29.03.2014 Views

Brunata

Brunata

Brunata

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Brunata</strong><br />

Technical Manual for HGQ and HGS-series<br />

– Volume, Flow and Energy Meters<br />

Copyright ® <strong>Brunata</strong> a/s 2006


<strong>Brunata</strong> HG meters<br />

In 1999 <strong>Brunata</strong> took over HG International a/s, a modern<br />

wholly Danish owned company focusing on the development<br />

and production of electronic water and energy meters based<br />

on the magnetic induction metering principle. Thanks to an<br />

unswerving commitment to new technology we today supply<br />

some of the most advanced, reliable and accurate meters on<br />

the market.<br />

Since production began in 1953 the HG meters have undergone<br />

a considerable transformation. They have changed from being<br />

mechanical to fully electronic devices without a single moving<br />

part. The electronics have become increasingly compact, and<br />

the functionality has expanded enormously. Today’s meters<br />

are like small computers, with all the software contained on a<br />

single integrated circuit.<br />

Today, our range of products includes meters for hot and cold<br />

water and for energy metering in heating and cooling systems.<br />

We offer on of the widest selections of meters on the market,<br />

covering capacities from 1 l/h to 660 m 3 /h.<br />

The <strong>Brunata</strong> Group<br />

<strong>Brunata</strong> is a wholly Danish owned production and engineering<br />

company with approx. 400 employees that develops and manufactures<br />

mechanical and electronic equipment for the metering<br />

of heat and water and that also prepares the associated billing.<br />

In Denmark, <strong>Brunata</strong> has its head office in the outskirts<br />

of Copenhagen and is represented nationwide through local<br />

branches. Furthermore, the company exports to most European<br />

countries through subsidiaries and license partners.<br />

UK-QB 10.1481/11.04.2006<br />

<strong>Brunata</strong> a/s · Vesterlundvej 14 · DK-2730 Herlev · Phone +45 77 77 70 00 · Fax +45 77 77 70 01<br />

www.brunata.dk · brunata@brunata.dk<br />

Page of 32 Copyright ® <strong>Brunata</strong> a/s 2006


Table of contents<br />

1. Introduction......................................................... 4<br />

2. Reference documents........................................... 4<br />

2.1 Nomenclature list............................................ 4<br />

2.1.1 Temperatures....................................... 4<br />

2.1.2 Flow-rates............................................ 4<br />

2.1.3 Miscellaneous ..................................... 4<br />

2.2 List of appendixes........................................... 5<br />

3. General Description.............................................. 5<br />

3.1 HGQ / HGS Volume Meter.............................. 5<br />

3.2 HGQ / HGS Heat and Cooling Energy Meter... 6<br />

3.2.1 HGS-IV integration unit....................... 7<br />

3.3 Flow sensors................................................... 7<br />

3.4 HGQ / HGS Electronics.................................... 7<br />

3.5 Temperature sensors....................................... 7<br />

3.5.1 Direct sensors...................................... 7<br />

3.5.2 Pocket sensors with fixed cable............ 7<br />

3.5.3 Head sensors....................................... 8<br />

3.6 Type approvals................................................ 8<br />

3.7 Accuracy......................................................... 8<br />

3.7.1 The total MPE ..................................... 8<br />

3.7.2 MPE for subassemblies........................ 8<br />

3.8 Types and versions.......................................... 8<br />

4. Operating principles .......................................... 10<br />

4.1 Operating principles for HGQ/HGS meters.... 10<br />

4.2 HGS-IV integration unit............................... 10<br />

4.3 Volume measuring........................................ 10<br />

4.4 Temperature measuring................................ 10<br />

4.5 Energy calculation......................................... 10<br />

4.6 Menu structure and description.....................11<br />

4.7 Display functions...........................................11<br />

4.8 Accounting dates.......................................... 13<br />

4.9 Tariff function .............................................. 14<br />

4.10 Back light ............................................... 14<br />

4.11 Mean value algorithm............................. 14<br />

4.12 Reset function......................................... 14<br />

4.13 Flow rates above q s<br />

................................. 14<br />

4.14 Flow rates below q i<br />

................................. 15<br />

4.15 Back-up battery....................................... 15<br />

4.15.1 Battery Function................................. 15<br />

4.15.2 Change of battery.............................. 15<br />

4.16 Info and error codes................................ 15<br />

4.17 Stored data and recovery........................ 16<br />

5. Dimensions........................................................ 16<br />

5.1 Flow sensors................................................. 16<br />

5.1.1 HGQ.................................................. 16<br />

5.1.2 HGS................................................... 16<br />

5.2 Electronics................................................... 17<br />

5.2.1 standard............................................ 17<br />

5.2.2 OEM-version..................................... 17<br />

5.3 Temperature sensors..................................... 17<br />

5.3.1 Direct sensors DS................................. 17<br />

5.3.2 Pocket sensors PS with fixed cable ...... 17<br />

5.3.3 Head sensors....................................... 18<br />

6. Pressure ratings and .......................................... 18<br />

7. Input / Output.................................................... 19<br />

7.1 HGQ/HGS Standard electronics.................... 19<br />

7.2 HGQ/HGS – 107 electronics.......................... 19<br />

7.3 HGQ/HGS OEM electronics........................... 19<br />

7.4 Pulse input specifications.............................. 19<br />

7.4.1 Pulse Input (AUX1 & AUX2) - Connection.. 19<br />

7.4.2 Description of the AUX input .............. 20<br />

7.4.3 Prescaler.............................................. 20<br />

7.5 Pulse output specifications............................ 21<br />

7.5.1 Pulse Output - Connection<br />

(Galvanic separated).......................... 22<br />

7.5.2 Pulse Output - Connection (NOT galvanic<br />

separated)................................. 22<br />

7.5.3 Minimum Volume/Pulse value V p for q s... 22<br />

7.5.4 Volume/flow pulse value ..................... 22<br />

7.5.5 Max. measurable flow before limit ...... 23<br />

8. Data communication.......................................... 26<br />

8.1 Data protocol............................................... 26<br />

8.1.1 M-Bus protocol.................................... 26<br />

8.1.2 M-Bus telegram................................... 26<br />

8.2 Addressing of communicationmodules ........ 26<br />

8.3 RS232 module.............................................. 27<br />

8.4 M-Bus module.............................................. 27<br />

8.5 LON module................................................. 27<br />

8.6 Analogue output device............................... 27<br />

8.7 Communication modem .............................. 27<br />

9. Test and adjustment........................................... 28<br />

9.1 Displaying high resolution volume pulses...... 28<br />

9.2 Verification................................................... 28<br />

9.3 Calibration.................................................... 28<br />

9.4 Zeroing of peak values.................................. 29<br />

9.5 Clock adjustment.......................................... 29<br />

10. Installation requirements.................................... 29<br />

10.1 Installing the Flow Sensor........................ 29<br />

10.2 Mounting and connections of<br />

the electronic unit................................... 29<br />

10.3 Temperature sensors............................... 29<br />

10.4 Security seals........................................... 29<br />

10.5 Starting up the meter.............................. 29<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page of 32


