympathetic and parasympathetic influences on<br />

heart rate and peripheral resistance. The inputs for this compartment are the central<br />

respiratory drive, N t , chemoreflex, f chemo , lung stretch receptors reflex, f ls , carotid<br />

baroreceptors firing, f cs, and CNS response, Offsets. The outputs are the -sympathetic<br />

response, f tas , -sympathetic response, f tbs and parasympathetic response, f tp . The models<br />

shown below is in PNEUMA.mdl, but the submodel is referred to Autonomic.mdl.<br />

Autonomic Control<br />

N t<br />

f chemo<br />

f ls<br />

f cs<br />

Offsets<br />

Autonomic Integration<br />

Central Respiratory Control<br />

Chemoreflex<br />

Lung Stretch Receptors<br />

Reflex<br />

Baroreflex<br />

CNS Response<br />

f tas<br />

f tbs<br />

f tp<br />

Autonomic Integration Equations:<br />

(a) Alpha-Sympathetic Activity<br />

f f ( f f ) <br />

tas _ res, vein s, s,0<br />

s,<br />

<br />

<br />

exp k G f G f G f G N Offset<br />

<br />

s baro, as cs chemo, as chemo lung,<br />

as lung RSA,<br />

as t res,<br />

vein<br />

(b) Beta-Sympathetic Activity<br />

f f ( f f ) <br />

tbs<br />

s, s,0<br />

s,<br />

<br />

<br />

exp k G f G f G f G N Offset<br />

<br />

s baro, bs cs chemo, bs chemo lung, bs lung RSA,<br />

bs t<br />

heart


28<br />

(c) Parasympathetic Activity<br />

<br />

fcs<br />

fcs,0<br />

f<br />

f exp<br />

para ,0 para , <br />

k<br />

<br />

p <br />

f <br />

<br />

<br />

G f G f G N Offset<br />

f f <br />

1 exp k<br />

<br />

p <br />

tp chemo, p chemo lung, p lung RSA, p t para _ n<br />

cs cs,0<br />

Reference: Ursino, M, A mathematical model of CO2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Simulink Model: Autonomic Control<br />

Band-Limited<br />

White Noise<br />

4<br />

Gain2<br />

0<br />

Gain3<br />

noise<br />

1<br />

ftas_blocker<br />

1<br />

Total Alpha-Symp<br />

(ftas_res)<br />

4<br />

Nt Central Respiratory<br />

Neural Drive<br />

0.4<br />

G_CRSA<br />

0.34<br />

1<br />

lung feedback<br />

G_lung_asymp<br />

5<br />

Offset_Alpha-symp1<br />

G_offset_asymp1<br />

6<br />

Offset_Alpha-symp2<br />

G_offset_asymp2<br />

0.24<br />

1<br />

1<br />

4<br />

G_chemo_asymp<br />

fas<br />

Alpha-Symp<br />

Integration<br />

f(u)<br />

Alpha-Sympathetic<br />

Response<br />

f(u)<br />

Alpha-Sympathetic<br />

Response1<br />

fs<br />

(u60)*u<br />

f(u)<br />

1<br />

2<br />

Total Alpha-Symp<br />

ftas_blocker1<br />

(ftas_vein)<br />

2<br />

Chemoreflex<br />

1<br />

G_chemo<br />

2.8<br />

G_chemo_bsymp<br />

7<br />

Offset_Beta-symp<br />

G_lung_bsymp<br />

1<br />

G_offset_bsymp<br />

fbs<br />

Beta-Symp<br />

Integration<br />

f(u)<br />

Beta-Sympathetic<br />

Response<br />

fs<br />

(u60)*u<br />

1<br />

3<br />

Total Beta-Symp<br />

ftbs_blocker<br />

(ftbs)<br />

0.24<br />

3<br />

fcs<br />

Carotid Sinus<br />

1<br />

G_lung_para<br />

f(u)<br />

fp<br />

G_fcs<br />

-Ctheta_para_n<br />

Parasympathetic<br />

BaroResponse<br />

0.03<br />

G_chemo_para<br />

1<br />

G_offset_para<br />

Parasymp<br />

Integration<br />

(u>=0)*u<br />

1<br />

ftp_blocker<br />

4<br />

Total Parasymp<br />

(ftp)


29<br />

Simulink Model: Alpha-Sympathetic Response<br />

Simulink Model: Beta-Sympathetic Response<br />

Simulink Model: Parasympathetic Baroresponse


30<br />

Inputs: N t Respiratory Neural firings<br />

e f chemo Chemoreceptor firings<br />

f lung<br />

Lung stretch receptors firings<br />

f cs<br />

Baroreceptor firings<br />

CNS response<br />

Offset res,vein,heart<br />

Outputs: f tp Total parasympathetic response<br />

f tbs<br />

Total β-Sympathetic response<br />

Total α-Sympathetic response<br />

f tas_res,vein<br />

Variables: f para,0 Lower threshold of the parasympathetic baroreflex<br />

sigmoidal function<br />

f para,<br />

Upper saturation of the parasympathetic baroreflex<br />

sigmoidal function<br />

f cs,0<br />

Center point for the sigmoidal function<br />

k p<br />

Slope control parameter for the sigmoidal function<br />

G RSA,p<br />

Central RSA gain for parasympathetic response<br />

G chemo,p Chemoreflex gain for parasympathetic response<br />

G lung,p<br />

Lung stretch receptor reflex gain for<br />

parasympathetic response<br />

f s,0<br />

Lower limit of the sympathetic exponential decay<br />

function<br />

f s,<br />

Upper saturation of the sympathetic exponential<br />

decay function<br />

k s<br />

Constant for the exponential function<br />

G RSA,bs<br />

Central RSA gain for -sympathetic response<br />

G chemo,bs Chemoreflex gain for -sympathetic response<br />

G lung,bs<br />

Lung stretch receptor reflex gain for -sympathetic<br />

G baro,bs<br />

Baroreflex gain for -sympathetic<br />

G RSA,as<br />

Central RSA gain for -sympathetic response<br />

G chemo,as Chemoreflex gain for -sympathetic response<br />

G lung,as<br />

Lung stretch receptor reflex gain for -sympathetic<br />

Baroreflex gain for -sympathetic<br />

G baro,as


31<br />

SA Node (SA_Node_Ursino.mdl)<br />

Description<br />

This module translates changes in -sympathetic and parasympathetic efferent activity<br />

into changes in heart rate. In sleep, the model assumes that the parasympathetic response<br />

increases while there is small decrease in the sympathetic activity. The inputs for this<br />

subsystem are the total -sympathetic firing frequency, ftbs, and parasympathetic firing<br />

frequency, ftp, and the output is the heart period, HP (= reciprocal of instantaneous heart<br />

rate).<br />

SA Node<br />

f tbs<br />

SI<br />

-sympathetic<br />

Response<br />

HP bs<br />

f tp<br />

SI<br />

parasympathetic<br />

Response<br />

HP p<br />

HP<br />

Basal Heart<br />

Period HP basal<br />

SA Node Equation:<br />

HP<br />

<br />

HP<br />

bs<br />

HP<br />

p<br />

HP<br />

basal<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.


32<br />

Simulink Model: SA Node<br />

3<br />

Gbs(SI)<br />

1<br />

ftbs<br />

Transport<br />

Delay<br />

Saturation<br />

ln<br />

Math<br />

Function<br />

-0.13<br />

Gain _HPbs<br />

1<br />

toux (7).s+1<br />

Transfer Fcn<br />

ftbs_min<br />

Constant<br />

HP_basal<br />

Constant 1<br />

1<br />

HP<br />

2<br />

ftp<br />

Transport<br />

Delay<br />

4<br />

1<br />

Gps(SI)<br />

0.09<br />

Gain _HPpara<br />

1<br />

toux (8).s+1<br />

Transfer Fcn 1<br />

Inputs: f tbs Total beta-sympathetic firing frequency<br />

f tp<br />

Total parasympathetic firing frequency<br />

Output: HP Heart Period (equivalent to RR-interval)<br />

Variable: HP basal Basal value for HP for denervated heart<br />

HP bs Change in HP modulated by -sympathetic<br />

response<br />

HP p Change in HP modulated by parasympathetic<br />

response


33<br />

-Sympathetic Control<br />

Description<br />

This response is modeled assuming first-order dynamics. The time-constant and delay<br />

associated with the -sympathetic effect on the heart period is longer than that of the<br />

parasympathetic response. There is slight decrease in -sympathetic response in sleep.<br />

The input for this compartment is the -sympathetic firing frequency, ftbs and the output<br />

is the corresponding component of heart period change, HPbs.<br />

-Sympathetic Control Equations:<br />

G G ( SI ) ln[ f ( t D ) f 1],<br />

f f<br />

<br />

bs()<br />

t <br />

0,<br />

ftbs<br />

f<br />

G ( SI ) 1 SI (1 AI ) G<br />

bs bs tbs bs tbs min tbs tbs min<br />

bs bs _ sleep<br />

tbs min<br />

d<br />

dt<br />

HPbs<br />

<br />

<br />

1<br />

bs<br />

<br />

HPbs(<br />

t)<br />

<br />

bs<br />

( t)<br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Input: ftbs Total beta-sympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI<br />

Arousal Index<br />

Output: ΔHPbs Heart Period change modulated by -symp.<br />

Variables: Dbs -sympathetic time delay<br />

ftbsIC -sympathetic initial output after time delay<br />

ftbs_min Lower limit for the natural log function<br />

Gbs<br />

-sympathetic Gain varied with sleep drive<br />

τbs<br />

-sympathetic time constant<br />

delta_HPbsIC Initial input to the -symp first order dynamic<br />

system<br />

Gbs_sleep -sympathetic Gain of sleep factor


34<br />

Parasympathetic Response<br />

Description<br />

The vagal effect on heart rate is modeled assuming first-order dynamics. During sleep,<br />

parasympathetic activity increases, and this is partially responsible for the decrease in the<br />

heart rate. The input for this compartment is the parasympathetic firing frequency, ftp<br />

and the output is the corresponding component of heart period change, HPp.<br />

Parasympathetic Response Equations:<br />

Gps<br />

ps( t) ftp( t Dps)<br />

G ( SI )<br />

<br />

d<br />

dt<br />

HP<br />

<br />

ps<br />

1<br />

p<br />

τ para<br />

G ( SI ) 1 SI (1 AI ) G<br />

<br />

ΔHPp(t)<br />

σp(t)<br />

ps para _ sleep<br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Input: ftp Total parasympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI<br />

Arousal Index<br />

Outputs: ΔHPp Heart Period change modulated by<br />

parasympathetic<br />

Variables: Dpara Parasympathetic time delay<br />

ftpIC Parasympathetic initial output after time delay<br />

Gpara Parasympathetic Gain varied with sleep drive<br />

τpara Parasympathetic time constant<br />

delta_HPpIC Initial input to the parasympathetic first order<br />

dynamic system<br />

Gpara_sleep Parasympathetic Gain of sleep factor


35<br />

-Sympathetic Control of Peripheral Resistance<br />

(TPR_Ursino.mdl)<br />

Description<br />

This block models -sympathetic control of peripheral vascular resistance, using a firstorder<br />

dynamic system as in the case of the -sympathetic component. During sleep in<br />

normals, the accompanying decrease in -sympathetic activity contributes substantially<br />

to a decrease in blood pressure. The inputs are the total -sympathetic firing frequency,<br />

ftas and the state/sleep drive, Dstate. The output is the proportional change in the<br />

peripheral resistance, TPR.<br />

Total Peripheral Resistance<br />

ftas<br />

SI<br />

Vascular Resistance<br />

Changes (baro, lung<br />

stretch, central, chemo)<br />

TPR<br />

Equations for Total Peripheral Resistance Change:<br />

G G ( SI ) ln[ f ( t D ) f 1],<br />

f f<br />

Z<br />

j<br />

<br />

0,<br />

f f<br />

dTPR<br />

j 1<br />

( TPR<br />

j<br />

Z<br />

j )<br />

dt <br />

j as tas _ i j tas min tas _ i tas min<br />

TPR () t TPR TPR<br />

j<br />

j j j0<br />

G ( SI ) 1 SI (1 AI ) G<br />

as as _ sleep<br />

tas _ i tas min<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.


36<br />

Simulink Model: Alpha-Sympathetic Modulation on Peripheral Resistance<br />

3<br />

1-u<br />

AI (arousal Index)<br />

4<br />

SI (Sleep Index)<br />

Gas_sleep<br />

Gas_sleep<br />

2<br />

Alpha Symp<br />

(ftas_vein)<br />

1<br />

Alpha Symp<br />

(ftas)<br />

1<br />

Gas(SI)<br />

{Rsp}<br />

fes<br />

Rsp<br />

Gas(SI)<br />

Rsp<br />

Peri Circ Rsp<br />

fes<br />

Rep<br />

Rep<br />

Gas(SI)<br />

Peri Circ Rep<br />

fes<br />

Rmp_n<br />

Gas(SI)<br />

Rmp_n<br />

{Rep }<br />

{Rmpn }<br />

Peri Circ Rmp<br />

fes<br />

Vusv<br />

Gas(SI)<br />

Vusv<br />

{Vusv}<br />

Venous Circ Vusv<br />

fes<br />

Vuev<br />

Gas(SI)<br />

Vuev<br />

{Vuev }<br />

Venous Circ Vuev<br />

1<br />

u<br />

{Gbp }<br />

Gbp<br />

{Rmp }<br />

Rmp<br />

1<br />

u<br />

1<br />

u<br />

1<br />

{Rhp }<br />

Rhp u<br />

1<br />

u<br />

TPR _change<br />

Goto<br />

fes<br />

Vumv<br />

Gas(SI)<br />

Venous Circ Vumv<br />

{Vumv }<br />

Vumv<br />

Inputs: ftas Total alpha-sympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI Arousal Index<br />

Outputs: TPR_change TPR change factor<br />

Variables: fasIC -sympathetic initial output after time delay<br />

fas_min Lower limit for the natural log function<br />

Gas_sleep -sympathetic Gain varied with sleep<br />

Gas_sp -sympathetic Gain for splanchnic peripheral resistance<br />

τas_sp -sympathetic time constant<br />

Das_sp Delay -sympathetic time constant<br />

Gas_ep -sympathetic Gain for extra-splanchnic peripheral resistance<br />

τas_ep -sympathetic time constant<br />

Das_ep Delay -sympathetic time constant<br />

Gas_mp -sympathetic Gain for skeletal muscle peripheral resistance<br />

τas_mp -sympathetic time constant<br />

Das_mp Delay -sympathetic time constant<br />

Vusv0 Basal level of unstressed volume of splanchnic venous<br />

circulation<br />

Gas_usv -sympathetic Gain for unstressed volume of splanchnic venous<br />

circulation<br />

τ as_usv -sympathetic time constant<br />

D as_usv Delay -sympathetic time constant


37<br />

Variable Breathing Period (PNEUMA.mdl)<br />

Description<br />

The variable breathing period is controlled from the central neural control system by the<br />

total chemoreflex drive [52]. The inspiratory and expiratory periods of a single breath are<br />

set to be of equal duration. The ventilatory drive is controlled by central and peripheral<br />

chemoreflexes. The combination of ventilatory drive and breathing period determines the<br />

neuromuscular drive.<br />

Reference: Duffin J., R.M. Mohan, P. Vasiliou, R. Stephenson, S. Mahamed, “A model<br />

of the chemoreflex control of breathing in humans: model parameter measurement,”<br />

Respiration Physiology, vol. 120, pp. 13-26, 2000.


