31.03.2014 Views

Observations of molecules in high redshift galaxies

Observations of molecules in high redshift galaxies

Observations of molecules in high redshift galaxies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Observations</strong> <strong>of</strong> <strong>molecules</strong> <strong>in</strong><br />

<strong>high</strong> <strong>redshift</strong> <strong>galaxies</strong><br />

Kirsten K. Knudsen<br />

Chalmers University <strong>of</strong> Technology<br />

Onsala Space Observatory<br />

Outl<strong>in</strong>e: Small <strong>molecules</strong>; Large <strong>molecules</strong><br />

Excitation ; In the ALMA perspective


IN A GALAXY FAR AWAY ...<br />

Look<strong>in</strong>g back <strong>in</strong> time!<br />

Redshift<br />

z<br />

Universe<br />

age / 10 9 yr<br />

0 13.7<br />

1 5.9<br />

2 3.3<br />

4 1.6<br />

6 0.95<br />

8 0.65<br />

1000 0.0004<br />

Evolution <strong>of</strong> <strong>galaxies</strong>: production <strong>of</strong> stars, metals, and <strong>molecules</strong><br />

Introduction 2


CO AT HIGH REDSHIFT<br />

Only<br />

<strong>high</strong> <strong>redshift</strong><br />

Introduction<br />

→ MH2<br />

molecular<br />

gas mass<br />

Both local and<br />

<strong>high</strong> <strong>redshift</strong><br />

→ star formation rate<br />

3From: a.o. Knudsen et al., 2009, 2011


QSOS: FEW MOLECULAR LINE OBSERVATIONS<br />

• For z>2:<br />

~35000 quasars known<br />

~30 have CO detections<br />

100000<br />

10000<br />

1000<br />

100<br />

All quasars<br />

QSOs w/ CO obs<br />

• Small number due to:<br />

sensitivity, bandwidth, ...<br />

• Typically s<strong>in</strong>gle object studies<br />

10<br />

1<br />

2 3 4 5 6<br />

<strong>redshift</strong><br />

• ~ 1/3 QSOs are FIR bright 4<br />

CO <strong>in</strong> quasars<br />

<strong>redshift</strong> z 0 2 4 6<br />

Universe age 13.7 3.3 1.6 0.95


CO IN z = 4 - 5 QUASARS<br />

CO <strong>in</strong> z=4-5 quasars<br />

Knudsen, Bertoldi et al.<br />

5


REDSHIFT<br />

Example: J0808<br />

zsdss=4.4562,<br />

zCO=4.4173<br />

Vdiff = -2145 km/s<br />

SDSS Plate 1780, MJD 53090, Rerun 26, Fiber<br />

529<br />

Some other cases have<br />

large differences <strong>in</strong><br />

literature <strong>redshift</strong>s with<br />

Vdiff up to 7000 km/s<br />

CO <strong>in</strong> z=4-5 quasars<br />

See the CAS Explorer page for more <strong>in</strong>formation on this object<br />

Knudsen, Bertoldi et al.<br />

6


248 GONZALEZ ET AL.<br />

H2 AT Z=2.8<br />

No. 1, 2010<br />

|magnification| ~ 80 x<br />

A z = 2.79 LENSED LIRG BEHIND THE BULLET CLUSTER<br />

Figure 3. HST imag<strong>in</strong>g <strong>of</strong> a 14 ′′ × 9 ′′ region encompass<strong>in</strong>g the lensed galaxy. The image on the left is a color composite us<strong>in</strong>g the F850LP, F110W<br />

bands for blue, green, and red, respectively. Despite the bright foreground galaxy, the lensed galaxy can be seen as a red arc with two lobes. On the right,<br />

Table 1<br />

F160W image <strong>of</strong> the same region after the bright foreground objects have been modeled with GALFIT and subtracted. In this image, we also mask the<br />

three brightest objects for clarity. The arc, which is clearly visible <strong>in</strong> this image, breaks up <strong>in</strong>to two lobes correspond<strong>in</strong>g<br />

Observed<br />

to images<br />

Fluxes<br />

A and<br />

and<br />

B<br />

Magnitudes<br />

<strong>in</strong> the IRAC a<br />

i<br />

Paper I. Crosses denote the positions previously reported based upon IRAC photometry. The <strong>of</strong>fsets are consistent with the uncerta<strong>in</strong>ties <strong>in</strong> the IRAC po<br />

source blend<strong>in</strong>g. North is up and east is to the left.<br />

Quantity<br />

V<br />

Lensed dwarf galaxy<br />

(A color version <strong>of</strong> this figure is available <strong>in</strong> the onl<strong>in</strong>e journal.)<br />

f (6.2 µm) 1.4 ± 0.2 × 10<br />

M*<br />

f (7.7 ~ µm) 4x10 9 Msun<br />

6.3 ± 1.2 × 10<br />

the spectroscopic <strong>redshift</strong> and improved astrometric positions. B<strong>in</strong>theF160W<br />

f (8.6 µm)<br />

observations is consistent<br />

5.2<br />

with<br />

± 3.3<br />

the<br />

× 10<br />

2<br />

The former has only a modest impact, whereas the latter have ratio. Because f (H 2 S(4)) we are prob<strong>in</strong>g near the critical 5.8 ± curves 1.9 × 10 w<br />

amoresignificantimpactbecause<strong>of</strong>thesteepmagnification are strong f (H 2 S(5)) magnification gradients, this 2.5 should ± 1.2 not × 10 n<br />