1. Introduction<br />

This manual is intended for skilled technicians and accredited<br />

laboratory personal.<br />

The HGQ, HGS and HGS-IV Meters are designed as Volume<br />

Meters (versions 107 – 178) and Energy Meters (versions<br />

180 and 189) covering the flow range from 1.2 to 16 m 3 /h<br />

and are able to measure accurate flow rates of liquids with<br />

a conductivity > 20 μS/cm.<br />

This manual covers the HGQ and HGS versions EG; i.e. hardware<br />

version E and software version G.<br />

HGS-IV is an integration unit designed for using an external<br />

flowsensor.<br />

HGQ and HGS meters are designed for measuring of thermal<br />

heat energy in district heating and cooling systems or in the<br />

industry. The HGQ series is designed especially for individual<br />

one family houses and dwellings.<br />

This manual applies to all versions, the term HGQ/HGS means<br />

that HGQ as well as HGS and HGS-IV are covered.<br />

2. Reference documents<br />

2.1 Nomenclature list<br />

Reference: EN 1434<br />

2.1.1 Temperatures<br />

Θ max<br />

Θ min<br />

∆Θ<br />

The upper limit of the temperature range, q max<br />

is the<br />

highest temperature of the heat conveying liquid,<br />

at which the heat meter shall function without the<br />

Maximum Permissible Errors (MPE) being exceeded.<br />

The lower limit of the temperature range, q min<br />

is the<br />

lowest temperature of the heat conveying liquid, at<br />

which the heat meter shall function without the Maximum<br />

Permissible Errors (MPE) being exceeded.<br />

The temperature difference, ∆Θ, is the absolute value<br />

of the difference between the temperatures of the<br />

heat conveying liquid at the flow and return of the<br />

heat-exchange circuit.<br />

∆Θ max<br />

The upper limit of the temperature difference, ∆Θ max<br />

is the highest temperature difference, at which the<br />

heat meter shall function within the upper limit of<br />

thermal power without the Maximum Permissible<br />

Errors (MPE) being exceeded.<br />

∆Θ min<br />

t F<br />

t R<br />

t L<br />

t H<br />

The lower limit of the temperature difference, ∆Θ min<br />

is the lowest temperature difference, above which<br />

the heat meter shall function within the upper limit<br />

of thermal power without the Maximum Permissible<br />

Errors (MPE) being exceeded.<br />

Forward temperature, inlet<br />

Return temperature, outlet<br />

<br />

Temperature low is return temperature in heating systems<br />

and forward temperature in cooling systems.<br />

<br />

Temperature high is forward temperature in heating<br />

systems and return temperature in cooling systems.<br />

2.1.2 Flow-rates<br />

q s<br />

q p<br />

q i<br />

q<br />

According to EN 1434 the upper limit of the flow-rate,<br />

q s<br />

, is the highest flow-rate, at which the meter shall<br />

function for short periods (< 1h/day; < 200 h/year)<br />

without the Maximum Permissible Errors (MPE) being<br />

exceeded. HGQ/HGS meters have no period limitations.<br />

The permanent flow-rate, q p<br />

, is the highest flowrate,<br />

at which the meter shall function continuously<br />

without the Maximum Permissible Errors (MPE) being<br />

exceeded.<br />

The lower limit of the flow-rate, q i<br />

, is the lowest flowrate,<br />

above which the meter shall function for short<br />

periods (< 1h/day; < 200 h/year) without the Maximum<br />

Permissible Errors (MPE) being exceeded.<br />

Current flow-rare<br />

2.1.3 Miscellaneous<br />

UK-QB 10.1481/11.04.2006<br />

MPE<br />

t on<br />

t off<br />

T<br />

Maximum Permissible Error<br />

Time of the conducting state of an opto coupler input<br />

and output.<br />

Time of the non-conducting state of an opto coupler<br />

input and output.<br />

Pulse period. T = t on<br />

+ t off<br />

Page of 32 Copyright ® <strong>Brunata</strong> a/s 2006


V p<br />

v<br />

k<br />

BxRy<br />

EC<br />

Volume pulse value (litre/pulse)<br />

The water volume flow velocity<br />

The water heat coefficient (enthalpy) from heat<br />

enthalpy table, ref. EN 1434.<br />

Data bank x, Register y. Internal data, not accessible<br />

by the user.<br />

ErrorCode<br />

2.2 List of appendixes<br />

Following documents are enclosed as appendixes to this manual<br />

A.1 Volume Meters:<br />

A.1.1 Data sheet HGQ Volume Meter<br />

A.1.2 Data sheet HGS Volume Meter<br />

A.1.3 Data sheet HGQ/S OEM Flow Meter<br />

A.1.4 Users manual for HGQ & HGS Volume Meters<br />

A.1.5 Installation manual for HGQ Volume Meter<br />

A.1.6 Installation manual for HGS Volume Meter<br />

A.2 Energy meters:<br />

A.2.1 Data sheet HGQ Energy Meter<br />

A.2.2 Data sheet HGS Energy Meter<br />

A.2.3 Users manual for HGQ/HGS Energy Meters<br />

A.2.4 Display configuration HGQ/HGS Energy Meters<br />

A.2.5 Installation manual for HGQ Energy Meters<br />

A.2.6 Installation manual for HGS Energy Meters<br />

A.3 Analogue Box<br />

A.3.1 Data sheet HG Analogue Box<br />

A.3.2 Installation Guide HG Analogue Box (HG-420)<br />

A.4 Data sheet HG-LON module<br />

A.5 Communication protocol<br />

A.5.1 M-Bus protocol<br />

A.5.2 M-Bus data sheet<br />

A.6 Type Approvals<br />

A.6.1 Volume meter: OIML certificate R75 TS 27.01-085<br />

A.6.2 Volume meter: EN 1434 certificate TS 27.01-091<br />

A.6.3 Energy meter: OIML R75 certificate TS 27.01-082<br />

A.6.4 Energy meter: EN 1434 certificate TS 27.01-090<br />

A.6.5 OEM volume meter: EN 1434 certificate TS 27.01-123<br />

with extension<br />

A.6.6 Integrator: EN 1434 certificate TS 27.01-132<br />

3. General Description<br />

HGQ/HGS series meters are divided into Volume meters and<br />

Energy meters.<br />

The meter consists of a Flow Sensor with polished stainless<br />

steel electrodes and an advanced electronic unit for wall<br />

mounting. The HGQ/HGS-meter has low-pressure loss and<br />

contains no moving parts, which could be worn or choked<br />

up. The meter is very robust and is unaffected by excess flow.<br />

The Flow Sensor can be freely mounted horizontal, vertical<br />

or as required as long as it is always full of water. There is no<br />

need for straight length of pipe before or after the meter.<br />

General<br />

Accuracy OIML R75 Class 4 / EN 1434 Class 2<br />

Approvals EN 1434/<br />

OIML R75<br />

Environmental Class<br />

Dynamic range 1:250<br />

Flow sensor<br />

Connection<br />

EN 1434 Class C<br />

G¾B, G1B or G1¼B<br />

TS 27.01-091/<br />

TS 27.01-085<br />

Liner HGQ: Ultrason S HGS5 & 9:<br />

Polysulfone HGS16: PTFE<br />

Tube<br />

Special brass (CuZn36PbAs)<br />

Flange<br />

Mild steel (stainless steel on request)<br />

Required conductivity > 1 mS/m [10μS/cm]<br />

Electrodes AISI 316<br />

Protection Class<br />

IP54<br />

Fluid temperature Tmax = 130 ºC<br />

Pressure Class<br />

PN16 (P max<br />

= 16 bar abs.)<br />

Electronics<br />

Mains<br />

230 VAC 50Hz or 24 VAC 50Hz<br />

Power consumption<br />

< 5 Watt<br />

Pulse output<br />

Yes<br />

Analogue output<br />

Optional<br />

MBus-Protocol<br />

Yes<br />

RS232-Communikation<br />

Yes<br />

Pulse input (ext. meters) Yes max. 2<br />

Local indication and<br />

totalization 1)<br />

Yes<br />

Protection Class<br />

IP44<br />

1) For display version<br />

3.1 HGQ / HGS Volume Meter<br />

HG volume meters are designed to measure water flow and<br />