38<br />

Simulink Model: Variable respiratory rhythm generator<br />

Breathing_Enable_Signal<br />

Ventilatory Drive (L/sec)<br />

1<br />

D_VENTILATORY<br />

Breathing_Enable_Signal<br />

2<br />

F_breathing<br />

Breathing Frequency<br />

(breaths/minute)<br />

Breathing_Frequency<br />

D_Vent<br />

Breathing Period (sec/breath)<br />

T_breathing<br />

Variable Breathing Period (sec)<br />

ENABLE SIGNAL<br />

Breathing Period<br />

Enable_Breathing_Period<br />

VENTILATORY<br />

DRIVE (chemical)1<br />

Breathing Period<br />

Enable Breathing Signal<br />

Enable Breathing Signal<br />

Breathing Period Basal<br />

Breathing_Period_Basal<br />

3.5<br />

Breathing Period Update<br />

Variable Breathing Period<br />

Variable Breathing Period Reset<br />

Variable Breathing Period (sec)<br />

VBP Variable Breathing Period<br />

Respiratory Rhythm<br />

RESPIRATORY RHYTHM<br />

1<br />

Respiratory Rhythm_Generator


39<br />

Simulink Model: Ventilatory drive breathing frequency/period<br />

1<br />

D_Vent<br />

7500<br />

-C-<br />

u<br />

para<br />

BF<br />

fcn<br />

count<br />

Control_Constant2<br />

Embedded<br />

MATLAB Function<br />

Breathing Frequency (breaths/minute)<br />

1<br />

u<br />

Math<br />

Function<br />

60<br />

Breathing Period (sec)<br />

2<br />

Breathing Period (sec)<br />

T_breathing<br />

Breathing Frequency (breaths/minute)<br />

1<br />

F_breathing<br />

BF_BP Scope1


40<br />

Variable Heart Period (PNEUMA.mdl)<br />

Description<br />

The variable heart period module is modulated by the major reflexes and<br />

cardiorespiratory interactions in a closed loop mode. The sinoatrial node is modeled as a<br />

simple pacemaker, regulated by the parasympathetic and the beta-sympathetic inputs. The<br />

variable heart period is generated from continuous SA output using an<br />

integration/saturation mechanism. The beta-sympathetic branch affects the heart rate<br />

contractility, thus modulating the systolic period. Greater beta-sympathetic tone increases<br />

myocardial elastance and shortens ventricular systole. Each active atria-ventricular<br />

compartment is characterized by a time-varying nonlinear elastance function, describing<br />

the changes in ventricular elastance due to the beta-sympathetic tone input. The diastolic<br />

filling time is the difference between the heart period and systolic period and is thus<br />

controlled indirectly. The activation of the right and left hearts is fully synchronized and<br />

occurs simultaneously.<br />

Reference: Dempsey, J.A., Smith, C.A., Eastwood, P.R., Wilson, C.R., Khoo, M.C.K.<br />

Sleep induced respiratory instabilities. In: Pack, A.I. (Ed.), Sleep Apnea Pathogenesis,<br />

Diagnosis and Treatment. Dekker M., New York. 2002.


41<br />

Simulink Model: Variable Heart Period<br />

1<br />

1<br />

HP_SAnode<br />

1<br />

u<br />

1<br />

s<br />

Threshold Integrated HP<br />

HPin<br />

u1 if(u1


42<br />

Cardiovascular System (PNEUMA.mdl)<br />

Description<br />

The cardiovascular subsystem is capable of simulating the pulsatile nature of the heart<br />

and blood flow through the pulmonary and systemic circulations. Included in the model<br />

are descriptions of atria-ventricular mechanics, hemodynamics of the systemic and<br />

pulmonary circulations, SA node, change of total peripheral resistance and baroreflex.<br />

The inputs for this combined subsystem are the α-sympathetic firing rates, ftas_res,vein,<br />

β-sympathetic firing rates, ftbs, parasympathetic firing rate, ftp, arterial PaCO2, CaO2,<br />

arousal index, AI, sleep-wake state index, SI, and the pleural pressure, Ppl. To<br />

incorporate the effects of pleural pressure changes on the circulatory system we modulate<br />

basal blood pressure values for systemic and pulmonary components in thoracic cavity<br />

and heart. The output is the arterial blood pressure, ABP, heart period, HP, cardiac<br />

output, CO, and blood flow to lung for gas exchange.<br />

Cardiovascular System<br />

Pulmonary<br />

Circulation<br />

R PA<br />

C PC<br />

R PC<br />

C PV<br />

R PV<br />

L PA<br />

p LA<br />

C LA<br />

R SV<br />

R SP<br />

C SV<br />

C SP<br />

R LA<br />

Q RV<br />

R RV<br />

C PA<br />

R EV<br />

R EP<br />

C EV<br />

C EP<br />

C LV<br />

R LV<br />

p LV<br />

C RV<br />

Q MP<br />

Q LV<br />

pRA<br />

R RA R MV R<br />

C MP<br />

MV<br />

C MP<br />

Q BP<br />

C RA<br />

R BV<br />

R<br />

C BP<br />

BV<br />

C BP<br />

QHP<br />

R VC<br />

C VC<br />

RHV<br />

RHP<br />

CHV<br />

C HP<br />

p SP<br />

C SA<br />

L SA<br />

R SA<br />

Systemic<br />

Circulation


43<br />

Reference:<br />

1. Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a<br />

mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

2. Ursino, M., Magosso, E. Acute cardiovascular response to isocapnic hypoxia. I. A<br />

mathematical model. American Journal of Physiology – Heart and Circulatory<br />

Physiology, 279, H149-165, 2000.


44<br />

Simulink Model. Cardiovascular System<br />

2<br />

fcs<br />

2<br />

ftas_vein<br />

1<br />

ftas_res<br />

TPR Change<br />

Alpha Symp (ftas)<br />

Alpha Symp (ftas_vein)<br />

AI (arousal Index )<br />

{Ppa }<br />

{Vpa }<br />

{Pla }<br />

{Pra }<br />

{Vra } {Vla }<br />

{Vrv} {Vlv}<br />

Carotid<br />

Baroreceptor<br />

8<br />

SI Sleep -Wake<br />

State Index<br />

3<br />

ftbs<br />

4<br />

ftp<br />

SI (Sleep Index )<br />

SI Sleep Wake State Index<br />

Beta-Symp (ftbs)<br />

Parasymp (ftp)<br />

HP<br />

HP<br />

HP<br />

{Vpp }<br />

{gPpl }<br />

{Rmpn }<br />

{Gbp }<br />

{Wlv}<br />

{Wrv}<br />

{Vusv}<br />

{Rhp }<br />

{RHeart } {LHeart }<br />

{Vpv} {Vu}<br />

{Vuev } {Vumv }<br />

{Rmp } {Rsp}<br />

Arousal _CardIC<br />

{Rep }<br />

{Vsa}<br />

{Psp}<br />

{Pvc}<br />

SA-node and Autonomic Control<br />

ABP<br />

7<br />

AI<br />

Arousal Index<br />

1<br />

G_pleural<br />

{gPpl }<br />

9<br />

Ppl<br />

Qrv<br />

PULMONARY CIRCULATORY SYSTEM<br />

1<br />

Blood Flow to Lung<br />

for Gas Exchange<br />

Qla<br />

Local Flow Regulation<br />

PaCO2<br />

5<br />

CaO2<br />

6<br />

RIGHT HEART<br />

Qra<br />

Qmp<br />

LEFT HEART<br />

Qlv<br />

Qbp<br />

SYSTEMIC CIRULATORY SYSTEM<br />

Qhp


45<br />

Simulink Model. SA-Node and Autonomic Control<br />

Vusa<br />

Vusp<br />

2<br />

Beta-Symp (ftbs)<br />

f tbs<br />

Gbs(SI)<br />

Emaxlv<br />

{Emaxlv}<br />

{Emaxlv}<br />

{Emaxrv}<br />

Vuep<br />

[Vuev]<br />

[Vusv]<br />

Vupv<br />

Heart Emaxlv<br />

f tbs<br />

Emaxrv<br />

Gbs(SI)<br />

Heart Emaxrv<br />

{Emaxrv}<br />

phi<br />

Right Ventricle<br />

Pmaxrv<br />

Heart Beat<br />

Right Ventricle<br />

{RHeart}<br />

Vupa<br />

Vula<br />

Vupp<br />

{Vu}<br />

3<br />

Parasymp<br />

(ftp)<br />

f tbs<br />

f tp<br />

Gbs(SI)<br />

Gps(SI)<br />

HP<br />

HP phi<br />

phi<br />

phi<br />

Left Ventricle<br />

Pmaxlv<br />

Heart Beat<br />

Left Ventricle<br />

{LHeart}<br />

Vura<br />

SA Node<br />

Vump<br />

Vuhp<br />

Vuhv<br />

Vubp<br />

Vubv<br />

4<br />

Arousal_CardIC<br />

1-u<br />

1<br />

SI Sleep Wake State Index<br />

Gbs_sleep<br />

1<br />

Gpara_sleep<br />

HP_SAnode<br />

RR Interval<br />

Heart_Period<br />

1<br />

HP<br />

[Vumv]<br />

1<br />

Simulink Model. Left Heart<br />

1<br />

Qla<br />

Left Heart<br />

Qla<br />

Vula<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cla<br />

{Vla}<br />

Pla<br />

[gPpl]<br />

{Pla}<br />

Vula (Left Atrium Unstressed Volume)<br />

Vulv (Left Ventricle Unstressed Volume)<br />

Vlv (Left Ventricle Volume)<br />

Vla (Left Atrium Volume)<br />

Pla (Left Atrium Pressure)<br />

Plv (Left Ventricle Pressure)<br />

Qla (Flow into Left Atrium)<br />

Qilv (Flow into Left Ventricle)<br />

Qolv (Flow out of Left Ventricle)<br />

LHeart (Left Ventricle Function)<br />

Qilv<br />

1/Rla<br />

mitral<br />

valve<br />

Plv<br />

[ABP]<br />

[LHeart]<br />

1<br />

s<br />

SV<br />

Qolv<br />

Vulv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

[ABP]<br />

{Vlv}<br />

{Wlv}<br />

Pmaxlv<br />

aortic<br />

valve<br />

Pmax<br />

P<br />

Flow Qolv<br />

Pmaxlv--Psa<br />

----------------------<br />

Rlv<br />

[HP]<br />

1<br />

Qlv<br />

-Kml/sec<br />

to l/min<br />

CO


46<br />

Simulink Model. Right Heart<br />

Right Heart<br />

1<br />

Qirv<br />

Qra<br />

Vura<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cra<br />

{Vra}<br />

Pra<br />

{Pra}<br />

[gPpl]<br />

Vura (Right Atrium Unstressed Volume)<br />

Vurv (Right Ventricle Unstressed Volume)<br />

Vrv (Right Ventricle Volume)<br />

Vra (Right Atrium Volume)<br />

Pra (Right Atrium Pressure)<br />

Prv (Right Ventricle Pressure)<br />

Qra (Flow into Right Atrium)<br />

Qirv (Flow into Right Ventricle)<br />

Qrv (Flow out of Right Ventricle)<br />

LHeart (Left Ventricle Function)<br />

CHF Gain1<br />

Qirv<br />

1/Rra<br />

1<br />

tricuspid<br />

valve<br />

Prv<br />

Switch2<br />

[Ppa]<br />

Pmaxrv<br />

[RHeart]<br />

Qirv<br />

Vurv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

{Vrv}<br />

Pmaxrv<br />

[Ppa]<br />

{Wrv}<br />

pulmonary<br />

valve<br />

Pmax<br />

P<br />

Flow<br />

Pmaxrv--Ppa<br />

----------------------<br />

Rrv<br />

1<br />

Qrv<br />

Product<br />

Simulink Model. Systemic Circulation<br />

Systemic Circulation<br />

1<br />

Qlv<br />

Qlv<br />

Qsa<br />

Systemic<br />

Arteries<br />

Qsa<br />

Qvc<br />

Qmp<br />

Qbp<br />

Qhp<br />

Systemic<br />

Peripheral &<br />

Venous<br />

Circulation<br />

Qvc<br />

2<br />

Qmp<br />

3<br />

Qbp<br />

4<br />

Qhp<br />

Qra<br />

Vena Cava<br />

{Vvc}<br />

1<br />

Qra


47<br />

Simulink Model. Pulmonary Circulation<br />

Pulmonary Circulation<br />

1<br />

Qrv<br />

Qrv<br />

Qpa<br />

Vupa<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cpa<br />

{Vpa}<br />

Ppa<br />

Ppp<br />

{Ppa}<br />

Ppa (Pulmonary Arteries Pressure)<br />

Ppp (Pulmonary Peripheral Pressure)<br />

Ppv (Pulmonary Veins Pressure)<br />

Pla (Left Atrium Pressure)<br />

Qor (Flow from Right Heart)<br />

Qpa (Flow to Pulmonary Aorta)<br />

Qla (Flow to Left Atrium)<br />

Vupa (Pulmonary Arteries Unstressed Volume)<br />

Vupp (Pulmonary Peripheral Unstressed Volume)<br />

Vupv (Pulmonary Veins Unstressed Volume)<br />

Qpa<br />

Rpa<br />

[gPpl]<br />

Qpa<br />

1/Lpa<br />

1<br />

s<br />

Qpp<br />

1<br />

Qpa<br />

Vupp<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

Ppp<br />

{Vpp}<br />

1/Cpp<br />

Ppp<br />

-K-<br />

1/Rpp<br />

ml/liter<br />

Qpv<br />

Vupv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

[gPpl]<br />

1/Cpv<br />

Ppv<br />

{Vpv}<br />

2<br />

Qla<br />

Qpv<br />

Qpv<br />

1/Rpv<br />

Pla<br />

[Pla]<br />

Simulink Model. Local Flow Regulation<br />

4<br />

CaO2<br />

6<br />

Qbp<br />

3<br />

PaCO2<br />

5<br />

Qmp<br />

CaO2<br />

PaCO2<br />

Qbp<br />

Gsleep<br />

CaO2<br />

PaCO2<br />

Qmp<br />

Gsleep<br />

Gbp<br />

Cerebral Circulation<br />

Regulation<br />

Rmp<br />

Muscular Circulation<br />

Regulation<br />

{Gbp}<br />

Brain Peripheral<br />

Resistance<br />

{Rmp}<br />

Muscular Peripheral<br />

Resistance<br />

7<br />

Qhp<br />

1 1-u<br />

AI (arousal Index)<br />

2<br />

SI (Sleep Index)<br />

-K-<br />

Gas_sleep<br />

CaO2<br />

PaCO2<br />

Qhp<br />

Gsleep<br />

1<br />

Rhp<br />

Coronary Circulation<br />

Regulation<br />

Gas(SI)<br />

{Rhp}<br />

Coronary Peripheral<br />

Resistance


48<br />

Neuromuscular Drive (NeuroMuscular.mdl)<br />

Description<br />

Inspiratory muscular activity is produced by neural drive arising from the respiratory<br />

centers. The muscles have to overcome the resistive and elastic forces of the lungs and<br />

chestwall to generate the airflow. The muscular drive is modulated by the<br />

autorhythmicity, chemical and state drives. In the case of the mechanical assisted<br />

ventilation, the internal neural activity will diminish with a period of time. The inputs for<br />

this compartment are the chemical drive, Dchemo, external pressure, Dext and the staterelated<br />

drive, Dstate. The output is the neuromuscular drive, Nt.<br />

Neuromuscular Drive<br />

Chemical Drive, State Drive<br />

Respiratory Autorhythmicity<br />

External Assisted Pressure<br />

Neuromuscular<br />

<br />

Drive Profile<br />

Nt<br />

Neuromuscular Drive Equations:<br />

Respiratory<br />

Autorhythmicity SquareFuncTI ( , TT )<br />

<br />

<br />

TI<br />

N( t)<br />

0<br />

<br />

0<br />

Dtotaldt<br />

0 t TI<br />

TI<br />

t TT


49<br />

Simulink Model: Neuromuscular Drive<br />

Demux<br />

Resp_Rhythm_Generator<br />

on_off_rhythm_test<br />

Mux<br />

1<br />

RespMus Drive<br />

RespMus_blocker<br />

Chemical<br />

Drive<br />

3<br />

1<br />

G_RespMus<br />

20<br />

S_wake<br />

0.3<br />

Nt Save block<br />

Resp Neural Prof ile<br />

State<br />

drive<br />

2<br />

Resp_sig<br />

Mux<br />

2<br />

Total Drive<br />

1<br />

Mechanial<br />

Ventilation<br />

Mux<br />

f(u)<br />

Inputs: Dchemo Chemical Drive<br />

Dext External drive or pressure<br />

Dstate State related Drive<br />

Output: Nt Neural-Muscular Drive<br />

Variables: Gstate State Drive gain<br />

TTmean Breathing Period<br />

TImean Inspiration Period<br />

Inhale Boolean variable for inhalation


50<br />

Respiratory Muscle Activity (Pmus_Flow_Younes.mdl)<br />

Description<br />

During the breathing process, the respiratory muscles have to overcome the resistive and<br />

the elastic forces of the respiratory system. By equating the force generated from the<br />

respiratory muscles with the pressure from the respiratory system, the airflow pattern can<br />

be obtained using a simple mechanics model, and tidal volume can be computed from<br />

the flow. During normal breathing, expiratory muscular activity is minimum. The inputs<br />

are the neural signals, Nt, the upper airway conductance, Cond ua , the expiratory pressure,<br />