H2:<br />

gradient near the critical curve.<br />

be thef case (7.7 Tex µm)/f(6.2 = 377 µm) K<br />

unless the stellar emission and PAH emi 4.5<br />

In the current discussion, we are concerned primarily with similar m F spatial 160W distributions with<strong>in</strong> the galaxy. Thus, 23.80 ±<br />

MH2 = 2x10 8 Msun<br />

images A and B. The WFC3 astrometry moves both images A data further support the picture that <strong>in</strong> this galaxy the<br />

and B slightly closer to the critical curve and consequently far-<strong>in</strong>frared Note. a emission All quotedis values dom<strong>in</strong>ated are for by thestar comb<strong>in</strong>ation formation. <strong>of</strong><br />

raises the derived magnifications. At the location <strong>of</strong> image<br />

Awecomputeamagnification|µ A | ∼ 32 and at image B<br />

3.5. Stellar Population Age and Mass<br />

we obta<strong>in</strong> |µ<br />

use a power law to fit the underly<strong>in</strong>g conti<br />

B | ∼ 69. The measured flux ratio <strong>of</strong> the two<br />

images from Paper I is 1.47 ± 0.05. To estimate the range the We <strong>redshift</strong> present <strong>in</strong>from Figure the4 two the full strongest spectralPAH energy feat d<br />

<strong>of</strong> plausible magnification for the blended IRS spectrum, we<br />

for7.7 theµm), comb<strong>in</strong>ation obta<strong>in</strong><strong>in</strong>g <strong>of</strong> images z = 2.791 A and± B, 0.007. <strong>in</strong>clud<strong>in</strong>g This all<br />

take <strong>in</strong>dividually the predicted magnifications for A and B at<br />

data. theGiven photometric the <strong>redshift</strong>, <strong>redshift</strong>s we can<strong>in</strong> now the repeat literature the analy<br />

Gonzalez et al. 2010 (z ∼<br />

Figure<br />

the<br />

2. IRS<br />

locations<br />

spectrum<br />

<strong>of</strong><br />

<strong>of</strong><br />

peak<br />

the galaxy,<br />

emission<br />

taken<br />

for<br />

<strong>in</strong><br />

each<br />

the long-low<br />

arc and<br />

mode.<br />

comb<strong>in</strong>e<br />

The data<br />

these<br />

are SED et al. presented 2008; Gonzalezetal.2009; <strong>in</strong> Paper I to ref<strong>in</strong>e the physical Rexetal.2 con<br />

presented<br />

H2 at <strong>high</strong>-z<br />

as the shaded histogram, with the uncerta<strong>in</strong>ties shown by the hashed<br />

with the observed flux ratio. 7<br />

histogram. The dot-dashed l<strong>in</strong>e <strong>in</strong>dicates 8 We f<strong>in</strong>d that the total comb<strong>in</strong>ed<br />

the system.<br />

the best fit from PAHFIT, while the The derived fluxes for the PAH featu<br />

We first use HyperZ (Bolzonella et al. 2000) to


0, L3 (2011)<br />

H2O AT HIGH REDSHIFT<br />

para H2O 202 - 111 987.9GHz<br />

Lensed Herschel source:<br />

SPD.17b, z=2.305<br />

H2O / CO similar to Mrk231<br />

(Omont et al. 2011)<br />

t<br />

.<br />

Fig. 1. Spectrum <strong>of</strong>H2O the para H 2 O 2 02 −1 11 emission l<strong>in</strong>e towards<br />

616 - 523 22.2GHz maser<br />

SDP.17b, where the velocity scale is centred on its observed frequency<br />

at 298.93 GHz (correspond<strong>in</strong>g to z = 2.3049). The rms noise is<br />

∼4.7 mJy/beam <strong>in</strong> 31.6 MHz channels. A Gaussian fit to the H 2 Ospectrum<br />

is shown as a solid l<strong>in</strong>e while the dotted l<strong>in</strong>e shows the underly<strong>in</strong>g<br />

dust cont<strong>in</strong>uum emission. The H 2 Ol<strong>in</strong>eisclearlyasymmetricandnot<br />

well fit by a Gaussian pr<strong>of</strong>ile.<br />

the Plateau de Bure Interferometer (PdBI) and future facilities<br />

such as ALMA and NOEMA. Tentative detections <strong>of</strong> H 2 Owere<br />

H2O at <strong>high</strong>-z<br />

reported <strong>in</strong> the Cloverleaf for the 2 20 −1 11 transition (Bradford<br />