act as volume meter for energy measurement in District Heating-<br />

and cooling systems or in the industry. The flow sensor’s<br />

temperature operating range covers from -10°C to +120°C<br />

and measures cold or hot water with same accuracy.<br />

Following volume meter versions works with the whole<br />

range of flow sensors:<br />

• Version -174 is complete volume meters with display<br />

and remote reading options showing peak values,<br />

actual flow rates etc. The meter has pulse output and<br />

room for insertion of a communication module. As<br />

option storage facilities and pulse counter for other<br />

meters.<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page of 32


3.2 HGQ / HGS Heat and Cooling Energy<br />

Meter<br />

HGQ Volume Meter<br />

• Version -178 has same facilities as -174 and in addition<br />

tariff functions as described in chapter 4.7 Tariff function.<br />

• Version 107 is volume and flow meter with no display<br />

with volume pulse output for other manufacturers heat<br />

calculators. The measured volume output is provided as<br />

galvanic isolated pulses, see chapter 1.5 Pulse output<br />

specifications. The meter has pulse output and a pin<br />

header for insertion of a communication module.<br />

• Version 107S is a flow meter with no display and no<br />

remote reading options made for OEM-customers.<br />

The meter has a volume pulse output available only.<br />

This version is supplied as “black box” and may also<br />

be used in F4 casing with calculator from SVM North<br />

Node AB (previous ABB Metering) in Sweden. Refer to<br />

appendix A.1.4<br />

HGQ Energy Meter<br />

HGQ/HGS energy meters are designed for District Heating-<br />

and Cooling systems, Building management system<br />

and different industrial applications. The meter works with<br />

the same flow sensor as the volume meter. The electronic<br />

unit has connectors for temperature sensors and performs<br />

the calculation and integration of volume and temperature<br />

difference.<br />

Thus all energy meters can be used for measuring energy<br />

in heating or cooling systems. One version (-185) measures<br />

heating and cooling alternating in the same piping.<br />

Following energy meter versions works with the whole range<br />

of flow sensors:<br />

• Version -180 is designed for energy metering in flats<br />

with horisontal piping and other small applications. It<br />

comes only as HGQ and has standard 2 AUX-inputs for<br />

pulses from other meters for instance electricity, gas, or<br />

water meters.<br />

• Version -182 is the basic version for normal applications.<br />

The version has remote reading options, pulse<br />

UK-QB 10.1481/11.04.2006<br />

HGS Volume Meter<br />

HGS Energy Meter<br />

Page of 32 Copyright ® <strong>Brunata</strong> a/s 2006


output and room for insertion of a communication<br />

module. As options also storage facilities and AUXinputs<br />

for pulses from other meters.<br />

• Version -184 has same facilities as -182 and in addition<br />

peak values, actual flow rates etc.<br />

• Version -188 has same facilities as -184 plus tariff functions<br />

as described in chapter 4.9 Tariff function.<br />

• Version -185 is the combined heat and cooling meter<br />

where the measured heating and cooling energy are<br />

registered in two different registers.<br />

• In addition to the complete meters the HGS is made as<br />

a heat calculator with pulse input from any flow meter,<br />

version HGS-IV.<br />

3.2.1 HGS-IV Integration unit<br />

T h e H GS - I V i ntegrator<br />

is designed and approved<br />

for energy metering in district<br />

heating, cooling and<br />

other waterborne systems<br />

when used together with an<br />

approved and verified volume<br />

meter. Advanced software<br />

allows for the configuration of<br />

a very broad measuring range,<br />

see table.<br />

HGS-IV<br />

Normally, the integrator comes<br />

with paired temperature sensors.<br />

They can, however, be used<br />

with all approved and verified temperature sensors of the type<br />

Pt100 or Pt500.<br />

The meter has a logically structured menu and every month<br />

it records maximum values for flow, power and ∆t with information<br />

about date and time. The advanced version offers an<br />

extra tariff register allowing for summing up according to<br />

time, flow, temperature or supplied energy. Further options<br />

are: logging of historic data in the programmable menu,<br />

pulse collection and display of consumption from other water<br />

meters, district heating meters, electricity meters etc.<br />

3.4 HGQ / HGS Electronics<br />

The HGQ/HGS electronics is designed with the latest microprocessor<br />

technology and has a built-in clock which is backed<br />

up by a small long-life battery.<br />

Taken as a whole, the HGQ/HGS meters features following<br />

facilities:<br />

• Surveillance and remote reading through serial data<br />

bus, M-Bus protocol<br />

• »Easy to read« LCD-Display with self-explained icons<br />

• Display with back-light activated by the push button<br />

• Service and error indications<br />

• Visual indication of flow pulses<br />

• In case of power dropouts all data are saved in an<br />

EEPROM<br />

• Self start: Automatic data and set up recovery from<br />

EEPROM<br />

• Allows input and storage of pulses from other meters,<br />

such as electricity-, gas- and water meters. The pulses<br />

are programmed to actual pulse value and showed as<br />

real units in for instance kWh<br />

• Programmable pulse output (litre/pulse)<br />

• Saves peak and total values<br />

• Saves all registered data at 24 accounting dates<br />

selected by customer<br />

3.5 Temperature sensors<br />

HGQ/HGS energy meters are designed for 2-wired paired<br />

platinum sensors Pt100 or Pt500 matched and paired. All<br />

approved and verified temperature sensors can be used. A<br />

platinum sensor is a resistant sensor with a nominal resistance<br />

of 100 respectively 500 ohm at 0.00°C.<br />

The <strong>Brunata</strong> HG sensors are Pt500 equipped with silicone<br />

heat resistant cable manufactured according to EN 60751<br />

(IEC 751) and EN 1434.<br />

3.3 Flow sensors<br />

The HGQ/HGS-meter works fully electronic and has no<br />

moving parts. The meter tube is made of a special copper<br />

and zinc alloy lined with Ultrasone S, Polysulfone (PSU) and<br />

PVDF. The measuring principle is based on Faraday’s magnetic<br />

induction principle, where the water movement induces a<br />

voltage across the electrodes. The Faraday principle is used<br />

where high precision measuring of flow is needed.<br />

The HGQ/HGS-meter has an extended measuring range<br />

better than 1 to 250, which means that it can measure flow<br />

velocity down to 0,4 % of the maximum flow.<br />

The flow sensor’s temperature operating range covers from<br />

-10 °C to +120 °C and measures cold or hot water with same<br />

accuracy and shall always be kept together.<br />

Attention:<br />

The flow sensor cable must NOT be modified by any means.<br />

The sensor with its cable is calibrated as one unit together<br />

with the meter electronics. They share identical serial numbers.<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page of 32<br />