Pexp and the external pressure, Pao. The outputs are the airflow, Flow, tidal volume, Vt<br />

and the muscular pressure, Pmus.<br />

Respiratory Muscle Activity<br />

Pexp<br />

Pao<br />

Nt<br />

Cond ua<br />

Inspiratory<br />

Muscular<br />

Pressure<br />

Respiratory<br />

Resistive,<br />

Elastic Force<br />

Vt, Flow, Pmus<br />

Respiratory Mechanics Equations:<br />

P isom = G neuromusc D Total<br />

Y<br />

rs<br />

Yua<br />

<br />

1 ( R R R ) Y<br />

AW LT CW ua<br />

Note: when Yua=0, then Yrs = 0.<br />

.<br />

V<br />

t<br />

<br />

<br />

Vt<br />

/ 0.28VC<br />

isom t 2<br />

t t<br />

P ( t) e V V V / 0.28VC<br />

(0.25 Yrs b Vt ErsYrs Pao Yrs ) 4 b ( Pisom e Yrs VtErsY rs<br />

Pao Yrs)<br />

0.25<br />

Vt<br />

/ 0.28VC<br />

Y b V E Y P Y<br />

2<br />

Pisom<br />

() t e vt<br />

rs t rs rs ao rs<br />

2


51<br />

P<br />

P<br />

P<br />

mus<br />

PL<br />

alv<br />

.<br />

Vt<br />

<br />

<br />

<br />

<br />

P<br />

R<br />

R<br />

isom<br />

CW<br />

LT<br />

e<br />

V<br />

/ 0.28VC<br />

.<br />

t<br />

t<br />

V E<br />

.<br />

V E<br />

t<br />

.<br />

( b<br />

( V b<br />

t<br />

CW<br />

LT<br />

V<br />

V<br />

t<br />

t<br />

V<br />

V<br />

t<br />

t<br />

)<br />

0.25V<br />

)<br />

P<br />

P<br />

mus<br />

PL<br />

.<br />

t<br />

V (0.25 ( ) t / 0.28VC<br />

V<br />

2 V V / 0.28VC<br />

GP t e b GV ) 4 ( ( ) t<br />

tE<br />

GPE<br />

GPAO<br />

b GP t e GVt<br />

E GPE<br />

GPAO)<br />

2<br />

/ 0.28VC<br />

v<br />

0.25GP(<br />

t)<br />

e<br />

Vt b GVt<br />

E GPE<br />

GP<br />

<br />

AO<br />

2<br />

Reference: Younes, M. and Riddle W. A model for the relation between respiratory<br />

neural and mechanical outputs. II. Methods. Journal of Applied Physiology, 51(4): 979-<br />

989, 1981.<br />

Simulink Model: Respiratory Muscle Activity and Flow Generation


52<br />

Inputs: Nt Neural-Muscular Drive<br />

Condua Upper Airway conductance<br />

Pexp Expiratory Pressure<br />

Pao External Pressure<br />

Outputs: Vt Lung Volume<br />

Flow Air flow<br />

Pmus Muscle Pressure<br />

Variables: Flowo Initial air flow<br />

tau_resp Inspiratory muscle response time<br />

delta_t Integration step time<br />

VC Vital Capacity<br />

Vo Initial lung volume<br />

pt_frcIC1 Initial condition for respiratory muscle reaction<br />

pt_frcIC2 Initial condition for respiratory muscle reaction<br />

FlowIC Initial condition for airflow<br />

VtIC Initial condition for lung volume


53<br />

Pleural Pressure(Pleural_Schuessler.mdl)<br />

Description<br />

Pleural pressure influences the arterial blood pressure by increasing the venous return and<br />

decreasing the cardiac output. The combination of the respiratory muscle force and the<br />

static chest wall pressure yields pleural pressure. The inputs are airflow, Flow, muscular<br />

pressure, Pmus and external pressure, Pao. The output is the pleural pressure, Ppl.<br />

Pleural Pressure<br />

Flow<br />

Pmus<br />

Pao<br />

Pleural<br />

Pressure<br />

Mechanisms<br />

Ppl<br />

Pleural Pressure Equation:<br />

PPL<br />

<br />

. .<br />

PAO<br />

K AW K AW V <br />

t V<br />

1, 2,<br />

t<br />

<br />

<br />

.<br />

PE<br />

RCW<br />

Vt<br />

ECWVt<br />

P<br />

<br />

Vt<br />

.<br />

V<br />

( b t 0.25Vt<br />

)<br />

.<br />

( V<br />

Vt<br />

t b )<br />

Reference: Schuessler, T.F., Gottfried, S.B. and Bates, J.H.T. A model of the<br />

spontaneously breathing patient: applications to intrinsic PEEP and work of breathing.<br />

Journal of Applied Physiology, 82(5): 1694-1703, 1997.


54<br />

Simulink Model: Pleural Pressure<br />

Simulink Model: Chest Wall Mechanics<br />

Simulink Model: Airway Pressure<br />

Inputs: Flow Air flow<br />

Pmus Inspiratory muscle pressure<br />

Pao External Pressure<br />

Output: Ppl Pleural Pressure<br />

Variables: Rcw Chest Wall resistance<br />

Ecw Chest Wall elastance<br />

k1,aw Constant for upper airway pressure<br />

k2,aw Constant for upper airway pressure


55<br />

Gas Exchange and Transport (Gas_Exchange.mdl)<br />

Description<br />

This subsystem models gas transport through the dead space, CO 2 and O 2 exchange in the<br />

alveoli, the CO 2 and O 2 dissociation curves, and the transport of CO 2 and O 2 in the blood<br />

to the chemoreceptors along with vascular mixing. Also included in this module are CO2<br />

exchange in the brain compartment, gas exchange in the body tissues, conversion of<br />

blood gases into respiratory drive by the chemoreflexes, and chemoreflex effects on<br />

peripheral vascular resistance. The inputs are airflow, Flow, tidal volume, V t and cardiac<br />

output, CO (in this case, it is synonymous with blood flow, Q. The output is the<br />

chemoreflex-related ventilatory drive, D chem and chemoreflex modulation of total<br />

peripheral resistance, TPR chemo.<br />

Gas Exchange and Transport<br />

Flow<br />

V t<br />

Q<br />

Dead<br />

Space<br />

Brain Region<br />

P bCO2<br />

Central Chemoreceptors<br />

D c<br />

D chemo<br />

P dCO2<br />

P dO2<br />

P aCO2<br />

D p<br />

Gas Exchange at<br />

the Lungs<br />

P ACO2<br />

P AO2<br />

Cardiovascular<br />

Mixing,<br />

Convection and<br />

Dissociation<br />

P aCO2<br />

S aO2<br />

P aCO2<br />

P aO2<br />

Peripheral Chemoreceptors<br />

Flow<br />

Regulation<br />

TPR chemo<br />

C vCO2 C vO2<br />

C aCO2<br />

C aO2<br />

Body Tissues<br />

Part


56<br />

Simulink Model. Gas Exchange<br />

PACO2<br />

Pd5CO2<br />

PbCO2<br />

f(u)<br />

Qb<br />

3<br />

Air Flow<br />

PAO2<br />

Pd5O2<br />

Flow<br />

DEAD SPACE<br />

-C-<br />

Lung -Chemo Volume<br />

Lung-Chemoreceptor Delay Volume<br />

PACO2<br />

PaCO2<br />

1 VARIATION OF CEREBRAL<br />

BLOOD FLOW W / PaCO 2<br />

PaCO 2<br />

Fcn<br />

PaCO 2<br />

Qb<br />

PaCO2<br />

PbCO2<br />

4<br />

PbCO 2<br />

PAO2<br />

Q<br />

Cardiovascular<br />

Mixing and Convection<br />

PaO2<br />

2<br />

PaO 2<br />

SI Sleep Wake State Index<br />

BRAIN COMPARTMENT<br />

CaCO2<br />

2<br />

SI Sleep Wake State Index<br />

CVCO 2<br />

Pd5CO2<br />

PACO2<br />

PACO2<br />

Pd5O2<br />

1<br />

Vt - Tidal Volume<br />

Flow<br />

Vt - Tidal Volume<br />

Q<br />

CVO2<br />

CaO2<br />

PAO2<br />

GAS EXCHANGE<br />

IN THE LUNGS<br />

PAO2<br />

PACO2<br />

PAO2<br />

Dissociation<br />

CaCO2<br />

SAO 2<br />

CaO2<br />

SAO2<br />

3<br />

SAO2<br />

5<br />

CaO 2<br />

0.85<br />

SI Sleep Wake State Index<br />

CaCO2<br />

CaO2<br />

Qt<br />

BODY TISSUES<br />

COMPARTMENT<br />

Blood Flow to Tissues<br />

CvCO 2<br />

CvO 2<br />

4<br />

Blood Flow


57<br />

Dead Space (Dead_Space_Khoo.mdl)<br />

Description<br />

We assume that no gas exchange with blood occurs in the dead space. The inputs are<br />

airflow, Flow, tidal volume, V t and blood flow, Q. The outputs are the CO 2 , P dCO2 and<br />

the O 2 , P dO2 partial pressure for the dead space.<br />

Dead Space<br />

Flow<br />

V t<br />

CO<br />

Dead Space<br />

For CO 2 and O 2<br />

P dCO2<br />

P dO2<br />

Dead Space Equations:<br />

CO 2<br />

Inspiration<br />

.<br />

.<br />

Vd( 1) Pd(1)<br />

CO V[<br />

P<br />

(1) ]<br />

2 I CO<br />

P<br />

2<br />

d CO2<br />

.<br />

.<br />

Vd<br />

( i)<br />

Pd(<br />

i)<br />

CO V[<br />

P ( 1) ( ) ]<br />

2 5<br />

2 d i P<br />

i<br />

CO2<br />

d i CO2<br />

Expiration<br />

.<br />

.<br />

Vd<br />

( i)<br />

Pd(<br />

i)<br />

CO V[<br />

P ( 1) ( ) ] 1 4<br />

2 d i P<br />

i<br />

CO2<br />

d i CO2<br />

.<br />

.<br />

Vd( 5) Pd(5)<br />

CO V[<br />

P<br />

(5) ]<br />

2 A CO<br />

P<br />

2<br />

d CO2<br />

O 2<br />

Inspiration<br />

V<br />

V<br />

. .<br />

d( 1) Pd(1)<br />

O<br />

V[<br />

P<br />

]<br />

2 I P<br />

O d(1)<br />

2 O2<br />

. .<br />

d ( i)<br />

P d ( i)<br />

O<br />

V[<br />

P<br />

]<br />

2<br />

2 d(<br />

i1)<br />

P ( )<br />

i <br />

O d i<br />

2 O2<br />

Expiration<br />

. .<br />

Vd<br />

( i)<br />

P d(<br />

i)<br />

V[<br />

Pd<br />

( i1)<br />

Pd<br />

( i ]<br />

1<br />

i 4<br />

V<br />

O2 O )<br />

2 O2<br />

.<br />

.<br />

d( 5) P d(5)<br />

O<br />

V[<br />

P<br />

]<br />

2 A P<br />

O d(5)<br />

2 O2<br />

5<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


58<br />

Simulink Model: Entire Dead Space<br />

subsystem<br />

Dead Space Compartments for CO 2<br />

Individual Dead Space Compartment for CO 2<br />

Note: Dead Space Compartments for CO 2 and O 2 designs are the same. Only Part of<br />

CO 2 implementations are shown as examples.