Lensed quasar:<br />

MG 0414+0534, z=2.64<br />

Possibly associated with circumnuclear<br />

accretion disk or jet<br />

(Impellizzeri et al. 2008)<br />

8


HIGH DENSITY TRACERS<br />

1034 RIECHERS ET AL. Vol. 725<br />

APM08279 (z=3.9)<br />

L18 GARCÍA-BURILLO ET AL. Vol. 645<br />

Parameter<br />

TABLE 1<br />

Observational Results<br />

We observed APM 082795255 with the IRAM six-element<br />

array <strong>in</strong> its B configuration on 2006 March 13. The spectral<br />

correlator was adjusted to z p 3.911 and centered on <strong>redshift</strong>ed<br />

HCO (5–4) (rest frequency at 445.903 GHz) to cover an effective<br />

bandwidth <strong>of</strong> 580 MHz (equivalent to ∼1800 km s 1 ).<br />

The size <strong>of</strong> the synthesized beam was 1.46#1.20 (P.A. p<br />

94) at the observ<strong>in</strong>g frequency (90.797 GHz). APM<br />

082795255 was observed for a total <strong>in</strong>tegration time <strong>of</strong><br />

9.5 hr on-source. Dur<strong>in</strong>g the observations, the atmospheric<br />

phase stability on the most extended basel<strong>in</strong>es was always better<br />

than<br />

Fig. 1.—Spectrum <strong>of</strong> the HCO (5–4) l<strong>in</strong>e detected toward the peak <strong>of</strong><br />

Figure 1. CARMA spectra <strong>of</strong> the HCN(J = 6→5), HCO + 20, typical for excellent w<strong>in</strong>ter conditions. The absolute<br />

flux density<br />

(J = 6→5) (left), HNC(J = 6→5) (middle), and cont<strong>in</strong>uum <strong>in</strong>tegrated emission l<strong>in</strong>e <strong>in</strong>tensity at 2.76, <strong>in</strong> 2.71, APM and 082795255 2.84 mm at (left (a, d) p to (08<br />

right)<br />

Cloverleaf<br />

toward APM 08279+5255 at a resolution<br />

(z=2.6)<br />

h 31 m 41 ṣ 73,<br />

<strong>of</strong> ∼85 km s −1 scale was calibrated us<strong>in</strong>g 3C 84 and 524517.4). Velocities ( v v<br />

(31.25 MHz). The velocity scales are relative to the tun<strong>in</strong>g frequencies <strong>of</strong><br />

0 )havebeenrescaledwithrespecttotheCO<br />

0836710 and should be accurate to better than 10%. We have <strong>redshift</strong> <strong>of</strong> z p 3.911 (Downes et al.<br />

108.611<br />

1999). The<br />

GHz<br />

dashed<br />

(left)<br />

l<strong>in</strong>e shows<br />

and<br />

the Gaussian<br />

110.751 GHz (middle) and the central frequency used <strong>of</strong> both theLSBs GILDAS at 105.391 packageGHz for the (right). data reduction The rms and per velocity analysis. b<strong>in</strong> are fit to 0.95, the HCO 0.88, (5–4) and ∼0.65–0.92 emission, and the mJy <strong>high</strong>lighted (left tochannels right). <strong>in</strong> <strong>in</strong>tervals I<br />

The solid curves show simultaneous Gaussian fits to the l<strong>in</strong>e and cont<strong>in</strong>uum emission where applicable.<br />

and III identify the range for l<strong>in</strong>e-free cont<strong>in</strong>uum emission.<br />

The average 1j noise channels <strong>of</strong> 20 MHz width is estimated<br />

(A color version <strong>of</strong> this figure is available <strong>in</strong> the onl<strong>in</strong>e to be journal.) 0.5 mJy beam<br />

HCO 1 . The phase + track<strong>in</strong>g center <strong>of</strong> these<br />

observations is at J2000 (a 0 , d 0 ) p (08<br />

1-0<br />

h 31 m 41 ṣ 57, 524517.7), tracted) toward the peak <strong>of</strong> <strong>in</strong>tegrated <strong>in</strong>tensity at (a, d) p<br />

Table 1 co<strong>in</strong>cident with that used by Wagg et al. (2005) <strong>in</strong> their HCN (08 h 31<br />

Table m 41 ṣ 73, 524517.4) (see Fig. 2). With<strong>in</strong> the errors, the<br />

2<br />

Measured L<strong>in</strong>e Fluxes and Lum<strong>in</strong>osities <strong>in</strong><br />

observations.<br />

APM 08279+5255<br />

To calculate lum<strong>in</strong>osities, we assume<br />

Measured<br />

a L cosmology<br />

described by H 0 p 70 km s 1 , Q L p 0.7, and Q m p vious millimeter cont<strong>in</strong>uum maps (Downes et al. 1999; Wagg<br />

peak position is <strong>in</strong> agreement with that determ<strong>in</strong>ed from pre-<br />