3.5.1 Direct sensors<br />

The direct sensor type DS is<br />

designed for installation direct<br />

in the water stream to ensure<br />

fast response. The direct sensors<br />

are approved according to<br />

European standard EN 1434.<br />

The direct sensors are standard<br />

for HGQ energy meters,<br />

with 1.5 m cable. Max cable<br />

lenght is 8 m.<br />

3.5.2 Pocket sensors with fixed cable<br />

Pocket sensors can be<br />

replaced without shutting<br />

of the water. The pocket<br />

sensors are standard for<br />

HGS energy meters and are<br />

deliverable in various length,<br />

see table in chapter 11.3<br />

Temperature sensors.<br />

The pocket sensors are<br />

approved according to Euro-<br />

Fig 5: Direct sensors<br />

Pocket sensors<br />

UK-QB 10.1481/11.04.2006


pean standard EN 1434. The sensors with fixed cable are<br />

supplied from 1.5 to 8 metres length.<br />

3.5.3 Head sensors<br />

The head sensors are designed<br />

for industrial applications and<br />

for installations where very<br />

long cables are needed.<br />

They are delivered with pocket<br />

sensors in stainless steel and in<br />

various lenghts<br />

3.6 Type approvals<br />

The HGQ/HGS meter series is designed and approved according<br />

to European standard EN 1434 accuracy class 2, environmental<br />

class C (industrial applications). The meters are also approved<br />

according to the recommendation OIML R75. The approvals are<br />

enclosed as appendixes to this manual comprising:<br />

Approvals according to OIML R75 class 4<br />

Head sensors<br />

• Pattern approval certificate for HGQ and HGS volume<br />

meter TS 27.01-085, rev. 2. Certificate no. 1999-7053-<br />

1285, date 01.03.2002. Valid until 01.03.2010.<br />

• Pattern approval certificate for HGQ and HGS heat<br />

meter TS 27.01-082 rev. 2. Certificate no. 1999-7053-<br />

1267 ate 01.03.2002. Valid until 01.03.2010.<br />

3.7 Accuracy<br />

The accuracy of a complete heat meter are calculated as function<br />

of the temperature difference ratio (Δθ min<br />

/Δθ) and the<br />

flow rate ratio (q p<br />

/q). The HGQ and HGS meters are designed<br />

to fulfil the requirements of a class 2 meter according to the<br />

European standard EN 1434. The manufacturing tolerance<br />

lies normally within 60 % of the limits laid out in EN 1434.<br />

3.7.1 The total MPE<br />

The total MPE (Maximum Permissible Error) of a heat meter<br />

is the arithmetic sum of the MPEs of the subassemblies flow<br />

sensor (E f<br />

), temperature sensors (E t<br />

) and calculator (E c<br />

).<br />

MPE=E f<br />

+ E t<br />

+ E c<br />

The total MPE of a volume meter is the arithmetic sum of<br />

the MPEs of the subassemblies flow sensor (E f<br />

) and calculator<br />

(E c<br />

).<br />

MPE=E f<br />

+ E c<br />

3.7.2 MPE for subassemblies<br />

Flow sensor<br />

E f<br />

= ± (2+0.02 q p<br />

/q), max ±5%<br />

Temperature sensors<br />

E t<br />

= ± (0.5 + 3 ΔΘ min<br />

/ΔΘ)<br />

Calculator<br />

E c<br />

= ± (0.5 + ΔΘ min<br />

/ΔΘ)<br />

UK-QB 10.1481/11.04.2006<br />

Approvals according to EN 1434 class 2,<br />

environmental class C<br />

• Pattern approval certificate for HGQ and HGS volume<br />

meter TS 27.01-091, rev. 2. Certificate no. 1999-7053-<br />

1336, date 01.04.2001. Valid until 25.05.2009.<br />

• Pattern approval certificate for HGQ and HGS volume<br />

meter sub assembly (OEM version) without display TS<br />

27.01-123, rev. 1. Certificate no. 1999-7053-1597,<br />

date 01.04.2001.<br />

Supplement No. 1 to TS 27.01.123, date 23.06.2003.<br />

Valid until 01.04.2011.<br />

• Pattern approval certificate for HGQ and HGS heat<br />

meter sub assemblies (Calculator and Flow Sensor) TS<br />

27.01-090 rev. 2. Certificate no. 1999-7053-1335 date<br />

01.04.2001. Valid until 25.05.2009.<br />

• Pattern approval certificate for HGS-IV integrator<br />

TS27.01-132 certificate no. 2003-7053-1842 date<br />

24.03.2003. Valid until 2005.<br />

6<br />

5<br />

3<br />

0<br />

-3<br />

EN1434 cl. 2<br />

Factory tolerance<br />

OIML R75<br />

-5<br />

-6<br />

0.1% 1% 10% 100%<br />

Accuracy according to EN 1434 class 2<br />

3.8 Types and versions<br />

HGQ and HGS meter has following type description and<br />

ordering code.<br />

xx: Meter type:<br />

Q1: HGQ1<br />

Q3: HGQ3<br />

S5: HGS5<br />

S9: HGS9<br />

S16: HGS15<br />

S-IV: HGS-IV<br />

zz: Connection:<br />

R0: G¾Bx110<br />

R3: G1Bx130<br />

R4: G1Bx190<br />

R6: G1¼Bx260<br />

none: HGS-IV<br />

vvv: Menu/display:<br />

180: Special meter for<br />

flats<br />

182: Standard heat<br />

meter<br />

184: Special meter with<br />

peak values<br />

185 Combined heat and<br />

cooling meter<br />

188: Meters with peak<br />

values and tariff<br />

functions<br />

HGxx-zz-vvv/abcdef<br />

a: Power supply:<br />

1: 230 V AC<br />

2: 24 V AC<br />

b: Display backlight:<br />

B: With backlight<br />

-: No backlight<br />

c: No. of External meters:<br />

0, 1 or 2<br />

d: Communication module:<br />

M-Bus / LonWorks / RS232 /<br />

- none<br />

e: No. of accounting periods:<br />

0 / 6 / 12 / 24<br />

f: Programmed for glycol<br />

G20: 20 % glycol<br />

G25: 25 % glycol<br />

G30: 30 % glycol<br />

G35: 35 % glycol<br />

G40: 40 % glycol<br />

G50: 50 % glycol<br />

Example:<br />

HGS9-R4-184/1B2M24 is an energy meter with max flow 9<br />

m³/h, connection sixe R1B x 190 mm, display version 184,<br />

230 VAC connection, Display with back light, 2 pulse input,<br />

inserted M-Bus module and 24 accounting periods.<br />

Page of 32 Copyright ® <strong>Brunata</strong> a/s 2006


Meter type<br />

Meter<br />

type<br />

Permanent<br />

flow, q p<br />

C Version<br />

Voltage<br />

Backlight<br />

AUXmeters<br />

Communication<br />

Module<br />

Accounting<br />

periods<br />

HG x yy zz vvv / a b c d e f<br />

HGQ Q - - - - - - - - -<br />

HGS S - - - - - - - - -<br />

1.2 m 3 /h - 1 - - - - - - - -<br />

3 m 3 /h - 3 - - - - - - - -<br />

5 m 3 /h - 5 - - - - - - - -<br />

9 m 3 /h - 9 - - - - - - - -<br />

16 m 3 /h - 16 - - - - - - - -<br />

G¾B x 110 - - R0 - - - - - - -<br />

G¾B x 130 - - R1 - - - - - - -<br />

G¾B x 165 - - R2 - - - - - - -<br />

G1B x 130 - - R3 - - - - - - -<br />

G1B x 190 - - R4 - - - - - - -<br />

G1B x 220 - - R5 - - - - - - -<br />

G 5 ⁄4 B x 260 - - R6 - - - - - - -<br />

Volume meter without<br />

display<br />

- - - 107 - - - - - -<br />

Volume meter OEM-version - - - 107S - - - - - -<br />

Volume meter standard - - - 174 - - - - - -<br />

Volume meter tariff - - - 178 - - - - - -<br />

Energy meter basic version 1 - - - 180 - - - - - -<br />

Energy meter basic version 2 - - - 182 - - - - - -<br />

Energy meter standard<br />

version<br />

Combined meter heating/<br />

cooling<br />

- - - 184 - - - - - -<br />

- - - 185 - - - - - -<br />

Energy meter tariff version - - - 188 - - - - - -<br />

Voltage supply 230 V AC - - - - 1 - - - - -<br />

Voltage supply 24 V AC - - - - 2 - - - - -<br />

No backlight in display - - - - - - - - - -<br />

Backlight in display - - - - - B - - - -<br />

Nos of external meters - - - - - - 0 - - -<br />

Nos of external meters - - - - - - 1 - - -<br />

Nos of external meters - - - - - - 2 - - -<br />

Communication module<br />

None<br />

Communication module<br />

M-Bus<br />

Communication module RS<br />

232<br />

Communication module<br />

LonWorks<br />

- - - - - - - - - -<br />

- - - - - - - M - -<br />

- - - - - - - R - -<br />

- - - - - - - L - -<br />

Accounting periods - - - - - - - - 0 -<br />

Accounting periods - - - - - - - - 6 -<br />

Accounting periods - - - - - - - - 12 -<br />

Accounting periods - - - - - - - - 24 -<br />

Glycol percentage 5-50%<br />

(increments of 5) f.inst. 30%<br />

Glycol<br />

%<br />

- - - - - - - - - G30<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page of 32


4. Operating principles<br />

4.1 Operating principles for<br />

HGQ/HGS Meters<br />

Aux 1<br />

Aux 2<br />

Test pulse<br />

Flowsensor<br />

T forward<br />

T return<br />

/ Prescaler 1<br />

/ Prescaler 2<br />

A/D<br />

Fast<br />

pulse<br />

T forward<br />

T return<br />

DT<br />

Switch<br />

Fast<br />

pulse<br />

x K V<br />

Enthalpy<br />

table<br />

DV<br />

K<br />

DV<br />

Energy DE<br />

calculation<br />

Database<br />

(Sum<br />

Peak<br />

Tarif<br />

etc.)<br />

4.3 Volume measuring<br />

The measuring principle of the HGQ/HGS-meter is based on<br />

Faraday’s magnetic induction principle: When a conductor<br />

passes through a magnetic field a voltage is induced. The<br />

voltage is proportional to the velocity of the conductor. In<br />

the HG-meter the water act as moving conductor.<br />

The Digital Signal Processing circuit generates the magnetic<br />

field in the Flow Sensor and the entire measurement is<br />

synchronised with the mains 50 Hz. The magnetic field is<br />

operated as a pulsating DC field, with every second field in<br />

the negative direction to avoid DC offsets.<br />

DT<br />

The analogue section measures the flow and temperatures<br />

and converts them to digital values. The flow is represented<br />

as a fast pulse train (also used as test signal). The temperatures<br />

and the difference DT between t H<br />

and t L<br />

is sent to the<br />

enthalpy table. The energy for one measuring period (1.6 s)<br />

is calculated and sent to the database (DE) where the energy<br />

and flow is accumulated. The database section also handles<br />

the AUX inputs, and the calculation of min, max, mean temperatures<br />

etc.<br />

The Digital Signal Processing communicates simultaneously<br />

with HG’s service software (see chapt. 11), via the serial<br />

connection Test / Cal. / Adj.<br />

The serial data communication M-Bus / RS232 is handled by<br />

the communication unit. All registers within the Data Base<br />

Unit can be accessed via standard M-Bus protocol.<br />

In case of a volume meter the temperature measurement<br />

functions are omitted.<br />

4.2 HGS-IV integration unit<br />

The electronics and functions is the same as for HGQ / HGS,<br />

except that the meter is configured to receive flowpulses from<br />

an external flowsensor via AUX 1 input. See figure below.<br />

Therefore the AUX 1 can not be used for pulse counting.<br />

Reading of AUX 1 gives no meaning.<br />

The meter can be configured to almost any pulse value via<br />

two registers.<br />

The first register specifies the pulse value in ml.<br />

The magnetic field combined with the velocity of the water<br />

flow generates a signal U out , which is received by the Analogue<br />

Signal Processing. Subsequent to the analogue processing,<br />

the signal will be digitised and additionally processed by<br />

the Digital Signal Processing.<br />

The Digital Signal Processing, which has been carried out<br />

by the latest microprocessor technology, generates also the<br />

signals used for calibration purposes.<br />

4.4 Temperature measuring<br />

The HGQ and HGS meters are designed for use of platinum<br />

sensor with a nominal resistance of 100 or 500 ohm. The<br />

sensors are matched in pairs by computer to ensure maximum<br />

accuracy over the full measuring range.<br />

The meter performs a temperature measurement at each<br />

measuring period, meaning that the actual energy measurement<br />

always is correct.<br />

On the meter the values of forward and return temperatures<br />

are shown in one picture and the temperature difference in<br />

a separate picture with 2 decimals.<br />

UK-QB 10.1481/11.04.2006<br />

The second register specifies a multiplier raised to the power<br />

of 10.<br />

The pulse value can be in the range 1 ml to 1m 3 .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4.5 Energy calculation<br />