59<br />

Inputs: Flow Air flow<br />

V t Lung Volume<br />

CO Cardiac Output<br />

Outputs: P dCO2 Dead Space CO 2 partial pressure<br />

P dO2 Dead Space O 2 partial pressure<br />

Variables:<br />

Dead (i),co2I<br />

C<br />

Dead (i),o2I<br />

C<br />

V d(i)<br />

P I,CO2<br />

P I,O2<br />

Initial condition for i th CO 2 dead space<br />

Initial condition for i th O 2 dead space<br />

i th dead space volume<br />

Inspiratory CO 2 partial pressure<br />

Inspiratory O 2 partial pressure


60<br />

Alveolar Gas Exchange (Lungs_Khoo.mdl)<br />

CO 2 and the O 2 exchange in the lungs are both modeled assuming first-order dynamics.<br />

The rate of exchange is affected by the gas concentration in the blood, the gas partial<br />

pressure and the blood flow rate. The CO 2 storage space is larger than that for O 2 to<br />

account for the larger capacity of lung tissue and lung water for CO 2 . The inputs are the<br />

CO 2 , P dCO2 and O 2 , P dO2 partial pressure for dead space, arterial CO 2 , C aCO2 and O 2 , C aO2<br />

concentration, venous CO 2 , C vCO2 and O 2 , C vO2 concentration, tidal volume, V t , airflow,<br />

Flow and blood flow, Q. The outputs are alveolar CO 2 , P ACO2 and O 2 , P AO2 partial<br />

pressure.<br />

Gas Exchange in the Lungs<br />

P dCO2 , C aCO2<br />

CO 2 exchange in the<br />

Lungs<br />

P ACO2<br />

V t , Flow<br />

C vCO2<br />

Q<br />

P dO2 , C aO2<br />

C vO2<br />

O 2 exchange in<br />

the Lungs<br />

P AO2<br />

Gas Exchange in the Lungs Equations:<br />

Inspiration<br />

V<br />

V<br />

.<br />

.<br />

co P Aco2<br />

[863 Q(<br />

C<br />

2 vco C<br />

2 aco2<br />

)<br />

o<br />

.<br />

Ao<br />

P<br />

[863 Q(<br />

C<br />

.<br />

C<br />

) V<br />

.<br />

) VA(<br />

Pd<br />

(5 co<br />

( P<br />

2 2<br />

vo2<br />

ao2<br />

A d(5)<br />

Expiration<br />

V<br />

V<br />

co2<br />

o<br />

2<br />

.<br />

Aco2<br />

P<br />

.<br />

Ao<br />

P<br />

2<br />

.<br />

[863 Q(<br />

Cvco<br />

[863 Q(<br />

C<br />

.<br />

vo<br />

2<br />

2<br />

C<br />

C<br />

ao<br />

2<br />

aco2<br />

)]<br />

.<br />

)]<br />

o<br />

2<br />

2<br />

P<br />

P<br />

Ao<br />

2<br />

Aco2<br />

)]<br />

)]<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


61<br />

Simulink Model: Gas<br />

Exchange in the Lungs<br />

Simulink Model: Gas Exchange in the Lungs for CO 2<br />

Note: O 2 compartment is the same implementation as CO 2 and it is not shown here.<br />

Inputs: P dCO2 Dead Space CO 2 partial pressure<br />

P dO2 Dead Space O 2 partial pressure<br />

C aCO2 Arterial CO 2 concentration<br />

C aO2 Arterial O 2 concentration<br />

C vCO2 Venous CO 2 concentration<br />

C vO2 Venous O 2 concentration<br />

V t Tidal volume<br />

Flow Airflow<br />

CO Cardiac output<br />

Outputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Variables: V co2 Lungs storage volume for CO 2<br />

V o2 Lungs storage volume for O 2<br />

P Aco2IC Initial condition for Partial CO 2 pressure<br />

P Ao2IC Initial condition for Partial O 2 pressure<br />

s Pulmonary shunt<br />

lambda Concentration / Pressure conversion


62<br />

Cardiovascular Mixing, Convection and Dissociation<br />

(Cardio_Mix_Lange.mdl, Dissociation_Spencer.mdl)<br />

Description<br />

This module includes effects for pulmonary shunt, convection and mixing in the heart<br />

and vasculature, as well as the delay taken for arterial blood to travel from the gas<br />

exchange site to the chemoreceptors. The mixing and convection processes are affected<br />

by the blood flow rate and are modeled assuming a second order dynamic system. Partial<br />

pressures are converted to gas concentration in the blood, using the blood-gas<br />

dissociation equations. The inputs for this compartment are the alveolar CO 2 , P ACO2 and<br />

O 2 , P AO2 partial pressure. The outputs are the arterial CO 2 , P aO2 and O 2 , P aO2 partial<br />

pressure.<br />

Cardiovascular Mixing, Convection and Dissociation<br />

P ACO2<br />

Cardiovascular mixing<br />

and convection for<br />

CO 2<br />

Dissociation<br />

P aCO2<br />

C aCO2<br />

P AO2<br />

Cardiovascular mixing<br />

and convection for O 2<br />

P aO2<br />

Dissociation<br />

C aO2<br />

Cardiovascular Mixing Equations:<br />

..<br />

PaCO<br />

..<br />

Pao<br />

2<br />

2<br />

1<br />

[ P<br />

( T1*<br />

T2)<br />

1<br />

[ P<br />

( T1*<br />

T2)<br />

Ao<br />

ACO<br />

2<br />

2<br />

( t T<br />

( t T<br />

a<br />

a<br />

) ( T1<br />

T2)<br />

P<br />

) ( T1<br />

T2)<br />

P<br />

.<br />

ao<br />

.<br />

aCO<br />

Reference: Lange, R.L., Horgan, J.D., Botticelli, J.T., Tsagaris, T, Carlisle, R.P., and<br />

Kuida.H., Pulmonary to arterial circulatory transfer function: importance in respiratory<br />

control. Journal of Applied Physiology, 21(4):1281-1291, 1966.<br />

2<br />

P<br />

2<br />

ao<br />

P<br />

2<br />

]<br />

aCO<br />

2<br />

]


63<br />

Simulink Model: Cardiovascular Mixing<br />

PACO2<br />

2<br />

4<br />

Q<br />

1<br />

Lung -Chemoreceptor Delay Volume<br />

3<br />

PAO2<br />

CO2 Cardiovascular Mixing<br />

and Convection Effects<br />

PACO2<br />

Q<br />

Lung-Chemoreceptor Delay Volume<br />

Q<br />

PAO2<br />

Lung-Chemoreceptor Delay Volume<br />

O2 Cardiovascular<br />

Mixing and Convection<br />

Effects<br />

PaCO2<br />

PaO2<br />

1<br />

PaCO 2<br />

2<br />

PaO 2<br />

Simulink Model: Cardiovascular Mixing for CO 2<br />

PaCO 2secondIC<br />

T 1+T2<br />

1/(T1*T2)<br />

1<br />

s<br />

1<br />

s<br />

1<br />

PaCO 2<br />

PaCO 2firstIC<br />

PACO2<br />

3<br />

Lung -Chemoreceptor Delay Volume<br />

1<br />

2<br />

Q<br />

Product 1<br />

PACO2_delayIC<br />

PACO2 delay<br />

To<br />

Note: O 2 implementation is the same as CO 2 .<br />

Cardiovascular Convection Equation:<br />

K dp<br />

Ta Q<br />

Inputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Outputs: P aCO2 Arterial CO 2 partial pressure<br />

P aO2 Arterial O 2 partial pressure<br />

Variables: K dp Peripheral Chemoreceptors delay time constant<br />

T 1 Time constant for cardiovascular mixing<br />

T 2 Time constant for cardiovascular mixing<br />

P aO2first IC Initial condition for first order P ao2 system<br />

P aO2second IC Initial condition for second order P ao2 system


64<br />

P aCO2first IC<br />

P aCO2second I<br />

C<br />

P aO2_delay IC<br />

P aco2_delay IC<br />

Initial condition for first order P aco2 system<br />

Initial condition for second order P aco2 system<br />

Initial condition for O 2 convection<br />

Initial condition for CO 2 convection<br />

Dissociation Equations:<br />

C<br />

C<br />

O<br />

F<br />

1/ a<br />

_<br />

1<br />

O2<br />

C<br />

2<br />

O2<br />

1/<br />

a<br />

1<br />

F<br />

1<br />

O2<br />

CO<br />

F<br />

1/ a<br />

_<br />

2<br />

CO2<br />

C<br />

2<br />

CO2<br />

1/<br />

a<br />

1<br />

F<br />

2<br />

CO2<br />

FO<br />

2<br />

<br />

PA<br />

O2<br />

(1 1PA<br />

K1(1<br />

1PA<br />

CO2<br />

CO2<br />

)<br />

)<br />

FCO<br />

2<br />

<br />

PA<br />

CO2<br />

(1 2PA<br />

K2<br />

(1 <br />

2PA<br />

O2<br />

O2<br />

)<br />

)<br />

Reference: Spencer, J.L., Firouztale, E., and Mellins, R.B. “Computational Expressions<br />

For Blood Oxygen and Carbon Dioxide Concentrations”, Annals of <strong>Biomedical</strong><br />

Engineering, Vol 7, pp. 59-66, 1979.<br />

Simulink Model: Dissociation


65<br />

Inputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Outputs: P aCO2 Arterial CO 2 partial pressure<br />

P aO2 Arterial O 2 partial pressure<br />

Z Molar conversion factor<br />

C1 Maximum concentration of hemoglobin-bound<br />

oxygen<br />

C2 Maximum carbon dioxide concentration<br />

a1 Parameter in O 2 dissociation equation<br />

a2 Parameter in CO 2 dissociation equation<br />

alpha1 Parameter in O 2 dissociation equation<br />

alpha2 Parameter in CO 2 dissociation equation<br />

K1 Parameter in O 2 dissociation equation<br />

K2 Parameter in CO 2 dissociation equation<br />

beta1 Parameter in O 2 dissociation equation<br />

beta2 Parameter in CO 2 dissociation equation<br />

S aco2_delay I<br />

C<br />

Initial Condition for Oxygen Saturation Delay


66<br />

Brain Compartment (Brain_Khoo.mdl)<br />

Description<br />

Cerebral flow is highly sensitive to changes of the CO 2 tension in the brain. The brain<br />

CO 2 tension is controlled by the metabolic rate and the blood flow rate. The inputs for<br />

this compartment are the arterial CO 2 partial pressure, P aCO2 and blood flow in the brain<br />

region, Q b . The output is the brain arterial CO 2 partial pressure, P bCO2 .<br />

Brain Tissues and Cerebral Flow<br />

P aCO2<br />

Brain CO 2 interaction<br />

and cerebral flow<br />

P bCO2<br />

Cerebral Flow Equation:<br />

.<br />

SbCO<br />

PbCO<br />

[ MRbCO<br />

2<br />

2<br />

2<br />

.<br />

Q<br />

b<br />

S<br />

CO<br />

2<br />

( P<br />

aCO<br />

2<br />

P<br />

bCO<br />

2<br />

) h]<br />

Reference: Read, D.J.C. and Leigh, J. Blood-brain tissue Pco 2 relationships and<br />

ventilation during rebreathing. Journal of Applied Physiology, 23(1):53-70, 1967.<br />

Simulink Model: Brain Tissues<br />

Brain Tissues Equation:<br />

.<br />

.<br />

. .<br />

.<br />

2<br />

Q b [1<br />

0.03( Pbco<br />

40)] Q 0.03( ) / 0<br />

2 b0<br />

Qb<br />

MRbco<br />

h Q<br />

2 b0<br />

Sco<br />

<br />

2<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


67<br />

Simulink Model: Variation of Cerebral Blood Flow<br />

Input: P aCO2 arterial CO 2 partial pressure<br />

Output: P bCO2 brain arterial CO 2 partial pressure<br />

Variables: MR bco2 Metabolic production rate for CO 2 in the brain<br />

tissue<br />

S co2 Dissociation slope for CO 2 in the blood<br />

S bco2 Dissociation slope for CO 2 in the brain tissue<br />

P bco2IC Initial condition for partial CO 2 pressure from the<br />

brain


68<br />

Body Tissues Compartment (Body_Khoo.mdl)<br />

Description<br />

Gas exchange that occurs outside of the lungs and the brain is modeled as taking place in<br />

a single compartment. The rates of O 2 consumption and CO 2 production are dependent on<br />

the metabolic rate of the body tissues. The inputs are the arterial O 2 and CO 2<br />

concentrations, C aO2 and C aCO2 . The outputs are the venous O 2 and CO 2 concentrations,<br />

C vO2 and C vCO2 .<br />

Body Tissues<br />

C aCO2<br />

C aO2<br />

Body tissues exchange<br />

for O 2 and CO 2<br />

C vCO2<br />

C vO2<br />

Body Tissues Equations:<br />

Vt<br />

Vt<br />

CO<br />

O<br />

2<br />

2<br />

.<br />

VCO<br />

C<br />

.<br />

VO<br />

C<br />

2<br />

2<br />

[ MR<br />

[ MR<br />

O<br />

CO<br />

2<br />

2<br />

.<br />

Q(<br />

C<br />

.<br />

Q(<br />

C<br />

aO<br />

aCO<br />

2<br />

2<br />

C<br />

C<br />

VO<br />

VCO<br />

2<br />

)]<br />

2<br />

)]<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Simulink Model: Body Tissues Simulink Model: Body Tissues for CO 2


69<br />

Note: O 2 compartment is the same as CO 2 compartment<br />

Inputs: C AO2 Arterial O 2 concentration<br />

C ACO2 Alveolar CO 2 partial pressure<br />

Outputs: C vCO2 Arterial CO 2 partial pressure<br />

Cv O2 Oxygen Saturation<br />

Variables: V tco2 Body tissure storage volume for CO 2<br />

V to2 Body tissure storage volume for O 2<br />

MR co2 Metabolic production rate for CO 2<br />

MR o2 Metabolic consumption rate for O 2<br />

C vco2 IC Initial condition for mixed venous CO 2<br />

concentration<br />

C vo2 IC Initial condition for mixed venous O 2<br />

concentration


70<br />

Ventilatory Response (Vent_Drive_Khoo.mdl)<br />

Description<br />

The chemical driven ventilatory response is determined from the central and the<br />

peripheral chemoresponses during sleep-wake state. The central response is driven<br />

primarily by CO 2 while the peripheral response is modulated both by oxygen and carbon<br />

dioxide. The inputs for this compartment are the brain CO 2 partial pressure, P bCO2 ,<br />

arterial CO 2 partial pressure, P aCO2 and oxygen saturation, SA O2 . The output is the<br />

chemical drive for ventilation, D chem .<br />

Ventilatory Response<br />

P bCO2<br />

P aCO2<br />

SA O2<br />

SI<br />

Chemical drive<br />

for ventilation<br />

D Total<br />

Ventilatory Response Equations:<br />

(a) For normal breathing,<br />

D<br />

Total<br />

Y, TH<br />

L<br />

Y<br />

TH<br />

H<br />

<br />

0, OW<br />

zp0<br />

Y X /2 X /2 [ z e u( t)]<br />

p0<br />

<br />

<br />

Total _ O<br />

<br />

X <br />

0, DTotal<br />

_ O<br />

0<br />

(b) For sleep-disordered breathing,<br />

D<br />

t<br />

5D _<br />

2 /(1 e<br />

Total O<br />

) 1, D 0<br />

D<br />

Total Total _ O<br />

where<br />

DTotal _ O<br />

(1 0.4 SI ) ( Dvent Dstate<br />

)<br />

D SI<br />

S<br />

state<br />

wake<br />

Dvent<br />

Dc<br />

Dp<br />

D<br />

D<br />

C<br />

P<br />

G ( P I ), P I<br />

C bCO2 C bCO2<br />

C<br />

<br />

0,<br />

Otherwise<br />

P aCO2 pCO2 pO2 aCO2 pCO2 pO2<br />

G ( P I ) ( I SAO2), P I & I SAO2<br />

<br />

0,<br />

Otherwise


71<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Simulink Model: Ventilatory Drive<br />