Cont<strong>in</strong>uum Fluxes <strong>in</strong> APM 08279+5255<br />

L<strong>in</strong>e I 0.3 (Spergel et L al. ′ 2003). Throughout this Letter, ν the velocity et al. 2005). The velocity coverage encompasses the full extent<br />

obs λ obs λ rest S ν<br />

(Jy km s −1 scale is<br />

) (10 10 referred<br />

µ −1<br />

L K to km the CO <strong>redshift</strong>, s−1 pc 2 z p 3.911.<br />

<strong>of</strong> the HCO l<strong>in</strong>e emission. Data from the l<strong>in</strong>e-free sidebands<br />

)<br />

(GHz) (mm) with velocities (µm) below 400 km s(mJy)<br />

1 and above 550 km s 1<br />

HCO + (J = 6→5) 1.01 ± 0.19 3.0 ± 0.6<br />

110.7 2.71(<strong>in</strong>tervals I and 551III, def<strong>in</strong>ed <strong>in</strong>2.17 Fig. ± 1) 0.19 were comb<strong>in</strong>ed with<br />

3. RESULTS<br />

HCN(J = 6→5) 1.65 ± 0.19 4.9 ± 0.6<br />

108.6 2.76natural weight<strong>in</strong>g 562 to estimate2.08 the ± cont<strong>in</strong>uum 0.22 emission at<br />

We have detected the HCO (5–4) l<strong>in</strong>e and the<br />

HNC(J = 6→5) 0.86 ± 0.24 2.4 ± 0.7<br />

105.4 a dust cont<strong>in</strong>uum<br />

emission (at 670 mm), both emitted <strong>in</strong> the submilli-<br />

value <strong>of</strong> 1.2 0.3 mJy at 93.9 GHz from Downes et al. (1999).<br />

90.8 GHz to be ∼1.2 0.13 mJy, <strong>in</strong> good agreement with the<br />

2.84 579 2.04 ± 0.08<br />

HC 3 N(J = 57→56) a


HIGH DENSITY TRACERS (HCN)<br />

No. 1, 2010 HCN, HNC, AND HCO + (J = 6→5) IN APM 08279+5255 (z = 3.91) 1<br />

(CN) and above (HC 3 N), a more complex scenario would<br />

required to expla<strong>in</strong> the different HCN, HCO + ,andHNC<br />

ratios <strong>in</strong> the J = 5→4 and6→5 transitions. In this cas<br />

will become necessary to <strong>in</strong>vestigate the different efficie<br />

with which the IR radiation field excites their bend<strong>in</strong>g mode<br />

more detail, which may lead to <strong>high</strong> but different excitation<br />

the rotational ladders <strong>of</strong> these <strong>molecules</strong>.<br />

APM08279:<br />

Strong IR radiation field.<br />

Collisional excitation not enough,<br />

likely radiative excitation<br />

5.2. HNC/HCN Ratio<br />

HCN ratios and <strong>high</strong> HNC excitation. Two scenarios w<br />

brought forward to expla<strong>in</strong> these <strong>high</strong> ratios: IR pump<strong>in</strong>g a<br />

or <strong>in</strong>creased abundances <strong>of</strong> HNC <strong>in</strong> the presence <strong>of</strong> X-<br />

dom<strong>in</strong>ated regions (XDRs, <strong>of</strong>ten found <strong>in</strong> regions impacted<br />

emission from active galactic nuclei; Aalto et al. 2007b).<br />

the one hand, we f<strong>in</strong>d that HCN(J = 6→5)/HCO + (J = 6→<br />

> 1, which is the opposite to what is expected <strong>in</strong> the X<br />

scenario (Aalto et al. 2007b). However, we note that our L<br />

models show that the HCN(J = 6→5) l<strong>in</strong>e (and thus, lik<br />

also the HNC J = 6→5l<strong>in</strong>e)isonlymoderatelyopticallyth<br />

APM 08279+5255 also fits well <strong>in</strong>to the IR-pump<strong>in</strong>g scena<br />

<strong>in</strong> nearby <strong>in</strong>frared-lum<strong>in</strong>ous <strong>galaxies</strong>, the gas is warm eno<br />

to efficiently pump HNC (through the 21.6 µm bend<strong>in</strong>gm<br />

with an energy level <strong>of</strong> hν/k = 669 K and E<strong>in</strong>ste<strong>in</strong> A coeffic<br />

6(V666/71417)7/10/07 KNUDSEN ETRecent AL. studies <strong>of</strong> HCN and HNC emission <strong>in</strong> nearby Vol. <strong>in</strong>fra 66<br />

lum<strong>in</strong>ous <strong>galaxies</strong> have revealed sources with <strong>high</strong> HN<br />