The meter contains two volume registers. The first contains<br />

the value of water registration used for energy calculation<br />

and the second the total value. A comparison of the two<br />

registers will show whether and for what volume the meter<br />

has been out of order, due to for instance. manipulation or<br />

faulty temperature sensors.<br />

The energy is calculated according to the formula in EN 1434/<br />

OIML R75, which simplified can be summed up as follows:<br />

E = v x Δθ x k<br />

v is the water volume flow velocity<br />

Δθ is the mean value of difference between the flow and the<br />

return temperature (t F<br />

– t R<br />

)<br />

Page 10 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


k is the water heat coefficient (enthalpy) from Dr. Stuck’s<br />

table. Refer to EN 1434-1.<br />

All current registers are automatically stored in EEPROM<br />

during operation. In case of power failure the meter configures<br />

itself during start up process.<br />

4.6 Menu structure and description<br />

While keeping the pushbutton pressed the display will run<br />

sequentially through the different menus. There are 4 menus<br />

available, they are indicated as 2, 3, 4 on the upper<br />

display section, however menu#1 has no such indication.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4.7 Display functions<br />

The HGQ/HGS meter has free programmable selection and<br />

sequence of display. The display sequence of the HGQ/HGS<br />

meter is fully flexible and the different displays can be placed<br />

in any of the 4 menus. On a standard meter, however, the<br />

displays are organised as follows:<br />

User menu basic (no indication):<br />

The most relevant information for the user such as accumulated<br />

consumption, current error code, and elapsed<br />

operating hours.<br />

User menu extended [2]:<br />

Other user information such as temperatures, peak values,<br />

tariff consumption, actual flow and power etc.<br />

File menu [3]:<br />

Stored data, maximum 24 accounting periods. All registered<br />

data including mean values but not current values such as<br />

actual flow.<br />

Service menu [4]:<br />

Service information such as display test, clock, pulse values,<br />

communication address, serial no etc.<br />

In the following the different displays are illustrated. Above<br />

each display you’ll find the relevant menu for standard<br />

meters. Displays designed for an energy meter are not<br />

applied on a volume meter, and some versions have a limited<br />

number of displays.<br />

<br />

<br />

<br />

1 Error message with<br />

error code<br />

When the desired menu icon is displayed just release the<br />

button and the chosen menu will be active. In order to<br />

monitor the associated displays in this particular menu you<br />

click the pushbutton once repeatedly.<br />

A double click is only used when displaying the historic menu<br />

in order to switch to the following data set of the accounting<br />

date. Refer to chapter 4.8 Accounting dates.<br />

3 1<br />

2<br />

2 Accumulated energy<br />

consumption [MWh]<br />

3 Accumulated volume<br />

consumption [m³ ]<br />

used for integration of<br />

energy consumption<br />

4 Accumulated volume<br />

consumption [m³] registered<br />

by flow sensor<br />

5 Operating hours [h]<br />

6 Accumulated error<br />

time in hours [h]<br />

1 Menu number<br />

2 Unit<br />

5<br />

6<br />

4<br />

3 Accounting period number with stored data<br />

4 Decimal point and frame indicating decimal fraction<br />

5 numerical value<br />

6 Indicates cooling mode on combined heating and<br />

cooling meters<br />

7 Flow and return temperatures<br />

[°C] Standard<br />

energy meter<br />

Cooling mode on<br />

combined heating and<br />

cooling meter<br />

8 Temperature difference<br />

[°C]<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 11 of 32


9 Actual power [kW]<br />

10 Actual flow [m³/h]<br />

11 Actual date and time<br />

[date is June 13, 2003<br />

and time is between<br />

10 and 11 hours]<br />

12 Latest error code and<br />

date/time it occurred<br />

13 Highest peak flow [m³/<br />

h] in current accounting<br />

period with date/time<br />

it occurred<br />

14 Highest peak power<br />

[ k W ] i n c u r r e n t<br />

accounting period with<br />

date/time it occurred<br />

15 Highest tempera -<br />

ture difference [°C]<br />

in current accounting<br />

period with date/time<br />

it occurred<br />

20 Display for customer<br />

code. Default setting<br />

is <strong>Brunata</strong> HG.<br />

21 Accumulated tariff<br />

energy consumption<br />

[$ + MWh]<br />

22 Accumulated tariff<br />

volume consumption<br />

[$ + m³]<br />

23 Criteria for tariff and<br />

special setting<br />

• Tariff based on minimum<br />

temperature difference<br />

[↓+ ∆t + $ + °C]<br />

• Tariff based on a period<br />

during the day [+ $]<br />

• Tariff based on maximum<br />

return temperature<br />

[↑ + t L<br />

+ $ + °C]<br />

• Tariff based on maximum<br />

power level [↑+<br />

$ + kW]<br />

• Tariff based on maximum<br />

flow level [↑+ $<br />

+ m³/h]<br />

• Tariff based on energy<br />

calculation having an<br />

fixed return temperature<br />

• Cooling mode on<br />

combined heating and<br />

cooling meter [COOL +<br />

$ + °C]<br />

16 Highest return temperature<br />

in heating<br />

systems [°C] in current<br />

accounting period<br />

and the corresponding<br />

flow temperature with<br />

date/time it occurred<br />

17 Mean temperature difference<br />

[°C] in current<br />

accounting period<br />

18 The meters manufacturing<br />

(serial) number.<br />

24 Display test<br />

25 External meter no. 1 [in<br />

this example programmed<br />

as m³]<br />

26 External meter no. 2<br />

[ in this example programmed<br />

as kWh]<br />

27 Glycol-% on a glycol<br />

heat meter<br />

UK-QB 10.1481/11.04.2006<br />

19 C o m m u n i c a t i o n<br />

address. Default setting<br />

is last 2 digits in<br />

serial number.<br />

28 Flow sensor position<br />

• Flow sensor in pipe with<br />

lowest temperature [FS<br />

+ t L<br />

] meaning return<br />

pipe in heating installations<br />

and flow pipe in<br />

cooling systems<br />

Page 12 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


• Flow sensor in pipe<br />

with highest temperature<br />

[FS + t H<br />

] meaning<br />

flow pipe in heating<br />

installations and return<br />

pipe in cooling systems<br />

29 Latest error code corrected<br />

with date<br />

30 Latest date/time the<br />

meters has been read<br />

remote<br />

31 Programmed volume<br />

pulse value [litres per<br />

pulse]<br />

32 Flow counter, only for<br />

test purpose<br />

33 Flow counter, only for<br />

test purpose<br />

34 A c c o u n t i n g d a t e<br />

sequence<br />

• Store data every day<br />

[Fr. d01]<br />

• Store data every<br />

seven days [Fr. d07]<br />

• Store data every<br />

month [Fr. C1]<br />

• Store data every quarter<br />

[Fr. C3]<br />

• Store data once a<br />

year [Fr. C12]<br />

60 Date and time for<br />

stored data. First display<br />

in all accounting<br />

periods<br />

Note:<br />

The underlined display numbers indicate values stored in<br />

File Menu.<br />

4.8 Accounting dates<br />

Storing of data at selected accounting dates means that you<br />

always have the metered consumption available at the exact<br />

accounting date even if the meter have not been read. The<br />

user can always go back and find the relevant information<br />

in the storage of the meter (menu #3, file menu). Up to 24<br />

accounting dates can be factory programmed. The storing of<br />

data occurs always at midnight at 00:01 (can not be altered).<br />

They can be seen on the display and are not accessible via<br />

the remote readout function.<br />

There are 4 modes the accounting dates can be (factory)<br />

programmed:<br />

• One selected day each month<br />

• Two selected days each month<br />

• Each x day<br />

• Each x month<br />

The contents and the sequence of this menu #3 depend on<br />

the contents of menu #1, #2, and #4.<br />

The data stored in File Menu (see chapter 4.7 Display functions)<br />

are indicated by an underlined display number, like<br />

14.<br />

Tariff energy and tariff volume is registered only when the<br />

programmed prerequisites are fulfilled. Refer to chapter 4.9<br />

Tariff function.<br />

The stored data menu will be empty and is displayed as<br />

_ _._ _._ _._ _ until the first accounting date has passed.<br />

In connection with the automatic remote readout the peak values<br />

and mean temperature values in user menu#2 are reset.<br />

35 Mean high temperature<br />

[°C] in current<br />

accounting period<br />

36 Mean low temperature<br />

[°C] in current<br />

accounting period<br />

37 Programmed mean<br />

temperature information<br />

[°C] stored in<br />

accounting dates. In this<br />

example: mean temperature<br />

difference<br />

38 Accumulated HF-pulses<br />

from flow sensor<br />

4.9 Tariff function<br />

Refer to appendix User manuals.<br />

The meter can be factory programmed to register energy and<br />

volume in special (tariff-)registers, when certain conditions<br />

and criteria are fulfilled:<br />

• Code for tariff criteria<br />

• Conditions for tariff registration<br />

• Stop time for tariff criteria<br />

Tarif criteria can be relected amongst the 7 different types,<br />