SI<br />

2<br />

PbCO 2<br />

Ic<br />

0.075<br />

Gc<br />

1<br />

Gc_blocker<br />

(u>0)*u<br />

1<br />

0.3<br />

S_wake<br />

6<br />

PaCO 2<br />

IpCO 2<br />

0.0063<br />

1<br />

(u>0)*u<br />

4<br />

Sleep /Awake 5<br />

AI<br />

Mux<br />

f(u)<br />

Dchemo<br />

1<br />

1 for up<br />

0 for ground<br />

1<br />

D_Total<br />

IpO 2<br />

Gp<br />

Gp _blocker<br />

Switch<br />

3<br />

SAO2<br />

In1 Out1<br />

Dynamic Drive<br />

Inputs: P bCO2 Brain CO 2 partial pressure<br />

P aCO2 Arterial CO 2 partial pressure<br />

SA O2 Oxygen saturation<br />

SI Sleep-wake state index<br />

Output: D Total chemical drive for ventilation<br />

Variables: I c Central apneic threshold<br />

I pCO2 Peripheral apneic threshold for CO 2<br />

I pO2 Peripheral apneic threshold for O 2<br />

Gc Gain for central chemical drive<br />

Gp Gain for peripheral chemical drive<br />

Factor of wakefulness to sleep<br />

S wake


72<br />

Upper Airway / State Change<br />

(State_UA_Khoo_Borbely.mdl)<br />

Description<br />

Upper airway muscle tone decreases from wakefulness to sleep. This introduces the<br />

possibility of upper airway collapse under certain conditions. The simple model of upper<br />

airway mechanics employed here assumes that upper airway conductance (= reciprocal of<br />

resistance) is directly proportional to the "wakefulness" (or state-related ventilatory)<br />

drive.<br />

Upper Airway and State Change Interactions<br />

Awake / Sleep<br />

State Change<br />

Mechanism<br />

SI<br />

S SWA<br />

S aw/sleep<br />

SI<br />

AI<br />

P frc<br />

Insp<br />

P ao<br />

Upper Airway<br />

Mechanism<br />

Y ua


73<br />

Upper Airway<br />

Description<br />

Upper airway model is driven by pleural pressure, P pl , total respiratory flow, Q total in the<br />

airways, lower airway resistance, R la and sleep-wakefulness state drive, SD. During the<br />

obstruction, the upper airway is narrowed, therefore the upper airway resistance to the<br />

airflow increases. Because the upper airway is entirely blocked during full obstruction,<br />

and its resistance becomes infinitely large, for modeling purposes we prefer to use the<br />

upper airway conductance, Y ua which is the inverse of resistance. We model upper<br />

airway conductance as a function of upper airway opening surface area, A. It is a known<br />

fact that in patients with Obstructive Sleep Apnea the upper airway muscle tone is<br />

reduced and more prone to collapse. Therefore, the upper airway opening surface area<br />

depends on the airway pressure and upper airway compliance, C ua that is in turn a<br />

function of upper airway sensitivity, s ua and also depends on the sleep-wakefulness state<br />

drive SD. The upper airway muscle tone is represented by the upper airway sensitivity. In<br />

wakefulness, the sensitivity remains low, but with the sleep onset the sensitivity<br />

increases. The net effect is to impose an additional load on respiratory effort.<br />

All these mechanisms are inter-dependent on each other and connected to lower<br />

respiratory airways as well in a closed loop mode.<br />

Upper Airway Equations:<br />

<br />

P<br />

<br />

ao P <br />

ua Y <br />

ua V V<br />

ua<br />

where Y ua = 1 / R ua<br />

Pcrit<br />

( SI )<br />

<br />

<br />

Pua<br />

V ua dt V ua R<br />

b<br />

<br />

ua<br />

uaw<br />

0,<br />

Pua<br />

Pcrit<br />

<br />

Yua ( SI ) kua Aua , where Aua A0<br />

ua<br />

(1 Pua / Pcrit ( SI )), Pcrit Pua<br />

0<br />

<br />

A0<br />

ua, Pua<br />

0<br />

P<br />

, SI 0 (awake)<br />

crit _ awake<br />

<br />

2<br />

crit<br />

( ) <br />

crit _ awake<br />

/(1 <br />

ua<br />

( ) ) /(1 ),0 1,<br />

P SI P S SI Sleepawake SI<br />

<br />

Pcrit _ awake<br />

/(1 Sua), SI 1 (sleep)<br />

(A.40)<br />

where Sleepawake is 0 during sleep and 1 during wakefulness, Sua<br />

sensitivity and is directly related to P<br />

crit<br />

.<br />

is upper airway


74<br />

Simulink Model: Upper Airway Mechanism<br />

Enable<br />

C_ua Upper Airway Copmliance<br />

C_ua_Upper_Airway_Compliance<br />

P_ua_Upper Airway Pressure<br />

Y_ua_Upper Airway Conductance<br />

P_crit<br />

P_crit<br />

1<br />

Y_ua<br />

Upper Airway Conductance<br />

Upper Airway Conductance3<br />

C_ua Upper Airway Copmliance<br />

C_ua Upper Airway Compliance<br />

C_ua Upper Airway Copmliance<br />

C_ua Upper Airway Compliance<br />

P_ua Pressure in Upper Airways<br />

Upper_Airway_Compliance<br />

Flow in Upper Airway<br />

SI Sleep Wake State Index<br />

Sleep/awake<br />

Q_ua Upper Airway Flow<br />

Q_ua Upper Airway Flow<br />

SI Sleep Wake State Index<br />

1<br />

SI Sleep Wake State Index<br />

SI Sleep Wake State Index<br />

6<br />

7 Total Ventilatory Drive 2<br />

Sleep/awake<br />

Respiratory Rhythm<br />

P_ua<br />

5<br />

Tidal Volume<br />

SI Sleep Wake State Index<br />

Ventilatory Drive<br />

Respiratory Rhythm<br />

P_pl Pleural Pressure<br />

P_ua vs. P_cirt<br />

Tidal Volume<br />

Q_ua Upper Airway Flow<br />

Q_la Lower Airway Flow<br />

C_ua Upper Airway Copmliance<br />

Y_ua Upper Airway Conductance<br />

P_ua<br />

P_pl Pleural Pressure<br />

P_ua<br />

P_ua Upper Airway Pressure<br />

Q_la Lower Airway Flow<br />

P_pl Pleural Pressure<br />

Q_la Lower Airway Flow<br />

4<br />

Pleural Pressure<br />

Upper Airway Scope<br />

Pressure in Upper Airway<br />

Q_ua Upper Airway Flow<br />

Q_total<br />

Total Respiratory Flow Airways<br />

3<br />

Q_total<br />

1<br />

Q_la Lower Airway Flow<br />

Coefficient 1<br />

Q_total


75<br />

Inputs: SI Sleep-wake State Drive<br />

P pl<br />

Pleural Pressure<br />

Q total<br />

Total Respiratory Flow<br />

R la<br />

Lower Airway Resistance<br />

Sleep/Awake Sleep or Awake state<br />

D Total<br />

Total ventilatory drive<br />

Vt<br />

Tidal volume<br />

Resp_Rhm Respiratory rhythm<br />

Outputs: Y ua Upper Airway Conductance<br />

Variable: S ua Upper Airway sensitivity<br />

R uaw<br />

Upper airway wall resistance<br />

Maximum area of opening in upper airway<br />

A 0ua<br />

K ua<br />

P crit_awake<br />

C ua<br />

P ua<br />

V <br />

ua<br />

Proportionality coefficient between A ua and<br />

Yua;<br />

Critical upper airway pressure in wakefulness<br />

Upper airway compliance<br />

Upper airway pressure<br />

Upper airway flow<br />

V Total flow in airways<br />

Sleep Mechanism<br />

In the sleep mechanism model, the awake/sleep state is determined by a combination of<br />

the circadian rhythm and a sleep propensity index that is correlated with slow wave<br />

activity. The upper circadian threshold marks the point at which sleep onset occurs,<br />

while the lower limit triggers awakening. The circadian rhythm is modeled as a skewed<br />

sine function. The NREM and REM stages during sleep are determined by the slow<br />

wave activity with no activity in REM stage and an overall decaying throughout the night<br />

for the NREM stage. The input for this compartment is the total ventilatory drive, D vent .<br />

The outputs are state drive, SI, awake/sleep state change, S aw/sleep , sleep stage, S SWA and<br />

arousal, D arousal .<br />

Sleep Mechanism Equations:


76<br />

Process C:<br />

CH/ L A[0.97sin 0.22sin(2 ) 0.07sin(3 ) 0.03sin(4 ) 0.001sin(5 )]<br />

X<br />

where A 0.12, X X 0.9 for C , X X 0.15 for C .<br />

Process S:<br />

H H L L<br />

Awake State ( S C ): S( t) 1 [1 S( t t)]<br />

e <br />

L<br />

( 0.055 t /3600)<br />

dS<br />

Sleep State ( S CH<br />

): <br />

gc<br />

SWA<br />

dt<br />

dSWA<br />

SWA<br />

rc<br />

SWA(1 ) fc<br />

SWA REMT ( t) SWA<br />

n( t)<br />

dt<br />

S<br />

REMT ( t) REM 0.2 AI<br />

REM<br />

1 REM<br />

<br />

<br />

0 NREM<br />

1, D<br />

Total<br />

Thre , where Thre=I<br />

vent (0.7+0.3 )<br />

<br />

AI S SWA<br />

0, Otherwise<br />

<br />

<br />

1.2<br />

S<br />

SWA<br />

SWA<br />

<br />

S<br />

SSWA, sleep onset transition<br />

<br />

Dstate<br />

SI SSWAcombined<br />

, sleep<br />

0, awake<br />

1, 0<br />

S<br />

SWAcombined<br />

AI <br />

<br />

0, AI 1<br />

Reference: Khoo, M.C.K. A model-based evaluation of the single-breath CO 2 ventilatory<br />

response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Achermann, P., Borbely, A.A. Mathematical models of sleep regulation. Frontiers in<br />

Bioscience, 8, s683-693, 2003.


77<br />

Simulink Model: Sleep Mechanism<br />

0.9<br />

Circadian _High<br />

Sine Wave<br />

Process Circadian H<br />

Process Circadian H<br />

Circadian High Sine Wave<br />

Mux<br />

f(u)<br />

S between H and L ?<br />

XOR<br />

1-u<br />

Fcn8<br />

0<br />

Sleep Enable<br />

f(u)<br />

Process S<br />

0.15<br />

Circadian _Low<br />

Process Circadian L<br />

S<br />

Mux<br />

u1 if(u1 > 0)<br />

f(u)<br />

-0.0005<br />

1<br />

SI Sleep Wake State Index<br />

Sleep Index<br />

Saturation<br />

If<br />

u1<br />

f(u)<br />

Fcn2<br />

Mux<br />

u1<br />

u2<br />

f(u)<br />

Mux<br />

2.1<br />

Step _Size<br />

2<br />

1/200<br />

1<br />

s<br />

f(u)<br />

Mux<br />

x o<br />

Circadian _Process<br />

Mux<br />

Fcn4<br />

Process Circadian H<br />

Process Circadian L<br />

Process S<br />

REM<br />

REM<br />

SWA<br />

4<br />

REM<br />

3<br />

SWA/S<br />

Airway Cond<br />

Saturation 1<br />

Clock<br />

u2<br />

S<br />

if { }<br />

In1 Out1<br />

SWA_scaled<br />

SWA<br />

If Action<br />

Subsystem<br />

t0<br />

u2<br />

t<br />

t0<br />

u2<br />

t<br />

fcn<br />

fcn<br />

So<br />

Sleep/Awake<br />

AI - Arousal Index<br />

y<br />

y<br />

REM<br />

Diet<br />

In1<br />

Triggered<br />

Subsystem<br />

1-u<br />

Fcn1<br />

5<br />

Diet<br />

Sleep Awake<br />

2<br />

1<br />

AI - Arousal Index<br />

Out1<br />

In1<br />

Saving CircadianProcess<br />

Dstate<br />

S/SWA Combined<br />

SWA/Sleep State<br />

REM


78<br />

Simulink Model: SWA/Sleep State<br />

3<br />

SWA<br />

1<br />

s<br />

f(u)<br />

2<br />

SWA_scaled<br />

2<br />

Sleep /Awake<br />

1<br />

So<br />

-gc<br />

1<br />

s<br />

x o<br />

Product 1<br />

1<br />

S<br />

1.2<br />

Gain<br />

u=1<br />

1<br />

rc<br />

fc<br />

Product 8<br />

1-u<br />

u


79<br />

Metabolic Control (PNEUMA.mdl)<br />

Description<br />

The metabolic control include the circadian regulation of epinephrine secretion,<br />

epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma,<br />

metabolic coupling among tissues and organs provided by insulin and epinephrine, as<br />

well as the effect of insulin on peripheral vascular sympathetic activity. The inputs for<br />

this compartment are the alpha-sympathetic activity, f tas,res , sleep state index, SI, REM<br />

sleep, REM, and diet uptake, DIET. The output is the change in the -sympathetic<br />

response, Δf tas .<br />

Metabolic Control<br />

Metabolic Control Equations:<br />

Glucose Insulin and Free-fatty Acid Dynamics:<br />

dG( t) k u ( t) u ( t)<br />

p G t p G p X t G t p X G p Z t G t p G Z <br />

dt<br />

EG 2int 2ext<br />

1<br />

( )<br />

1 b 4<br />

( ) ( )<br />

4 b b 6<br />

( ) ( )<br />

6 b b<br />

VolG


80<br />

dI()<br />

t<br />

( G( t TDi ) Gh ) t n( I( t) Ib) p5u1( t)<br />

dt<br />

dX () t<br />

p2( X ( t) X<br />

b) p3( I( t) Ib)<br />

dt<br />

dY () t<br />

pF 2( Y ( t) Yb ) pF 3( I( t) Ib)<br />

dt<br />

dF( t) G G kEFu3int ( t) u3ex<br />

t( t)<br />

p7F( t) p7Fb p8Y ( t) F( t) p8Y bFb p9 G( t) F( t)<br />

p9<br />

GbFb<br />

<br />

dt<br />

VolF<br />

dZ()<br />

t<br />

k2( Z( t) Zb) k1( F( t) Fb)<br />

dt<br />

G<br />

0.0055G<br />

where p9 0.00021e <br />

Epinephrine Regulation:<br />

V<br />

<br />

( E( t) E(0))<br />

2<br />

o<br />

E<br />

x, i<br />

Vx, i 1.0 <br />

<br />

x, i<br />

<br />

E<br />

2<br />

xi ,<br />

( E( t) E(0))<br />

<br />

<br />

<br />

<br />

where subscript x = “heart”, “muscle”, “gastrointestinal tract”, “adipose tissue” or “other<br />

tissues”; subscript i = “glucose” (assuming the metabolic pathway: GLC <br />

G6PGLY) or “FFA” (assuming the metabolic pathway: TGL FFA ACoA).<br />

u2int ( t) Vxi<br />

,<br />

( t)<br />

u ( t) V ( t)<br />

3int xi ,<br />

x<br />

x<br />

( t) (0) ( f ) [1.0 exp( t<br />

/ )]<br />

E E E b tas , meta E<br />

Autonomic and Metabolic Interactions (Forward Pathway):<br />

as sleep<br />

( f ) <br />

SIG<br />

tas, meta tas, meta tas, meta 0<br />

REM<br />

_<br />

[ f f 1] (1 b REM ) (1 SI a<br />

)<br />

f f (1 SI G<br />

)<br />

tas, meta tas as _ sleep<br />

f f (1 SI G<br />

)<br />

tas, meta 0 tas,0 as _ sleep<br />

(0) <br />

b<br />

<br />

Ce,0 tas, meta tas, meta 0<br />

E E K ( f f ) (1 SI)<br />

<br />

Autonomic and Metabolic Interactions (Feedback Pathway):<br />

exp[( I Ib) / kisc,<br />

I<br />

] 1<br />

W()<br />

I kas kas ftas, I 0<br />

exp[( I I ) / k ] 1<br />

f W( I) [1 exp( t<br />

/ )]<br />

tas<br />

I<br />

b<br />

isc,<br />

I


81<br />

f f f<br />

tas,<br />

FB tas tas<br />

where f f and f , respectively.<br />

tas tas, res tas,<br />

vein<br />

Reference:<br />

1. Kim, J., Saidel, G. M., and Cabrera, M. E. Multi-scale computational model of<br />

fuel homeostasis during exercise: effect of hormonal control. An Biomed Eng<br />