Riechers et al. 2011<br />

abundance effects thus cannot be ruled out. On the other ha<br />

the HNC(J = 6→5)/HCN(J = 6→5) ratio <strong>of</strong> 0.50 ± 0.1<br />

Figure 4. HCN excitation ladder (spectral l<strong>in</strong>e energy distribution; po<strong>in</strong>ts) and<br />

LVG models (l<strong>in</strong>es) for APM 08279+5255, account<strong>in</strong>g for both collisional and<br />

radiative excitation. The HCN(J = 5→4) data po<strong>in</strong>t is from Weiß et al. (2007).<br />

The models give n gas = 10 4.2 cm −3 , T k<strong>in</strong> = T IR = 220 K, and <strong>in</strong>frared field-fill<strong>in</strong>g<br />

factors <strong>of</strong> IR ff = 0.3–0.7 (shown <strong>in</strong> steps <strong>of</strong> 0.1).<br />

(A color version <strong>of</strong> this figure is available <strong>in</strong> the onl<strong>in</strong>e journal.)<br />

<strong>of</strong> A<br />

NGC253 IR = 5.2 s −1 ), but not HCN (through the 14.0 µm bend<br />

(Knudsen et al. 2007)<br />

Fig. 8.—HCO + (right)andHCN(left) l<strong>in</strong>e SEDs toward the nucleus <strong>of</strong> NGC 253 <strong>in</strong> a 27 00 beam. The data po<strong>in</strong>ts are from Nguyen-Q-Rieu al. (1992; triangle<br />

High<br />

is currently<br />

Paglione density ettracers<br />

not possible to properly constra<strong>in</strong> similar models mode hν/k = 1027 K and A IR = 1.7 s −1 ;Aaltoetal.200<br />

al. (1997) and Paglione (1997) ( HCN and HCO + , respectively, open squares), and this work ( Table 1; solid squares and circle). The l<strong>in</strong>es <strong>in</strong>10<br />

both diagra<br />

for the HCO + and HNC l<strong>in</strong>e excitation. However, due to lead<strong>in</strong>g to a <strong>high</strong> HNC/HCN L ′ ratio <strong>in</strong> <strong>high</strong>-J transitions<br />

are selected s<strong>in</strong>gle-component LVG model fluxes for [n(H ), T ] comb<strong>in</strong>ations; solid l<strong>in</strong>e: 10 5.2 cm 3 , 50 K; dashed l<strong>in</strong>e: 10 4.9 cm 3 ,150K;dottedl<strong>in</strong>e:10 5.5 cm


HIGH DENSITY TRACERS (HCN):<br />

SFR<br />

11 11<br />

um<strong>in</strong>osities L FIR 1 7 # 10 L, ( LIR 1 9 # 10 L,<br />

)<br />

erage ratio <strong>of</strong> 880 with a 1 j dispersion <strong>of</strong> (330, HCN<br />

(K km s 1 pc 2 ) 1 .Thesearetheclosestanalogstothe<br />

o <strong>of</strong> the <strong>high</strong>-z HCN detections (Cloverleaf and SMM<br />

ad to L /L ′<br />

FIR HCN values with<strong>in</strong> the range expected from<br />

axies, similar to the ratio <strong>in</strong> the best-known ULIRG<strong>in</strong>dex = 1<br />

′<br />

ith L /L p 1340 L (K km s 1 pc 2 ) 1 FIR HCN ,<br />

.Thethree<br />

tions have ratios about twice that <strong>of</strong> Arp 220. Only<br />

e 65 local <strong>galaxies</strong> have ratios <strong>in</strong> this range (2200–<br />

′<br />

r measurements yield <strong>high</strong> upper limits to L FIR/L<br />

HCN,<br />

distribution expected from local <strong>galaxies</strong> <strong>in</strong>clud<strong>in</strong>g<br />

here are also three weak upper limits that are not very<br />

mb<strong>in</strong><strong>in</strong>g the detections and upper limits, the star forte<br />

per solar mass <strong>of</strong> dense gas, measured by<br />

is<strong>high</strong>er<strong>in</strong>EMGsthan<strong>in</strong>thelocaluniverse,<strong>in</strong>clud<strong>in</strong>g<br />

y a factor <strong>of</strong> ∼2.0–2.5.<br />

be noted that with the exception <strong>of</strong> four SMGs, <strong>in</strong>-<br />

HCN detection reported here, all other EMGs <strong>in</strong> our<br />

M dense<br />

st known AGNs. Were the FIR lum<strong>in</strong>osities <strong>of</strong> these<br />

e corrected by the amount contributed by their AGNs,<br />

plotted would, <strong>in</strong> pr<strong>in</strong>ciple, come <strong>in</strong>to better agreement<br />

w-z correlation. However, for the three quasars where<br />

ions have been calculated (F102144724, D. Downes<br />

olomon2007,<strong>in</strong>preparation;Cloverleaf,Weissetal.<br />

High density tracers<br />

GAO ET AL. Vol. 660<br />

Fig. 4.— LFIR vs. L HCN/LCO. All <strong>galaxies</strong> with a <strong>high</strong> dense molecular gas fraction<br />