see display no. 23 in chapter 4.7 Display functions.<br />

In case the criteria is fulfilled normally energy and volume<br />

are registered in the 2 tariff registers in the extended user<br />

menu#2.<br />

NB: The meter does NOT take summer/winter time into<br />

account!<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 13 of 32


4.10 Back light<br />

In order to make the meter display readable even under dark<br />

light condition the meter is provided with a back light which<br />

function can be factory programmed in 3 modes:<br />

• No back light (standard)<br />

• Automatic back light (standard)<br />

• Back light on all the time (optional)<br />

In automatic mode the back-light is lit, whenever the pushbutton<br />

is pushed and extinguishes after one minute. Whenever an<br />

error code is displayed the back-light will flash simultaneously.<br />

4.11 Mean value algorithm<br />

Calculation of mean temperatures:<br />

The temperature is measured every 4.8 s and summed.<br />

Every 10 minutes the mean value is calculates by dividing the<br />

summed value by 125 (4.8s x 125 = 10 minutes). This value is<br />

then summed in a register. The mean value displayed is based<br />

on this register (value divided by number of accumulations),<br />

and can only be reset by resetting the meter.<br />

Thus: The mean temperatures are updated every 10 minutes.<br />

The meter is factory programmed as to which one of the<br />

three mean temperatures is to be displayed in the mean<br />

temperature display. The register of the chosen display will<br />

be stored on accounting dates and it will replace the mean<br />

temperature difference. None of the two other mean temperature<br />

readings are stored at the accounting date.<br />

Mean temperature is registered in the format XXX.X – i.e.<br />

one decimal – irrespective of any difference or the temperature<br />

displayed.<br />

Error Time 0 h<br />

Flow 0,000 m 3 /h<br />

Peak Flow, Date 01-01-1990 -<br />

Flow, Time 00:00:00 -<br />

Low Temp, Crsp. High Temp 73.37 °C<br />

Peak<br />

Low Temp, Date 28-05-2003 -<br />

Low Temp, Time 11:43:00 -<br />

Low Temperature 58.25 °C<br />

Power 0,000 kW<br />

Peak Power, Date 01-01-1990 -<br />

Power, Time 00:00:00 -<br />

Temp Diff 15.19 K<br />

Peak Temp Diff, Date 28-05-2003 -<br />

Temp Diff, Time 11:43:00 -<br />

4.13 Flow rates above q s<br />

When the flow rate exceeds 150 % of the permanent flow<br />

q p<br />

, the meter will constantly register 150 % (q s<br />

= 1,5 q p<br />

),<br />

which means there is no stop or interferences at higher<br />

flow rates.<br />

1.2 x q p =q s<br />

qp<br />

q<br />

Error<br />

UK-QB 10.1481/11.04.2006<br />

4.12 Reset function<br />

A number of parameters can be reset.<br />

• RESET is accomplished by the black push button while<br />

the hardware lock jumper is removed. Beware of the<br />

sealing!<br />

• Push the button in exceed of 0.6 seconds and - while<br />

still keeping the button pushed - mount the hardware<br />

lock jumper.<br />

• After the jumper has been mounted it is necessary<br />

to keep the button pushed for at least additional 3<br />

seconds to accomplish the desired RESET.<br />

The following data are affected by the RESET:<br />

• All peak and mean variables/times, which otherwise<br />

are zeroet at the beginning of the closing dates<br />

• Accumulated error time (B0R12)<br />

• Latest error code (B0R0)<br />

• If current error code register (B0R30) is empty – irrespective<br />

a possible Power On error – the Time error<br />

happened register (B0R29) would be reset.<br />

• The table below shows an example of the RESET function<br />

q i<br />

0<br />

q i<br />

(q p /1000)<br />

q s 200%qs 300%q s<br />

When the flow rate enters the normal measurement range<br />

again the meter again registers correct.<br />

Note:<br />

It is not possible to damage the Flow Sensor by overload!<br />

4.14 Flow rates below q i<br />

At very low flow rates<br />

qp<br />

0,25 q i<br />

< q < q i<br />

a special signal validation technique is used in order to eliminate<br />

errors occur due to the unavoidable noise of the very<br />

weak flow signal. Every sample is compared to the previous<br />

one and only if there are 5 successive validated sample signals<br />

the 5 measurements will be used for further processing and<br />

registered as valid signals. This means that the meter does<br />

not register faulty signals.<br />

Qabs<br />

Page 14 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


4.15 Back-up battery<br />

4.15.1 Battery Function<br />

The meter is provided with a back up battery Lithium 3 V<br />

type CR 2032 for:<br />

• Date and time<br />

• Data and meter set up<br />

The meters microcontroller and its memory is supplied either<br />

from the internal power supply (as long as the mains is supplied)<br />

or the battery via couple of diodes.<br />

In case of low battery a warning battery icon and an Error-<br />

Code #5 is displayed. It is recommended to change the battery<br />

soonest possible. The battery is in function only during<br />

times, when the meter is NOT mains operated and has an<br />

expected live time of at least 10 years.<br />

Whenever the mains supply is connected (or in connection<br />

with a battery renewal after a low battery state) a self-start<br />

automatic data and set up recovery from EEPROM is established.<br />

The ErrorCode #9 indicates the date and time failure.<br />

In order to set the date and time a PC and a the HGQ/HGS<br />

service program is needed.<br />

The internal data back up to the EEPROM is accomplished daily<br />

at 00:01. Refer to chapter 11 HGQ/HGS Service Program.<br />

4.15.2 Change of battery<br />

The Lithium battery may be changed by qualified personnel<br />

only!<br />

The battery MUST ALWAYS be changed with the mains connected<br />

– otherwise the microcontroller reset will not function<br />

properly, the meter will not work correct and the battery will<br />

discharge very fast afterwards.<br />

In order to get access to the battery the PCB has to be<br />

unscrewed from the case and lifted up. With the mains supplied<br />

(!) and the meter running, the battery can be pulled out<br />

of the battery holder and can be replaced by a new one.<br />

Do NOT use metallic tools in order to avoid short-circuiting<br />

the battery during this process.<br />

4.16 Info and error codes<br />

Error handler: Running once every minute. Up to one minute<br />

to clear the error code.<br />

The last ten error events are accessible on the display.<br />

Remote reading:<br />

• HGQ/HGS Versions from EG: Remote reading: Via<br />

M-Bus (EC) or LON (nvoErrorCode) the meter can<br />

transmit two ErrorCode bytes showing the current<br />

ErrorCode. The current error also can be shown in the<br />

meter display together with its date and time stamp.<br />

Be aware of the different ways these codes appear,<br />

depending upon the mode of representation.<br />

• Versions before EG: Via M-Bus (EC) or LON (nvoErrorCode<br />

) the meter can read out an error code byte. This byte<br />

contains the previous error code, while the current error<br />

code and time/date appear in the meter display. The date<br />

and time of the previous error appear from the M-bus<br />

(EC) or LON (nvoError Code).<br />

The error code can be compounded of more than one element,<br />

meaning that it is possible to display several simultaneous<br />

errors.<br />

Example 1:<br />

Display shows: ERROR 43<br />

Current error with the following meaning: Error #4 and<br />

error #3<br />

Error codes:<br />

0. No current errors<br />

1. Interruption of Power Supply<br />

2. No water pulses were detected within the last 24 hours<br />

while the temperature difference was more than 20 °C<br />

3. t H<br />

temperature sensor failure<br />

4. t L<br />

temperature sensor failure<br />

5. Low voltage of back-up battery<br />

6. *Flow sensors magnet coil short circuit to ground or<br />

disconnected<br />

7. *Error in the meter configuration<br />

8. *Negative Δt. Heat meter temperature sensors are<br />

swapped (This error does not occur in cooling meters)<br />

9. **The clock has not been set<br />

*from version EG1, Error 6 does not occur when the H/W lock is open!<br />

**from version EG2<br />

The 9 bits interpretation of the 2 byte error code:<br />

Example 2:<br />

Read out via M-Bus (EC) or LON (nvoErrorCode): 12<br />

This current error means: The decimal value 12 is the sum of<br />

8 + 4, corresponding to the error codes 4 and 3. This is an<br />

indication of the errors #4 and #3.<br />

Some other examples of possible error codes presentation:<br />

Decimal value<br />

Errorcode element<br />

Eksample:<br />

Error #4 and #3<br />

256 128 64 32 16 8 4 2 1<br />

9 8 7 6 5 4 3 2 1<br />

Display<br />

43<br />

SUM<br />

LON<br />

12<br />

Error examples<br />

Error codes 0 and 1 are not shown in the display.<br />

Whenever an ErrorCode is displayed the back-light will flash<br />

simultaneously.<br />

Register<br />

Bank 8<br />

HGQ/HGS<br />

Display<br />

Errors<br />

M-Bus<br />

telegram<br />

Decimal<br />

values<br />

0 - - - 0<br />

80 Error 8 8 128 128<br />

100 Error 9 9 256 256<br />

110 Error 95 9 & 5 272 256+16<br />

190 Error 985<br />

9 & 8<br />

& 5<br />

400 256+128+16<br />

A0 Error 86 8 & 6 160 128+32<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 15 of 32