35(1): 69-90, 2006.<br />

2. Roy, A., and Parker, R. S. Dynamic modeling of free fatty acid, glucose, and<br />

insulin: an extended “Minimal Model”. Diabetes Tech Therapeu 8(6): 617-626,<br />

2006.<br />

Simulink Model: Metabolic Control<br />

Insulin Input<br />

Time Unit : Second<br />

1<br />

Ftas_r<br />

2<br />

SI<br />

3<br />

REM<br />

Ftas_r<br />

SI<br />

REM<br />

Epi_Heart Glucose<br />

Epi_Muscle Glucose<br />

Epi_Heart FFA<br />

Epi _Muscle FFA<br />

Epi_GI FFA<br />

Epinephrine Amount Ce (t)<br />

W_alphaSYMP<br />

Epinephrine Regulation<br />

on Heart and Muscle<br />

Glu _Epi<br />

FFA_Epi<br />

4<br />

DIET<br />

Gain<br />

-K-<br />

-K-<br />

-K-<br />

u1(t) Plasma Glucose Concn , G(t)<br />

u2(t)<br />

Glucose Input<br />

Plasma Insulin Concn , I(t)<br />

u3(t)<br />

Plasma FFA Concn , F(t)<br />

W_alphaSYMP<br />

DeltaFtas<br />

Glucose-Insulin-FFA Minimal Model<br />

1<br />

DeltaFtas<br />

Display<br />

Glu_in(t)<br />

Gclamp _in (t)<br />

G(t)<br />

Gclamp _in(t)<br />

InsPump _in(t)<br />

Glucose Insulin Interventions<br />

Simulink Model: Glucose-Insulin-FFA Dynamics<br />

2<br />

u2(t)<br />

u2(t)<br />

Z(t)<br />

G(t)<br />

X(t)<br />

Glucose Dynamics_LC<br />

1<br />

Plasma<br />

Glucose<br />

Concn ,<br />

G(t)<br />

f(u)<br />

1<br />

s<br />

Integrator 1<br />

1/tao _I<br />

Gain 1<br />

Sum 2<br />

4<br />

DeltaFtas<br />

I(t) X(t)<br />

Remote<br />

Insulin<br />

X(t)<br />

Remote<br />

Compartment<br />

p3 / (s + p2)1<br />

1<br />

u1(t)<br />

G(t)<br />

I(t)<br />

u1(t)<br />

Insulin Dynamics _ B&P<br />

2*Fcn+2<br />

2<br />

Plasma Insulin<br />

Concn , I(t)<br />

4<br />

W_alphaSYMP<br />

In1<br />

Saving deltaFtas_WalphaSYMP<br />

Remote FFA<br />

Z(t)<br />

F(t) Z(t)<br />

Remote<br />

Ins_FFA<br />

pF3 / (s + pF2)<br />

I(t)<br />

Y(t)<br />

G(t)<br />

F(t)<br />

Y (t)<br />

FFA Dynamics_LC<br />

u3(t)<br />

3<br />

u3(t)<br />

3<br />

Plasma FFA<br />

Concn , F(t)


82<br />

Simulink Model: Glucose Dynamics<br />

p1<br />

Gb<br />

1<br />

-K-<br />

u2(t)<br />

1/VolG<br />

p6*Gb *Zb<br />

p4*Xb *Gb<br />

1<br />

s<br />

G(t)<br />

1<br />

G(t)<br />

p 6<br />

2<br />

Z(t)<br />

p4<br />

3<br />

X(t)<br />

Simulink Model: Insulin Dynamics<br />

Gamma<br />

1<br />

G(t)<br />

Thresholding<br />

Operator 1<br />

Gamma<br />

Sum 2<br />

Gb<br />

Random<br />

Number<br />

Ti<br />

Variable<br />

Time Delay<br />

1<br />

s<br />

Int 2<br />

Product<br />

Thresholding<br />

Operator 2<br />

Sum 3<br />

n<br />

1<br />

s<br />

Int 1<br />

Threshold Glucose<br />

Concentration (h)<br />

Ib<br />

1<br />

I(t)<br />

1<br />

Constant<br />

Insulin Destruction<br />

Gain , Nu = 0.36<br />

Sum 1<br />

2<br />

u1(t)<br />

p5


83<br />

Simulink Model: Free-Fatty Acid Dynamics<br />

f(u )<br />

1<br />

G(t)<br />

p9<br />

Gb*Fb<br />

2<br />

Y(t)<br />

p 8<br />

Orinally Design<br />

Yb=0.01 *Xb<br />

p7<br />

-K-<br />

3<br />

u3(t)<br />

1/VolF<br />

p7*Fb<br />

1<br />

s<br />

F(t)<br />

1<br />

F(t)<br />

p8*0.1*Xb *Fb<br />

Simulink Model: Epinephrine Regulations<br />

1<br />

Ftas_r<br />

Ftas _r<br />

Ce(t)<br />

1microMol = 1e6 pMol<br />

2<br />

SI<br />

3<br />

REM<br />

SI<br />

W_alphaSYMP<br />

REM<br />

Epi Dynamics<br />

1e6<br />

7<br />

W_alphaSYMP<br />

6<br />

Epinephrine<br />

Amount Ce (t)<br />

Epi on Heart<br />

Epi on Muscle<br />

Epi on GI<br />

Ce(t)<br />

Epi on adipose<br />

4Fluxes of Epi in Heart<br />

5Fluxes of Epi in Muscle<br />

Epi Modulation<br />

FLux Scope<br />

(micronmol /min )<br />

1<br />

Epi _Heart<br />

Glucose<br />

(micronmol /min )<br />

EPI Modulation<br />

(micronmol /min )<br />

3<br />

Epi _Heart<br />

FFA<br />

2<br />

Epi _Muscle<br />

Glucose<br />

4<br />

Epi _Muscle<br />

FFA<br />

5<br />

Epi _GI<br />

FFA


84<br />

Simulink Model: Epinephrine Dynamics<br />

1<br />

s<br />

Integrator<br />

Gain<br />

1/tao _e<br />

1<br />

Ce (t)<br />

1<br />

Ftas_r<br />

f(u)<br />

Sum 1<br />

9<br />

2<br />

SI<br />

Ftas_REM _Sleeo ABS Fcn<br />

REM factor = 0.4<br />

Ftas,r0_metabolic<br />

Gas factor _M<br />

Terminator<br />

f(u )<br />

Ftas_Ce0*(1-SI*Gas_SleepM )<br />

f(u)<br />

Ftas_Ce0*(1-SI)<br />

f(u)<br />

Ftas_metabolic<br />

f(u)<br />

Ftas_Ce 0<br />

2<br />

W_alphaSYMP<br />

3<br />

REM<br />

f(u)<br />

Ftas_r0_metabolic<br />

f(u)<br />

Ftas_REM _Sleep Fcn<br />

REM factor = 0.4<br />

Ftas,r0_metabolic<br />

Gas factor _M<br />

Neg Power<br />

Saturation<br />

Ce_0<br />

Simulink Model: Epinephrine Regulations on Heart<br />

1<br />

Ce(t)<br />

Heart : GLC_to_G6P<br />

f(u)<br />

Fcn<br />

1<br />

Epi on Heart (Fluxes)<br />

Heart : GLY_to_G6P<br />

-C-<br />

-C-<br />

-C-<br />

-C-<br />

Heart : FFA_to_ACoA<br />

f(u)<br />

Fcn2<br />

Add<br />

2<br />

Epi on Heart (Sum )<br />

Heart : TGL _to_FFA<br />

f(u)<br />

Fcn3


85<br />

Simulink Model: Epinephrine Regulations on Muscle<br />

-C-<br />

1<br />

Ce(t)<br />

-C-<br />

Muscle : GLC_to_G6P<br />

-C-<br />

Muscle : GLY_to_G6P<br />

-C-<br />

Muscle : FFA_to_ACoA<br />

f(u)<br />

Fcn<br />

f(u)<br />

Fcn1<br />

f(u)<br />

Fcn2<br />

1<br />

Epi on Muscle (Fluxes)<br />

2<br />

Epi on Muscle (Sum )<br />

Add<br />

-C-<br />

Muscle : PYR_to_ALA<br />

f(u)<br />

Fcn4<br />

Muscle : TGL _to_FFA<br />

f(u)<br />

Fcn3<br />

Inputs: f tas,res Alpha-sympathetic Response<br />

SI Sleep State Index<br />

REM REM Sleep Signal<br />

DIET Diet Glucose Uptake<br />

Outputs: Δf tas l Change in Alpha-sympathetic Response<br />

Variables: G Plasma Glucose Concentration<br />

I Plasma Insulin Concentration<br />

X Remote Plasma Insulin Concentration<br />

Y Remote Plasma Insulin Concentration that<br />

Promotes FFA Production<br />

F Plasma FFA Concentration<br />

Z Remote Plasma FFA Concentration<br />

E Epinephrine Concentration In Plasma


86<br />

Autonomic and Metabolic Interactions<br />

Description<br />

PNEUMA is extended from previous Version 2.0, an existing integrative model of<br />

respiratory, cardiovascular and sleep-wake state control, to incorporate a sub-model of<br />

glucose-insulin-fatty acid regulation. This computational model is capable of simulating<br />

the complex dynamics of cardiorespiratory control, chemoreflex and state-related control<br />

of breath-to-breath ventilation, state-related and chemoreflex control of upper airway<br />

potency, respiratory and circulatory mechanics, as well as the metabolic control of<br />

glucose insulin dynamics and its interactions with the autonomic control.<br />

The interactions between autonomic and metabolic control include the circadian<br />

regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in<br />

glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs<br />

provided by insulin and epinephrine, as well as the effect of insulin on peripheral<br />

vascular sympathetic activity.<br />

These model simulations provide insight into the relative importance of the various<br />

mechanisms that determine the acute and chronic physiological effects of sleepdisordered<br />

breathing. The model can also be used to investigate the effects of a variety of<br />

interventions, such as different glucose clamps, the intravenous glucose tolerance test and<br />

the application of continuous positive airway pressure on obstructive sleep apnea<br />

subjects. incorporates several key cardiorespiratory reflexes and interactions. The<br />

schematic diagram below shows the overall scheme in which these interactions have been<br />

incorporated.


Scheme 1. Interactions of Autonomic Control and Metabolic Control<br />

87


88<br />

Appendix I: Software Package<br />

Here are all the files for either the whole Pneuma or its individual modules. Please check<br />

to make sure that you have downloaded all those files you need.<br />

Overall PNEUMA Package:<br />

Pneuma<strong>Release</strong>3.zip<br />

Individual Modules:<br />

Cardiovascular System:<br />

Cardiovascular<br />

FILES<br />

PNEUMA.mdl<br />

pneuma_acc.dll<br />

PNEUMA_MAIN_CONTROL_PANEL.fig<br />

PNEUMA_MAIN_CONTROL_PANEL.m<br />

pneuma_variables.m<br />

pneuma_gains.m<br />

constant_parameters_6.fig<br />

constant_parameters_6.m<br />

adjustable_inputs_6.fig<br />

adjustable_inputs_6.m<br />

About.fig<br />

About.m<br />

directory_list.fig<br />

directory_list.m<br />

directory_list_load.m<br />

directory_list_load.fig<br />

directory_list_save.fig<br />

directory_list_save.m<br />

acquire_data.m<br />

acquire_data_save.m<br />

interventions.fig<br />

interventions.m<br />

cond_check.m<br />

release_note.pdf<br />

modaldlg.fig<br />

modaldlg.m<br />

CNS.bmp<br />

cpap2.bmp<br />

CV_pic.bmp<br />

IC_pic.bmp<br />

Metabolic2.bmp<br />

Respiratory_System.bmp<br />

PNEUMA<strong>Release</strong>3_MANUAL.pdf<br />

Cardiovascular.mdl<br />

Cardiovascular_IC.m


89<br />

Autonomic Control:<br />

Autonomic<br />

SA Node:<br />

SA_Ursino<br />

Total Peripheral Resistance change:<br />

TPR_Ursino<br />

Autonomic.mdl<br />

Autonomic_IC.m<br />

SA_Node_Ursino.mdl<br />

SA_Node_Ursino_IC.m<br />

TPR_Ursino.mdl<br />

TPR_Ursino_IC.m<br />

Respiratory System:<br />

Respiratory<br />

NeuroMuscular Profile:<br />

NeuroMuscular<br />

Respiratory Mechanics (whole):<br />

Resp_Mech<br />

Respiratory Mechanics (Pmus):<br />

Pmus_Flow_Younes<br />

Respiratory.mdl<br />

Respiratory_IC.m<br />

NeuroMuscular.mdl<br />

NeuroMuscular_IC.m<br />

Resp_Mech.mdl<br />

Resp_Mech_IC.m<br />

Pmus_Flow_Younes.mdl<br />

Pmus_Flow_Younes_IC.m<br />

Respiratory Mechanics (Pleural Pressure):<br />

Pleural_Schuessler<br />

Pleural_Schuessler.mdl<br />

Pleural_Schuessler_IC.m<br />

State/Upper Airway Interaction:<br />

State_UA_Khoo<br />

Gas Exchange (Overall model):<br />

Gas_Exchange<br />

Gas Exchange (Individual):<br />

Dead_Space_Khoo<br />

Lungs_Khoo<br />

Cardio_Mix_Lange<br />

Dissociation_Spencer<br />

State_UA_Khoo.mdl<br />

State_UA_Khoo_IC.m<br />

Gas_Exchange.mdl<br />

Gas_Exchange_IC.m<br />

Dead_Space_Khoo.mdl<br />

Dead_Space_Khoo_IC.m<br />

Lungs_Khoo.mdl<br />

Lungs_Khoo_IC.m<br />

Cardio_Mix_Lange.mdl<br />

Cardio_Mix_Lange_IC.m<br />

Dissociation_Spencer.mdl<br />

Dissociation_Spencer_IC.m


90<br />

Brain_Khoo<br />

Body_Khoo<br />

Vent_Drive_Khoo<br />

Reflex_Ursino<br />

State_UA_Khoo_Borbely<br />

Brain_Khoo.mdl<br />

Brain_Khoo_IC.m<br />

Body_Khoo.mdl<br />

Body_Khoo_IC.m<br />

Vent_Drive_Khoo.mdl<br />

Vent_Drive_Khoo_IC.m<br />

Reflex_Ursino.mdl<br />

Reflex_Ursino.IC<br />

State_UA_Khoo_Borbely.mdl<br />

State_UA_Khoo_Borbely_IC


91<br />

Appendix II: Saved Data Files<br />

Here is the list of saved data files and the corresponding contents inside the files.<br />