11<br />

<strong>of</strong> L HCN/LCO 1 0.06, whether local or <strong>high</strong> z,areIR-lum<strong>in</strong>ous( LFIR 1 10 L,<br />

).The<br />

<strong>high</strong>-z EMGs are <strong>in</strong>dicated with filled circles, local LIRGs and ULIRGs with crosses,<br />

and normal spirals with open circles. The <strong>high</strong>-z EMGs show a <strong>high</strong> ratio <strong>of</strong> dense<br />

to total molecular gas similar to ULIRGs but even <strong>high</strong>er FIR lum<strong>in</strong>osity.<br />

e.g. Gao ea. 2007<br />

082795255, Weiss et al. 2005, 2007) the corrections the global HCN emission is enhanced relative to CO <strong>in</strong> <strong>galaxies</strong><br />

11


THE EYELASH - EXAMPLE OF LENSING<br />

CO(1-­‐0) CO(3-­‐2) CO(4-­‐3) CO(5-­‐4)<br />

CO(6-­‐5) CO(7-­‐6) CO(8-­‐7) CO(9-­‐8) CO(10-­‐9)<br />

[CI](1-­‐0) [CI](2-­‐1) HCN(3-­‐2)<br />

CO excitation<br />

The ‘Eyelash’ – <br />

the (apparently) brightest source known<br />

[serendipitous LABOCA detecSon]<br />

lens<strong>in</strong>g gives 200pc resoluSon<br />

<strong>in</strong> source plane<br />

àvery lum<strong>in</strong>ous, compact HII reg.<br />

Danielson et al. 2011<br />

12


THE EYELASH - EXAMPLE OF LENSING<br />

1692 A. L. R. Danielson et al.<br />

LVG model<br />

PDR model<br />

Figure 2. The <strong>in</strong>tegrated 12 CO SLED for SMM J2135 show<strong>in</strong>g that the SLED peaks around J upper = 6(similartoM82,butwithproportionallystronger<br />

12 CO(1–0)). The central panel shows the results <strong>of</strong> LVG modell<strong>in</strong>g applied to the <strong>in</strong>tegrated SLED, which requires two temperature phases to yield an adequate<br />

fit. In this model, they have characteristic temperatures <strong>of</strong> T k<strong>in</strong> = 25 and 60 K and densities <strong>of</strong> n = 10 2.7 and 10 3.6 cm −3 ,respectively(weassociatethesetwo<br />

Us<strong>in</strong>g this dynamical mass and the m<strong>in</strong>imum gas mass, we place<br />

a lower limit on the gas fraction <strong>of</strong> M gas /M dyn 0.19. This ratio<br />

is similar to the ratio for typical starburst nuclei and the ratio <strong>of</strong><br />

30 per cent found <strong>in</strong> M 82 (Devereux et al. 1994). Compared to other<br />

<strong>high</strong>-<strong>redshift</strong> submillimetre <strong>galaxies</strong> (SMGs), us<strong>in</strong>g the 12 CO(3–2)<br />

observations from Greve et al. (2005) and adopt<strong>in</strong>g α = 0.8 and<br />

R 3,1<br />

CO = 0.58 excitation ± 0.05 from Ivison et al. (2010c), we f<strong>in</strong>d a median<br />

The ‘Eyelash’ –<br />

two components based on CO<br />

excitation and dust emission:<br />

1) low-dense, ~25K, 1-2kpc<br />

2) <strong>high</strong>-dense, ~60K, ~200pc<br />

phases with a cool, extended disc and hotter, more compact, clumps). The right-hand panel shows a similar comparison but now us<strong>in</strong>g a PDR model (Meijer<strong>in</strong>k<br />

et al. 2007; see Section 3.2.1), which aga<strong>in</strong> requires a comb<strong>in</strong>ation <strong>of</strong> both low- and <strong>high</strong>-density phases to adequately fit the <strong>in</strong>tegrated SLED.<br />

<strong>high</strong> cosmic-ray flux (see below), it is probable that momentumdriven<br />

outflows will result. These outflows could be either photondriven<br />

(Thompson, Quataert & Murray 2005) or cosmic ray driven<br />

(Socrates, Davis & Ramirez-Ruiz 2008) and will impact both the<br />

dynamics <strong>of</strong> the gas <strong>in</strong> the system and the steady-state assumption<br />