4.17 Stored data and recovery<br />

Whenever the mains supply is connected (or in connection<br />

with a battery renewal after a low battery state) a self-start<br />

automatic data and set up recovery from EEPROM is established.<br />

The ErrorCode #9 indicates the date and time failure.<br />

In order to set the date and clock a PC and a dedicated service<br />

program is needed.<br />

The internal data back up to the EEPROM is accomplished<br />

daily at 00:01.<br />

5. Dimensions<br />

5.1 Flow sensors<br />

5.1.1 HGQ<br />

Type and maximum<br />

flow<br />

D Thread B1<br />

B2<br />

H<br />

L<br />

HGQ1<br />

1,2m 3 /h<br />

HGQ3<br />

3m 3 /h<br />

[mm]<br />

[mm]<br />

[mm]<br />

[mm]<br />

-R0-<br />

110<br />

-R1- 1) 15 G 3 / 4<br />

B<br />

130<br />

-R2- 1) 165<br />

42 60 79<br />

-R3-<br />

130<br />

-R4- 20 G1B<br />

190<br />

-R5- 1) 220<br />

1) with adaptor<br />

5.1.2 HGS<br />

Type and maximum flow D Thread L<br />

HGS5<br />

5m 3 /h<br />

HGS9<br />

9m 3 /h<br />

HGS16<br />

16m 3 /h<br />

[mm]<br />

-R4-<br />

G1B 190<br />

20<br />

-R5- G1B 1) 220<br />

-R6-<br />

G1 1 / 4<br />

B<br />

25<br />

R4-DN25 DN25 2)<br />

260<br />

R4-DN32 32 DN32 2)<br />

R4-DN40 40 DN40 2) 300<br />

UK-QB 10.1481/11.04.2006<br />

R4-DN50 50 DN50 2) 270<br />

1) With adapter<br />

2) With flanged screwed on the meter<br />

Page 16 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


5.2 Electronics<br />

5.2.1 Standard<br />

<br />

<br />

<br />

<br />

HG<br />

Q<br />

<br />

<br />

Sensor<br />

Thread<br />

G<br />

Diameter<br />

D [mm]<br />

Length<br />

EL [mm]<br />

Length<br />

AL [m]<br />

DS M10 x 1 Ø8.4 27.5 Max 8<br />

Dimensions of DS-sensor<br />

5.2.2 OEM-version<br />

<br />

Cable<br />

length<br />

[metres]<br />

Cable<br />

dimension<br />

[mm²]<br />

Max<br />

sensor<br />

temp.<br />

[°C]<br />

Max<br />

cable<br />

temp.<br />

[°C]<br />

Max<br />

temp.<br />

diff.<br />

[Kelvin]<br />

Sensor<br />

tip<br />

material<br />

Cable<br />

material<br />

70 mm<br />

1.5<br />

3.0<br />

5.0<br />

8.0<br />

2 x 0.22 180 180 3-150<br />

Stainless<br />

steel<br />

Silicon<br />

Direct sensors DS<br />

5.3.2 Pocket sensors PS with fixed cable<br />

120 mm<br />

Pocket sensors PS are standard for HGS meters with pocket<br />

length 85 mm. One sensor is installed in flow pipe and the<br />

other in return. For large pipes longer sensor pockets may<br />

be applicable.<br />

Dimensions, see sketch and table below<br />

5.3 Temperature sensors<br />

5.3.1 Direct sensors DS<br />

Direct sensors DS are standard for HGQ meters where one<br />

sensor is installed directly into the flow sensor and the second<br />

sensor in the piping. The sensor tip is made in stainless steel<br />

with in diameter 3.3 mm, see sketch and table below. For<br />

installation in the piping adapter with thread R½ or R¾ is<br />

supplied.<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 17 of 32


Sensor<br />

Diameter<br />

D [mm]<br />

Length<br />

EL<br />

[mm]<br />

Pocket<br />

thread<br />

[inch]<br />

Length<br />

AL [m]<br />

Pocket<br />

material<br />

Pocket<br />

length<br />

[mm]<br />

6. Pressure ratings and<br />

flow ranges<br />

PS Ø6 50 R½ Max 8<br />

Brass<br />

(standard)<br />

Stainless<br />

steel<br />

(option)<br />

60<br />

85<br />

120<br />

210<br />

kPa<br />

100.0<br />

HGQ1<br />

HGQ3 HGS5 HGS9<br />

HGS16<br />

bar<br />

1<br />

Dimensions of PS-sensor<br />

10.0<br />

0.1<br />

Cable<br />

length<br />

[metres]<br />

1.5<br />

3.0<br />

5.0<br />

8.0<br />

Cable<br />

dimension<br />

[mm²]<br />

5.3.3 Head sensors<br />

Max<br />

sensor<br />

temp.<br />

[°C]<br />

Max<br />

cable<br />

temp.<br />

[°C]<br />

Max<br />

temp.<br />

diff.<br />

[Kelvin]<br />

2 x 0.22 180 180 3-150<br />

Sensor<br />

tip<br />

material<br />

Cable<br />

material<br />

Stainless<br />

steel<br />

Silicon<br />

Pocket sensors PS<br />

Pocket sensors without cable are use where longer cables as<br />

8 metres are needed, or for special installation f.inst. where<br />

more sensors are needed in one pipe.<br />

Cable<br />

length<br />

[metres]<br />

Cable<br />

dimension<br />

[mm²]<br />

5 0.75<br />

8 0.75<br />

10 1.00<br />

12 1.00<br />

15 1.00<br />

18 1.50<br />

20 1.50<br />

Cable material<br />

Max. cable<br />

temp.<br />

[°C]<br />

Silicone 175<br />

25 1.50<br />

Fig 19 Head temperature sensors without cable<br />

1.0<br />

0.1<br />

0.01<br />

1 10<br />

3<br />

Flow m /h 100<br />

Pressure loss<br />

The volume flow rate is a function of the flow velocity and the size<br />

of the liner. That’s why the pressure losses for all e.g. HGQ1´s are<br />

the same, regardless of the physical meter versions (see chapter<br />

5.1 Flow sensors).<br />

Meter<br />

Minimum<br />

flow<br />

(q i )<br />

[l/h]<br />

Permanent<br />

flow<br />

(q p )<br />

[m 3 /h]<br />

Pressure<br />

drop<br />

at (q p )<br />

[kPa]<br />

Maximum<br />

flow<br />

(q s )<br />

[m 3 /h]<br />

Pressure<br />

drop<br />

at (q s )<br />

[kPa]<br />

HGQ1-RY-ZZ 4.8 1.2 19 1.5 35<br />

HGQ3-RY-ZZ 12 3.0 23 3.6 35<br />

HGS5-RY-ZZ 20 5.0 25 6.0 38<br />

HGS9-RY-ZZ 36 9.0 25 10.8 38<br />

HGS16-RY-ZZ 64 16.0 25 19.2 38<br />

RY: Size R1, R2, R3, R4, R5 or R6 (see “dimensions”)<br />

Flow ranges<br />

Flow<br />

Max. sensor Max. temp.<br />

Pocket<br />

sensor Material<br />

temp. difference<br />

dimensions<br />

size<br />

[°C] [Kelvin]<br />

G½ x 85 mm DN 40-50 Stainless steel<br />

G½ x 120 mm DN 65-100 AISI 316T 180 3-180<br />

G½ x 210 mm DN 125-150<br />

(1.4571)<br />

Fig 20: Pockets for head sensors<br />

UK-QB 10.1481/11.04.2006<br />

Page 18 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


7. Input / Output<br />

7.1 HGQ/HGS Standard electronics<br />

7.2 HGQ/HGS – 107 electronics<br />

Same as above but without display, and pushbutton.<br />

7.3 HGQ/HGS OEM electronics<br />

Application of OEM electronics in a ABB Metering F4 case<br />

14<br />

13<br />

12<br />

11<br />

5<br />

3<br />

6<br />

10<br />

Note:<br />