Because of the limitations in Matlab ® that no data file bigger than 1 GB can be loaded,<br />

for the purpose of saving longer time simulation results, the saved data files for each<br />

group of data are segmented into 10 small data files naming from ***1.mat to ***10.mat<br />

where *** is the data file’s name. Each file must be smaller than 1 GB which is large<br />

enough for a 10-week simulation (3600*24*70 second run time) with sample period 0.1<br />

sec. However, if the simulation time is longer than 12-weeks (3600*24*84 second run<br />

time), then the sampling interval (step duration) must be longer than 0.1 second to ensure<br />

each data file is smaller than its limitation 1 GB.<br />

Data File Name<br />

Contents<br />

Autonomic#.mat<br />

BreathingPeriod#.mat<br />

CARDIO#.mat<br />

Autonomic Control Output Data:<br />

ftas_r, ftas_v, ftbs and ftp<br />

Variable Breathing Period Input/Output Data<br />

Cardiovascular System Outputs: Heart Period HP,<br />

Stroke Volume SV, Cardiac Output CO, TPR and<br />

ABP<br />

CARDIORESPIRATORY#.mat Overall Main Outputs of Cardiorepiratory<br />

Interactions: State Drive SI, HR, ABP, Ppl, PaCO2,<br />

SaO2, Breathing Frequency BF, Tidal Volume Vt,<br />

Total Ventilatory Drive D Total<br />

CircadianProcess#.mat<br />

deltaFtas#.mat<br />

GIMM_FFA_SEC#.mat<br />

Nt#.mat<br />

PVleft#.mat<br />

Resp_Rhythm#.mat<br />

stpres#.mat<br />

TPR#.mat<br />

varHeartPeriod#.mat<br />

where # represents number 1 to 10 for each data file.<br />

Circadian Process Data in Sleep Mechanism<br />

Insulin Effects on Peripheral Sympathetic Activity<br />

Metabolic Model’s Inputs and Outputs: G(t), I(t),<br />

F(t), E(t), Gin(t), I(t)_in<br />

Central Respiratory Neural Drive Nt<br />

Pressure and Volume of Left Atria<br />

Respiratory Rhythm Resp_Rhythm<br />

Dynamic Drives for Ventilatory Drive: X, Y and Z<br />

All the resistances and unstress volumes controlled<br />

by alpha-sympathetic activities<br />

Variable Heart Period Input/Output Data


92<br />

Appendix III: Saved/Load Data for Advanced <strong>User</strong>s<br />

For the advanced user, a potentially useful option that is available when PNEUMA V.<strong>3.0</strong><br />

is run using Matlab ® versions higher than R2009a is the ability to load initial states presimulation<br />

and to save final states post-simulation. This allows for a simulation to be<br />

continued starting at the time when the previous simulation run was terminated (assuming<br />

the final states have been saved prior to termination). For example, before clicking on<br />

“RUN” in the Control Panel for 1000 sec simulation, the advanced user can set up the<br />

final state as “yinitial1000” as shown below by opening Configuration in PNEUMA.mdl.<br />

Then, click “Run” to save all the “data” in the workspace when the simulation is stopped<br />

at 1000 sec by using “Save Data” in “File” menu. To load these data for the purpose of<br />

resuming the simulation run from t=1000 sec, modify the configuration as below by<br />

checking the box “Initial State” and change its name into “yinitial1000”; to save the final<br />

state, modify the configuration as below by checking the box “Final States” and change<br />

its name into “yFianl2000” shown as below:


To continuously save/load the states, be sure to provide different names for the initial and<br />

final states. Please note that this feature is only available when using PNEUMA V.<strong>3.0</strong> in<br />

Matlab ® versions higher than R2009a.<br />

93


94<br />

Appendix IV: Overall Parameter Set and Initial<br />

Conditions<br />

Here are the parameters and initial conditions for the complete PNEUMA model. During<br />

simulations and before simulations, some of these parameters and conditions can be<br />

modified. They are also the parameters/variables in the work space that will be saved into<br />

a data file when you select “Save data” under “File”. When you choose “Load data”,<br />

those parameters will be loaded into the workspace and some of these<br />

parameters/variables will be used as initial conditions in the subsequent simulation. All<br />

the saved simulation outputs can be extracted in Matlab ® by the user for further plotting<br />

or analysis.<br />

Parameter Definition Values Units<br />

Cardiovascular System<br />

Resistances<br />

R PA Pulmonary arterial flow resistance 0.023 mmHg*s/mL<br />

R PP Pulmonary peripheral flow resistance 0.0894 mmHg*s/mL<br />

R PV Pulmonary venous flow resistance 0.0056 mmHg*s/mL<br />

R SA Systemic arterial flow resistance 0.06 mmHg*s/mL<br />

R SP Splanchnic peripheral flow resistance 3.307 mmHg*s/mL<br />

R EP Extra-splanchnic peripheral resistance 3.52 mmHg*s/mL<br />

R MPN Skeletal muscle peripheral flow resistance 4.48 mmHg*s/mL<br />

R BPN Cerebral peripheral flow resistance 6.57 mmHg*s/mL<br />

R HPN Coronary peripheral flow resistance 19.71 mmHg*s/mL<br />

R SV Splanchnic venous flow resistance 0.038 mmHg*s/mL<br />

R EV Extra-splanchnic venous resistance 0.04 mmHg*s/mL<br />

R MV Skeletal muscle venous flow resistance 0.05 mmHg*s/mL<br />

R BV Cerebral venous flow resistance 0.075 mmHg*s/mL<br />

R HV Coronary venous flow resistance 0.224 mmHg*s/mL<br />

R VC_0 Nominal vena cava flow resistance 0.025 mmHg*s/mL<br />

R LA Left atrial flow resistance 0.0025 mmHg*s/mL<br />

R RA Right atrial flow resistance 0.0025 mmHg*s/mL<br />

Compliances<br />

C PA Pulmonary arterial compliances 0.76 mL/mmHg<br />

C PP Pulmonary peripheral compliances 5.8 mL/mmHg<br />

C PV Pulmonary venous compliances 25.37 mL/mmHg<br />

C SA Systemic arterial compliances 0.28 mL/mmHg<br />

C SP Splanchnic peripheral compliances 2.05 mL/mmHg<br />

C EP Extra-splanchnic peripheral compliances 0.668 mL/mmHg<br />

C MP Skeletal muscle peripheral compliances 0.525 mL/mmHg


95<br />

C BP Cerebral peripheral compliances 0.358 mL/mmHg<br />

C HP Coronary peripheral compliances 0.119 mL/mmHg<br />

C SV Systemic venous compliances 61.11 mL/mmHg<br />

C EV Extra-splanchnic venous compliances 20 mL/mmHg<br />

C MV Skeletal muscle venous compliances 15.71 mL/mmHg<br />

C BV Cerebral venous compliances 10.71 mL/mmHg<br />

C HV Coronary venous compliances 3.57 mL/mmHg<br />

C LA Left atrial compliances 19.23 mL/mmHg<br />

C RA Right atrial compliances 31.25 mL/mmHg<br />

Inertances<br />

L PA Pulmonary arterial inertance 0.00018 mmHg*s 2 /mL<br />

L SA Systemic arterial inertance 0.00022 mmHg*s 2 /mL<br />

Unstressed Volume<br />

V UPA Pulmonary arterial unstressed volume 0 mL<br />

V UPP Pulmonary peripheral unstressed volume 123 mL<br />

V UPV Pulmonary venous unstressed volume 120 mL<br />

V USA Systemic arterial unstressed volume 0 mL<br />

V USP Splanchnic peripheral unstressed volume 274.4 mL<br />

V UEP Extra-splanchnic peripheral unstressed volume 134.64 mL<br />

V UMP Skeletal muscle peripheral unstressed volume 105.8 mL<br />

V UBP Cerebral peripheral unstressed volume 72.13 mL<br />

V UHP Coronary peripheral unstressed volume 24 mL<br />

V USV Splanchnic venous unstressed volume 1121 mL<br />

V UEV Extra-splanchnic venous unstressed volume 550 mL<br />

V UMV Skeletal muscle venous unstressed volume 432.14 mL<br />

V UBV Cerebral venous unstressed volume 294.64 mL<br />

V UHV Coronary venous unstressed volume 98.21 mL<br />

V VC_0 Vena cava unstressed volume 130 mL<br />

V ULA Left atrial unstressed volume 25 mL<br />

V URA Right atrial unstressed volume 25 mL<br />

V ULV Left ventricular unstressed volume 16.77 mL<br />

V URV Right ventricular unstressed volume 40.88 mL<br />

Vena Cava<br />

Kr_vc Gain for vena cava flow resistance 0.001 mmHg*s/mL<br />

Vvc_max Maximum volume of vena cava 350 mL<br />

Vvc_min Minimum volume of vena cava 50 mL<br />

D 1 Parameter for P-V curve of vena cava 0.3855 mmHg<br />

D 2 Parameter for P-V curve of vena cava -5 mmHg<br />

K 1 _vc Parameter for P-V curve of vena cava 0.15 mmHg


96<br />

K 2 _vc Parameter for P-V curve of vena cava 0.4 mmHg<br />

Respiratory System<br />

Pleural Pressure and Alveolar Pressure<br />

Rcw Chest wall resistance 1.03 cmH 2 O*s/L<br />

R LT Lung transmural resistance 1.69 cmH 2 O *s/L<br />

Raw Airway wall resistance 1.016 cmH 2 O *s/L<br />

Ecw Chest wall elastance 5 cmH 2 O /L<br />

E LT Lung transmural elastance 5 cmH 2 O /L<br />

k 1,aw Constant for upper airway pressure 1.85 cmH 2 O *s 2 / L 2<br />

k 2,aw Constant for upper airway pressure 0.43 cmH 2 O *s 2 / L 2<br />

Gas Exchange and Transport<br />

Dead Space<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.562 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.674 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.813 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 40.006 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.36 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.23 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.05 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 103.8 L<br />

V d(i) i th dead space volume (i={1,..4} 0.03 L<br />

P I,CO2 Inspiratory CO 2 partial pressure 0 Torr<br />

P I,O2 Inspiratory O 2 partial pressure 150 Torr<br />

V t ' Respiratory flow variable L/sec<br />

V t Tidal Volume variable L<br />

P dO2 Dead space O 2 partial pressure variable Torr<br />

P dCO2 Dead space CO 2 partial pressure variable Torr<br />

Alveolar Gas Exchange<br />

V co2, V Lco2 Lungs storage volume for CO 2 3 L<br />

V o2, V Lo2 Lungs storage volume for O 2 2.5 L<br />

P Aco2IC Initial condition for Partial CO 2 pressure 40.943 Torr<br />

P Ao2IC Initial condition for Partial O 2 pressure 102.52 Torr<br />

P Ao2IC Initial condition for Partial O 2 pressure 102.52 Torr<br />

P ACO2 Alveolar CO 2 partial pressure variable Torr<br />

P ACO2 Alveolar O 2 partial pressure variable Torr<br />

P alv Alveolar partial gas pressure variable Torr<br />

Q Blood flow variable L/sec<br />

Cardiovascular Transport<br />

tau chemo Peripheral chemoreceptors delay time constant 2 s


97<br />

T 1 Time constant for cardiovascular mixing 1 s<br />

T 2 Time constant for cardiovascular mixing 2 s<br />

T a Lung to chemoreceptor circulation delay variable s<br />

LCTV 0 Lung to chemoreceptor transportation volume<br />

0.588 liter<br />

constant<br />

P aO2first IC Initial condition for first order P ao2 system 0.3557 Torr<br />

P aO2second IC Initial condition for second order P ao2 system 103.14 Torr<br />

P aCO2first IC Initial condition for first order P aco2 system -0.2465 Torr<br />

P aCO2second IC Initial condition for second order P aco2 system 40.393 Torr<br />