Danielson et al. 2011<br />

<strong>in</strong> our PDR modell<strong>in</strong>g (Section 3.2.1).<br />

We can now compare the star formation efficiency (SFE) 13 <strong>in</strong>


CO LINE SEDS<br />

IRAM 30m CO SED survey<br />

(1, 2, 3mm bands) Weiss, Walter, Downes, Henkel, <strong>in</strong> prep.<br />

CO excitation<br />

14


CO LINE SEDS<br />

• s<strong>in</strong>gle gas component <br />

• QSO turnover: >6-­‐5<br />

• SMM turnover: 5-­‐4<br />

• compact (


MASSIVE GAS RESERVOIRS<br />

z~2 gal’s: not extreme starbursts, but massive gas reservoirs<br />

CO(2-1)<br />

PdBI<br />

HST<br />

§ 6 <strong>of</strong> 6 detected <strong>in</strong> CO, ~10 kpc size<br />

§ M gas > 10 10 M o ~ <strong>high</strong>-z HyLIRG !<br />

! (SMG, QSO host)<br />

But:<br />

§ SFR < 10% HyLIRG<br />

§ 5 arcm<strong>in</strong> -2 (vs 0.05 for SMGs)<br />

=> common, ‘normal’ <strong>high</strong>-z <strong>galaxies</strong><br />

- SFR/M * const. w/ M * : ‘pre-downsiz<strong>in</strong>g’<br />

Daddi ea. 2007, 2008, 2009, Tacconi et al. 2010, Genzel et al. 2010<br />

Text<br />

16


OTHER GALAXIES, DIFFERENT EXCITATION<br />

I CO [Jy km s -1 ]<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

BzK-21000<br />

BzK-4171<br />

BzK-16000<br />

1 2 3 4<br />

Rotational Quantum Number, J<br />

Fig. 5.— CO excitation ladder or CO SED for BzK-21000 (solid<br />

black circles). The black solid, dashed <strong>high</strong> zand dotted l<strong>in</strong>es show representative<br />

LVG models 1, 2 and 3 from Dannerbauer et al. (2009),<br />

respectively. The open stars and open circles show the CO 1−0 and<br />

CO 2 − 1<strong>in</strong>tegratedfluxdensitiesforBzK-4171andBzK-16000,<br />

scaled to the CO 2 − 1emission<strong>of</strong>BzK-21000forcomparison. The<br />

open triangle, open square and asterisk symbols illustrate the CO<br />

SED <strong>of</strong> the Milky Way, the Antennae overlap region and the spiral<br />

galaxy NGC6946, normalized to the CO 2 − 1emission<strong>of</strong>BzK-<br />

21000. The LVG models that reproduce the data for these objects<br />

are shown as gray solid low l<strong>in</strong>es. z A small horizontal shift has been<br />

applied to the data po<strong>in</strong>ts to enhance the visibility.<br />

Milky Way<br />

Cold molecular gas <strong>in</strong> massive disk <strong>galaxies</strong> at z =1.5<br />

Antennae overlap<br />

NGC6946<br />

Inner MW<br />

L FIR /L’ CO<br />

gas consumption lifetimes <strong>of</strong> ∼ 0.2 −<br />

ble 2). These values are comparable t<br />

Daddi et al. (2010a) and are similar tho<br />

parable <strong>galaxies</strong> at <strong>redshift</strong>s ∼ 1−3 (Tac<br />

K-band<br />

§ CO excitation = Milky Way (but M gas > 10x MW)<br />

§ L FIR /L’ CO = MW few x10 8 yrs<br />

3.2. Excitation <strong>of</strong> the molecu<br />

In this section we study the propert<br />

ularMW<br />

gas <strong>in</strong> our BzK <strong>galaxies</strong>. All <strong>of</strong><br />

previously been detected <strong>in</strong> the CO 2 −<br />

However, only BzK-21000 has been de<br />

3 − 2 l<strong>in</strong>e (Dannerbauer et al. 2009).<br />

Figure 5 shows the velocity <strong>in</strong>tegrated<br />

BzK-21000 as a function <strong>of</strong> rotational q<br />

J. Also shown are the CO 1 − 0andCO<br />

l<strong>in</strong>e<br />

2 arcsec<br />

fluxes <strong>of</strong> BzK-4171 and BzK-1600<br />

the CO 2 − 1 <strong>in</strong>tensity <strong>of</strong> BzK-21000<br />

and the normalized CO <strong>in</strong>tensities for<br />

the Milky Way (Fixsen et al. 1999), the<br />

region (Zhu et al. 2003) and the spiral<br />

(Bayet et al. 2006).<br />

From the velocity <strong>in</strong>tegrated l<strong>in</strong>e flu<br />

the brightness temperature l<strong>in</strong>e ratios as<br />

(I 21 )/I 10 )×(ν 10 /ν 21 ) 2 ,whereT 21 and T<br />

ness temperatures, I 21 and I 10 are the<br />

and ν 21 and ν 10 are the observed frequ<br />

2 − 1and1− 0 emission l<strong>in</strong>es, respec<br />

SMMJ163556<br />

z = 4.04<br />

no CO(4-3) - why?<br />

(Dannerbauer we expect et al. 2009; thisAravena ratio toet be al. r2010)<br />

21 =1. In<br />

and 0.28 CO ± excitation 0.08 Jy km s −1 <strong>in</strong> BzK-4171, BzK-21000 and<br />

measure brightness temperature17l<strong>in</strong>e ra<br />

+0.61 +0.23


DISK DIMMING DUE TO CMB<br />

CO excitation<br />

From Axel Weiss<br />

18


CO, C + , [CI] AT HIGH REDSHIFT<br />

C +<br />

[CI]<br />

ALMA<br />

[CII] 2 P 3/2 → 2 P 1/2<br />

[CI] 3 P 2 → 3 P 1<br />

[CI] 3 P 1 → 3 P 0<br />

Band 10 (787-950 GHz)<br />

Band 9 (602-720 GHz)<br />

Band 8 (385-500 GHz)<br />

Band 7 (275-370 GHz)<br />

Band 6 (211-275 GHz)<br />

Band 4 (125-163 GHz)<br />

Band 3 ( 84-119 GHz)<br />

18<br />

16<br />

14<br />

12<br />

CO J upper<br />

10<br />

CO Jupper<br />

8<br />

EVLA<br />

Q 0.7cm (40-50 GHz)<br />

Ka 1.0cm (26-40 GHz)<br />

K 1.3cm (18-26 GHz)<br />

MeerKAT<br />

High (8-14.5GHz)<br />

CO at <strong>high</strong> <strong>redshift</strong><br />

6<br />

4<br />

2<br />

<strong>redshift</strong><br />

0 5 10 15 20<br />

Redshift<br />

Courtesy: J. Kurk<br />

19


MASSIVE GALAXIES AT Z=1.5-2.5, ALMA SIMULATIONS<br />

From: Fabian Walter<br />

ALMA simulations


QSOS AT Z=6 WITH ALMA<br />

From: Fabian Walter<br />

ALMA simulations


PAHS IN HIGH-Z GALAXIES<br />

No. 1, 2009<br />

MID-IR SPECTROSCOPY OF SUBMI<br />

MID-IR SPECTROSCOPY OF SUBMILLIMETER GALAXIES 673<br />

the I<br />

1998<br />

m<strong>in</strong>o<br />

<strong>in</strong>dic<br />

can b<br />

log (LFIR)<br />

whe<br />

resp<br />

×10<br />

Alex<br />

ame<br />

<strong>in</strong>clu<br />

6 8 12 log (L7.7µm)<br />

median-comb<strong>in</strong>ed rest-frame composite spectrum <strong>of</strong> 22 SMGs detected <strong>in</strong> our sample, with the shaded area represent<strong>in</strong>g the 1σ sample standard<br />

me optical <strong>redshift</strong>s (C05), except for the five SMGs <strong>in</strong> which PAH features suggest Figure an alternate 11. PAH lum<strong>in</strong>osities <strong>redshift</strong> (see as aSection function4.1). <strong>of</strong> IR The lum<strong>in</strong>osity composite for thespectrum<br />

SMGs <strong>in</strong> our<br />

ong PAH emission at 6.2, 7.7, 8.6, 11.3, and 12.7 µm, with an underly<strong>in</strong>g red cont<strong>in</strong>uum. sample and All for the those spectra <strong>in</strong> Pope areet normalized al. (2008). We byalso their <strong>in</strong>clude flux at aperture-corrected<br />

λ = 8.5 µm<br />

ee Section 3.1 for details). Right: composite spectra for subsets <strong>of</strong> SMGs <strong>in</strong> threePAH separate lum<strong>in</strong>osities <strong>redshift</strong> <strong>of</strong> b<strong>in</strong>s. low-<strong>redshift</strong> Thesenuclear demonstrate starbursts that (Brandl at λ > et10 al. 2006). µm our The<br />

is dom<strong>in</strong>ated by sources at z


SUMMARY<br />

• Grow<strong>in</strong>g number <strong>of</strong> detections <strong>of</strong> molecular gas at <strong>high</strong>-z!<br />

• Detections <strong>of</strong> HCN, HCO + , CN, H2O, only <strong>in</strong> a few extreme objects<br />

(quasars and lensed starburst <strong>galaxies</strong>).<br />

• Excitation <strong>of</strong> gas shows a variety <strong>of</strong> conditions<br />

• Example: The Eyelash - CO l<strong>in</strong>e SED shows the a composite <strong>of</strong><br />

low-dense and <strong>high</strong>-dense gas.<br />

• Massive <strong>galaxies</strong> with low excitation molecular gas.<br />

• At <strong>high</strong>-z, the CMB will impact the observations <strong>of</strong> cold, diffuse<br />

gas <strong>in</strong> e.g. disks.<br />

• High-z PAH studies allow<strong>in</strong>g to probe differences between <strong>high</strong>-z<br />

starbursts and local ULIRGs.<br />

• With full-array ALMA, astrochemistry <strong>in</strong> <strong>high</strong>-z <strong>galaxies</strong> will<br />

become possible.<br />

Summary<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!