P aO2_delay IC Initial condition for O 2 convection 103.12 Torr<br />

P aco2_delay IC Initial condition for CO 2 convection 40.445 Torr<br />

P aCO2 CO 2 partial pressure variable Torr<br />

P aO2 O 2 partial pressure variable Torr<br />

Cardiovascular Dissociation<br />

C1<br />

Maximum concentration of hemoglobin-bound<br />

9 mL/mL<br />

oxygen<br />

C2 Maximum carbon dioxide concentration 87 mL/mL<br />

a1 Parameter in O 2 dissociation equation 0.3836 dimensionless<br />

a2 Parameter in CO 2 dissociation equation 1.819 dimensionless<br />

alpha1 Parameter in O 2 dissociation equation 0.02598 dimensionless<br />

alpha2 Parameter in CO 2 dissociation equation 0.05591 dimensionless<br />

K1 Parameter in O 2 dissociation equation 13 dimensionless<br />

K2 Parameter in CO 2 dissociation equation 194.4 dimensionless<br />

beta1 Parameter in O 2 dissociation equation 0.012275 dimensionless<br />

beta2 Parameter in CO 2 dissociation equation 0.03255 dimensionless<br />

S ao2_delay IC Initial Condition for Oxygen Saturation Delay 98.92 sec<br />

Brain Compartment<br />

MR bco2 Metabolic production rate for CO 2 in the brain 0.0517 1/s STPD<br />

tissue<br />

S co2 Dissociation slope for CO 2 in the blood 0.0043 mL/(mL*Torr)<br />

S bco2 Dissociation slope for CO 2 in the brain tissue 0.36 mL*100g -<br />

/Torr<br />

P bco2IC<br />

Initial condition for partial CO 2 pressure from the 48.538 Torr<br />

brain<br />

Body Tissues Compartment<br />

V tco2 Body tissue storage volume for CO 2 6 L<br />

V to2 Body tissue storage volume for O 2 7.7 L<br />

MR co2 Metabolic production rate for CO 2 0.0033 1/s STPD<br />

MR o2 Metabolic consumption rate for O 2 0.0038 1/s STPD<br />

C vco2 IC Initial condition for mixed venous CO 2<br />

0.5247 mL/mL<br />

concentration<br />

C vo2 IC Initial condition for mixed venous O 2<br />

0.1639 mL/mL<br />

concentration<br />

Upper Airway Model


98<br />

R uaw Upper airway wall resistance 1000000 cmH 2 O*s/L<br />

A 0ua Maximum area of opening in upper airway 1 a.u.<br />

K ua Proportionality coefficient between A ua and Yua; 1 L/(s*cmH 2 O)<br />

P crit_awake Critical upper airway pressure in wakefulness -40 cmH 2 O<br />

S ua Upper airway sensitivity to collapse 0.01 a.u.<br />

C ua Upper airway compliance variable L/cmH 2 O<br />

P ua Upper airway pressure variable cmH 2 O<br />

V Upper airway flow variable cmH 2 O<br />

ua<br />

V Total flow in airways variable cmH 2 O<br />

Respiratory Muscle Activity<br />

FlowIC Initial air flow 0 L/s<br />

VC Vital Capacity 5 L<br />

Pt_frcIC1 Initial condition for respiratory muscle reaction 0 spikes/s<br />

Pt_frcIC2 Initial condition for respiratory muscle reaction 0 spikes/s<br />

FlowIC Initial condition for airflow 0 L/s<br />

VtIC Initial condition for lung volume 0 L<br />

Central Neural Control<br />

Carotid Baroreceptors<br />

Pn Center pressure for sigmoidal function 92 mmHg<br />

Kcs Parameter for sigmoidal slope control 11.758 mmHG<br />

Pn_sleep Parameter for sleep effects 0 mmHg<br />

Kcs_sleep Parameter for sleep effect 0 mmHG<br />

fcs,min Lower threshold for sigmoidal function 2.52 spikes/s<br />

fcs,max Upper saturation for sigmoidal function 47.78 spikes/s<br />

τ Z Time constant for baroreflex 6.37 s<br />

τ P Time constant for baroreflex 2.076 s<br />

Ventilatory Response<br />

I c Central apneic threshold 45 dimensionless<br />

I pCO2 Peripheral apneic threshold for CO 2 38 dimensionless<br />

I pO2 Peripheral apneic threshold for O 2 102.4 dimensionless<br />

Gc Gain for central chemical drive 0.075 dimensionless<br />

Gp Gain for peripheral chemical drive 0.0063 dimensionless<br />

S wake Factor of wakefulness to sleep 0.3 dimensionless<br />

Chemoreflex Control of Variable Respiratory Rhythm<br />

F b Basal breathing frequency 12.5 Breath<br />

/min<br />

V b Basal ventilation 6.7 L/min<br />

T D Chemoreflex drive threshold 1539 mL<br />

T P Chemoreflex drive threshold 2879 mL


99<br />

S1 F Scaling factor 0.00518 dimensionless<br />

S1 V Scaling factor 0.024 dimensionless<br />

S2 F Scaling factor 0.0105 dimensionless<br />

S2 V Scaling factor 0.0367 dimensionless<br />

Chemoreflex<br />

fchemo,max Upper saturation for the sigmoidal function 12.3 spikes/s<br />

fchemo,min Lower saturation for the sigmoidal function 0.835 spikes/s<br />

fchemo_control Basal level for the chemoreflex 1.4 dimensionless<br />

Kchemo Slope control parameter for the sigmoidal function 29.27 mmHg<br />

K H Constant value for the static response 3 dimensionless<br />

τ chemo Time constant for the chemoreflex 2 s<br />

Lung Stretch Receptors Reflex<br />

Gls Constant gain 23.29 spikes/sec/liter<br />

τls Time constant 2 sec<br />

Offsets<br />

X sa<br />

Saturation for the offset of α-sympathetic activity 6 Torr<br />

on peripheral resistance<br />

θ san<br />

Nominal level of offset of α-sympathetic activity 13.2 spikes/sec<br />

on peripheral resistance<br />

PO2n sa Central point for the sigmoidal function 30 Torr<br />

kisc sa<br />

Parameter of α-sympathetic activity on peripheral 2 dimensionless<br />

resistance<br />

X sb Saturation for the offset of -sympathetic activity 21.2 Torr<br />

θ sbn Nominal level of offset of -sympathetic activity 3.6 spikes/sec<br />

PO2n sb Central point for the sigmoidal function 45 Torr<br />

kisc sb Parameter of -sympathetic activity 4 dimensionless<br />

X sp<br />

Saturation for the offset of α-sympathetic activity 6 dimensionless<br />

on peripheral resistance<br />

θ spn<br />

Nominal level of offset of α-sympathetic activity 13.2 spikes/sec<br />

on peripheral resistance<br />

PO2n sp Central point for the sigmoidal function 30 Torr<br />

kisc sp<br />

Parameter of α-sympathetic activity on unstressed 2 dimensionless<br />

volume of veins<br />

τ isc Time constant for oxygen response 30 s<br />

τ cc Time constant for carbon dioxide response 20 s<br />

Autonomic Control<br />

fcs,0<br />

Center point for the sigmoidal function for<br />

25 spikes/s<br />

parasympathetic<br />

fpara,0 Lower saturation of the parasympathetic<br />

3.2 spikes/s<br />

exponential decay function<br />

fpara, Upper limit of the parasympathetic exponential<br />

6.3 spikes/s<br />

decay function<br />

kp Slope control parameter for the sigmoidal function 7.06 dimensionless<br />

G_RSA,p Central RSA gain for parasympathetic response 0.4 dimensionless<br />

Gchemo,p Chemoreflex gain for parasympathetic response 0.03 dimensionless


100<br />

Glung,p Lung stretch receptor reflex gain for<br />

0.24 dimensionless<br />

parasympathetic response<br />

f s,0<br />

Upper limit of the sympathetic exponential decay 16.11 spikes/s<br />

function<br />

f s,<br />

Lower saturation of the sympathetic exponential 2.1 spikes/s<br />

decay function<br />

Ks Constant for the exponential function 0.07 s<br />

G_RSA,bs Central RSA gain for -sympathetic response 0.4 dimensionless<br />

Gchemo,bs Chemoreflex gain for -sympathetic response 2.8 dimensionless<br />

Glung,bs Lung stretch receptor reflex gain for -sympathetic 0.24 dimensionless<br />

G_RSA,as Central RSA gain for -sympathetic response 0.4 dimensionless<br />

Gchemo,as Chemoreflex gain for -sympathetic response 4 dimensionless<br />

Glung,as Lung stretch receptor reflex gain for -sympathetic 0.34 dimensionless<br />

-Sympathetic Response<br />

ftbsIC -sympathetic initial output after time delay 3.8576 spikes/s<br />

ftbs_min Lower limit for the natural log function 2.66 spikes/s<br />

Gbs -sympathetic Gain varied with sleep drive -0.13 dimensionless<br />

Gbs_sleep -sympathetic sleep gain factor 0.2 dimensionless<br />

τbs -sympathetic time constant 2 s<br />

Dbs Delay for -sympathetic time constant 2 s<br />

Parasympathetic Response<br />

ftpIC Para sympathetic initial output after time delay 4.2748 spikes/s<br />

Gpara Parasympathetic Gain varied with sleep drive 0.09 dimensionless<br />

Gpara_sleep Parasympathetic sleep gain factor 0.2 dimensionless<br />

τpara Parasympathetic time constant 1.5 s<br />

Dbs Delay for parasympathetic time constant 0.2 s<br />

Neuromuscular Drive<br />

Inhale Boolean variable for inhalation 1 dimensionless<br />

Sino-Atrial Node<br />

HPbasal Basal value for HP for denervated heart 0.58 s<br />

Maximum End-systolic Elastance<br />

Glv Elastance gain for left ventricle 0.475 mmHg<br />

/ml/v<br />

D lv Delay for elastance of left ventricle 2 s<br />

τ lv Time constant for elastance of left ventricle 8 s<br />

Emax0_lv Basal level of maximum end-systolic elastance of<br />

left ventricle<br />

2.392 mmHg<br />

/ml<br />

Grv Elastance gain for right ventricle 0.282 mmHg<br />

/ml/v<br />

D rv Delay for elastance of right ventricle 2 s<br />

τ rv Time constant for elastance of right ventricle 8 s<br />

Emax0_rv<br />

Basal level of maximum end-systolic elastance of<br />

right ventricle<br />

1.412 mmHg<br />

/ml<br />

-Sympathetic Control of Peripheral Resistance


101<br />

fasIC -sympathetic initial output after time delay 34.793 spikes/s<br />

fas_min Lower limit for the natural log function 2.66 spikes/s<br />

Gas_sleep -sympathetic Gain varied with sleep 0.3 dimensionless<br />

Gas_sp -sympathetic Gain for splanchnic peripheral<br />

0.695 dimensionless<br />

resistance<br />

τas_sp -sympathetic time constant 2 s<br />

Das_sp Delay -sympathetic time constant 2 s<br />

Gas_ep -sympathetic Gain for extra-splanchnic peripheral 1.94 dimensionless<br />

resistance<br />

τas_ep -sympathetic time constant 2 s<br />

Das_ep Delay -sympathetic time constant 2 s<br />

Gas_mp -sympathetic Gain for skeletal muscle peripheral 2.47 dimensionless<br />

resistance<br />

τas_mp -sympathetic time constant 2 s<br />

Das_mp Delay -sympathetic time constant 2 s<br />

Vusv0 Basal level of unstressed volume of splanchnic 1435.4 ml<br />

venous circulation<br />

Gas_usv -sympathetic Gain for unstressed volume of<br />

-265.4 ml/v<br />

splanchnic venous circulation<br />

τ as_usv -sympathetic time constant 20 s<br />

D as_usv Delay -sympathetic time constant 5 s<br />

Local Blood Flow Control of Peripheral Resistance<br />

P aCO2_n Nominal arterial CO 2 partial pressure i 40 Torr<br />

CvO2n_b Nominal venous O 2 concentration in cerebral<br />

0.14 dimensionless<br />

peripheral circulation<br />

CvO2n_m Nominal venous O 2 concentration in skeletal<br />

0.155 dimensionless<br />

muscle peripheral circulation<br />

CvO2n_h Nominal venous O 2 concentration in coronary<br />

0.11 dimensionless<br />

peripheral circulation<br />

Tau_CO 2 Time constant for peripheral CO 2 response 20 s<br />

Tau_O 2 Time constant for peripheral O 2 response 10 s<br />

A Parameter for flow regulation equation 20.9 dimensionless<br />

B Parameter for flow regulation equation 92.8 dimensionless<br />

C Parameter for flow regulation equation 10570 dimensionless<br />

G O2_b<br />

G O2_h<br />

G O2_m<br />

Gain of local O2 response on cerebral vascular<br />

bed<br />

10 dimensionless<br />

Gain of local O2 response on coronary vascular 35 dimensionless<br />

bed<br />

Gain of local O2 response on muscular vascular 30 dimensionless<br />

bed<br />

Sleep Mechanism<br />

A Amplitude of the skewed sine function 20.9 dimensionless<br />

X H Bias of the skewed sine function for process CH 0.9 dimensionless<br />

X L Bias of the skewed sine function for process CL 0.15 dimensionless<br />

gc Constant for sleep decaying 0.2/60 dimensionless<br />

rc Rising rate of slow wave activity 0.4/60 dimensionless<br />

fc Falling rate of slow wave activity 0.008/60 dimensionless


102<br />

SWAo Initial value of sleep wake activity 0.007 dimensionless<br />

Interlink between Metabolic Model and Autonomic Control<br />

K Ce,0 Gain for basal level of epinephrine in plasma 9 dimension-less<br />

b REM<br />

Gain for REM sleep effect from autonomic control 0.4 dimension-less<br />

on epinephrine regulations<br />

a w<br />

Parameter from autonomic control on epinephrine 0.6 dimension-less<br />

regulations<br />

f tas,0 basal firing rate of sympathetic activity 2.1 1/s<br />

K as<br />

f tas.I0<br />

K isc,I<br />

τ I<br />

Gain of metabolic feedback to change of<br />

sympathetic activities<br />

Parameter of metabolic feedback to change of<br />

sympathetic activities<br />

Parameter of metabolic feedback to change of<br />

sympathetic activities<br />

Time constant of metabolic feedback to change of<br />

sympathetic activities<br />

Plasma Glucose Dynamics<br />

2 dimension-less<br />

1 dimension-less<br />

20 dimension-less<br />

30 min<br />

P 1 Utilization rate for plasma glucose concentration 0.068 1/min<br />

P 4<br />

Utilization rate for plasma glucose concentration<br />

under the influence of remote insulin<br />

1.3 mL/min<br />

/µU<br />

P 6<br />

Production rate for remote plasma glucose<br />

concentration that promotes FFA<br />

0.00006 L/min<br />

/µmol<br />

G b Basal level of plasma glucose concentration 124.8 mg/dL<br />

Vol G Glucose distribution space 117 dL<br />

K EG Gain from epinephrine to glucose uptake 0.04 dimension-less<br />

Plasma Insulin Dynamics<br />

n Utilization rate for plasma insulin concentration 0.142 1/min<br />

P 5 Factor for insulin inputs 0.000568 1/mL<br />

I b Basal level of plasma insulin concentration 16.6 µU/mL<br />

P 3 Production rate for remote insulin concentration 0.000012 1/min<br />

Insulin sensitivity factor 0.038 µU/mL/min 2 per<br />

mg/dL<br />

T Di Variable time delay 5±3 sec<br />

G h Threshold of plasma glucose concentration 125 mg/dL<br />

P 2 Utilization rate for remote insulin concentration 0.037 1/min<br />

P F2<br />

Utilization rate for remote insulin concentration 0.17 1/min<br />

that promotes FFA<br />

P F3<br />

Production rate for remote insulin concentration 0.00001 1/min<br />

that promotes FFA<br />

X b Basal level of remote plasma insulin concentration 0.08125 µU/mL<br />

Y b<br />

Basal level of remote plasma insulin concentration<br />

that promotes FFA production<br />

Plasma Free Fatty Acid Dynamics<br />

0.008125 µU/mL<br />

P 7 Utilization rate for plasma FFA concentration 0.03 1/min<br />

P 8<br />

Utilization rate for remote plasma insulin involved 4.5 mL/<br />

FFA concentration<br />

min/ µU<br />

F b Basal level of plasma FFA concentration 380 µmol/L<br />

Z b Basal level of remote plasma FFA concentration 190 µmol/L


103<br />

k 2 Utilization rate for remote FFA concentration 0.03 1/min<br />

k 1 Production rate for remote FFA concentration 0.02 1/min<br />

Vol F FFA distribution space 11.7 L<br />

K EF Gain from epinephrine to FFA uptake 0.01 dimension-less<br />

Epinephrine Regulation<br />

E b Basal level of epinephrine concentration in plasma 198 pM<br />

τ E Time constant for epinephrine regulation 30 min<br />

Δ Epinephrine regulation factor for metabolic fluxes 1e6 dimension-less<br />

V 0_GLC_Heart Maximum rate coefficient in heart 88 µmol/min<br />

λ E_GLC_Heart Epinephrine regulated flux parameter in heart 3 dimension-less<br />

α E_GLC_Heart Epinephrine regulated flux parameter in heart 1000 pM<br />

V 0_GLY_Heart Maximum rate coefficient in heart 320 µmol/min<br />

λ E_GLY_Heart Epinephrine regulated flux parameter in heart 0 dimension-less<br />

α E_GLY_Heart Epinephrine regulated flux parameter in heart 0 pM<br />

V 0_FFA_Heart Maximum rate coefficient in heart 280 µmol/min<br />

λ E_FFA_Heart Epinephrine regulated flux parameter in heart 2 dimension-less<br />

α E_FFA_Heart Epinephrine regulated flux parameter in heart 447.2 pM<br />

V 0_TGL_Heart Maximum rate coefficient in heart 8 µmol/min<br />

λ E_TGL_Heart Epinephrine regulated flux parameter in heart 0.5 dimension-less<br />

α E_TGL_Heart Epinephrine regulated flux parameter in heart 1000 pM<br />

V 0_GLC_Muscle Maximum rate coefficient in muscle 398 µmol/min<br />

λ E_GLC_Muscle Epinephrine regulated flux parameter in muscle 18 dimension-less<br />

α E_GLC_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_GLY_Muscle Maximum rate coefficient in muscle 1000 µmol/min<br />

λ E_GLY_Muscle Epinephrine regulated flux parameter in muscle 0.3 dimension-less<br />

α E_GLY_Muscle Epinephrine regulated flux parameter in muscle 10 pM<br />

V 0_FFA_Muscle Maximum rate coefficient in muscle 701 µmol/min<br />

λ E_FFA_Muscle Epinephrine regulated flux parameter in muscle 9 dimension-less<br />

α E_FFA_Muscle Epinephrine regulated flux parameter in muscle 447.2 pM<br />

V 0_PYR_Mus cle Maximum rate coefficient in muscle 80 µmol/min<br />

λ E_PYR_Muscle Epinephrine regulated flux parameter in muscle 2 dimension-less<br />

α E_PYR_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_TGL_Muscle Maximum rate coefficient in muscle 260 µmol/min<br />

λ E_TGL_Muscle Epinephrine regulated flux parameter in muscle 2.5 dimension-less<br />

α E_TGL_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_TGL_GI Maximum rate coefficient in GI tract 80 µmol/min<br />

λ E_TGL_GI Epinephrine regulated flux parameter in GI tract 2 dimension-less<br />

α E_TGL_GI Epinephrine regulated flux parameter in GI tract 1000 pM<br />

V 0_TGL_adipose Maximum rate coefficient in adipose 190 µmol/min


104<br />

λ E_TGL_ adipose Epinephrine regulated flux parameter in adipose 2 dimension-less<br />

α E_TGL_ adipose Epinephrine regulated flux parameter in adipose 1000 pM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!