The sensor cable must not be modified by any means. The<br />

sensor with its cable is calibrated together with the meter<br />

electronics. They share identical serial numbers.<br />

Nr. Name Function / Specification<br />

1 Flow Sensor Flow Sensor input<br />

2<br />

1) 2)<br />

3<br />

1) 2)<br />

Pt. Forward<br />

(High)<br />

Pt. Return (Low)<br />

The connection of Pt100/Pt500 temperature<br />

sensor in the Flow pipe<br />

The connection of Pt100/Pt500 temperature<br />

sensor in the Return pipe<br />

4 Mains 230 Volt +10 % -15 % 50 Hz<br />

5 A1, B1 1. Serial communication connection<br />

MBus<br />

6 A2, B2 2. Serial communication connection<br />

MBus parallel to A1, B1<br />

7 Volume pulse<br />

output<br />

8<br />

1) 2)<br />

1<br />

2<br />

3<br />

4<br />

Energy pulse<br />

output<br />

9 1. Extern. pulse<br />

input<br />

10 2. Extern. pulse<br />

input<br />

Darlington opto coupler pulse output<br />

max. 20 mA 28 Volt. (Refer to 6.4)<br />

Darlington opto coupler pulse output<br />

max. 20 mA 28 Volt. (Refer to 6.4)<br />

1. Pulse input from external meter /<br />

counter. (Refer to 6.5)<br />

2. Pulse input from external meter /<br />

counter. (Refer to 6.5)<br />

11 +5V +5 Volt max. 5mA (for ext. calculator)<br />

12 M52 Serial communication in use for configuration<br />

and test<br />

13 M57 High resolution volume output (see test<br />

and adjustment)<br />

14 2) Push button To step through the menus.<br />

1) Only in use when configured as energy meters<br />

2) Not available in -07 version<br />

This also apply for the energy integrator HGS-IV<br />

9<br />

5 6 7 8<br />

1<br />

Note:<br />

The sensor cable must not be modified by any means. The<br />

sensor with its cable is calibrated together with the meter<br />

electronics. They share identical serial numbers.<br />

Nr. Name Function / Specification<br />

1 M31: 230VAC Mains 230 Volt +10 % -15 % 50 Hz<br />

2 M11 & M12:<br />

Flow Sensor<br />

Flow Sensor input<br />

3 M52 Serial communication in use for configuration<br />

and test<br />

4 M51 Connection to calculator<br />

5 M53 For external 3V Lithium battery<br />

(optional)<br />

6 M57 High resolution volume output (see<br />

test and adjustment)<br />

7 M54 Volume<br />

pulse output<br />

Single transistor opto coupler pulse<br />

output max. 0.8 mA 28 Volt. Refer to<br />

6.4. The OEM version is provided with<br />

a single transistor opto coupler output<br />

with a max. Von < 0.6V<br />

7.4 Pulse input specifications<br />

7.4.1 Pulse Input (AUX1 & AUX2) - Connection<br />

Not applicable for the OEM version - no AUX inputs available.<br />

HGQ/HGS has two (galvanic separated) opto coupler inputs:<br />

+AUX1- and +AUX2-.<br />

These are (opto coupler) diode inputs and the polarity of the<br />

connections has to be observed.<br />

4<br />

7<br />

2<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 19 of 32


+5V<br />

Contact<br />

100R<br />

1 2<br />

Active<br />

external<br />

source<br />

+<br />

-<br />

+<br />

AUX1<br />

-<br />

10K<br />

+<br />

10K<br />

Potentialfree<br />

pulse contact<br />

+<br />

AUX2<br />

-<br />

-<br />

0V<br />

AUX1 galvanic isolated. AUX2 not isolated<br />

AUX1 galvanic isolated - AUX2 not isolated<br />

V on<br />

V off<br />

> 2,5 Volt<br />

< 0,9 Volt<br />

+V max<br />

< 48 Volt<br />

t on<br />

t off<br />

> 50 ms<br />

> 50 ms<br />

Input specification<br />

AUX inputs galvanic isolated<br />

7.4.2 Description of the AUX input<br />

The AUX1 & AUX2 inputs permit the registration of pulsebased<br />

inputs from various signal sources such as volume,<br />

flow, energy, time and others. The internal sampling timing<br />

is 20 ms and pulses (t on<br />

and t off<br />

) as short as of 30 ms can<br />

be registered.<br />

These pulse count registrations are completely independent<br />

of the normal registration from the flow sensor and are<br />

visible on the display as AC1 and AC2 with 6 digits*) with<br />

appropriate units or a non-unit »BLANK«.<br />

UK-QB 10.1481/11.04.2006<br />

AUX inputs not isolated<br />

7.4.3 Prescaler<br />

The prescalers of the AUX inputs are programmable according<br />

to the different input source scale factors and the desired<br />

display resolution. The prescaler setting is not available from<br />

the display.<br />

The prescaler (divider) setting determines how many input<br />

pulses are necessary for a correct change of the last display<br />

digit (LSD):<br />

As an example you may have a volume signal source<br />

with 2.5 litre /pulse and you may wish to display<br />

the m 3 display with 3 decimals. This is not possible,<br />

because the last digit of a 3 decimal display represents 1<br />

litre. With the appropriate choice of 2 decimals the last digit<br />

displays 10 litres and will change for every 4 pulses at the<br />

input, i.e. the prescaler has to be 4.<br />

The AUX registrations are also readable (rounded to 6 digits*)<br />

via the communication port (M-Bus, LON etc), and will be<br />

stored in the file menu.<br />

Number of decimals: 0, 1, 2 and 3<br />

Page 20 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


Volume units: m 3<br />

Flow units: m 3 /h<br />

Energy units:<br />

Time units:<br />

Prescaler input divider:<br />

GJ, MWh and kWh<br />

hours<br />

1 to 30,000 (Integers only).<br />

0 = disabled<br />

*) 999999 or 99999.9 or 9999.99 or 999.999. The position of the decimal<br />

point can be chosen to be 1 2 or 3, where the pulse-factor (unit/pulse) has<br />

to be considered. You may not choose 3 decimals at 0.25 litre/pulse, because<br />

the last digit position correspondences to 0.1 litre/pulse. 0.25 litre/pulse<br />

requires max. 2 decimals.<br />

The normal display for energy and volume shows up to 9 digits<br />

[999999999]. The following count will reset the internal register and<br />

display to 0.<br />

Prescaler examples:<br />

In order to illustrate the prescaler function, let’s assume the<br />

display is set to m 3 with 1 decimal and shows 102.4 m 3 .<br />

The input pulse represents 0.01 litre/pulse.<br />

The last decimal indicates 0.1 m 3 = 100 litres<br />

To increment the display unit (= 1 m 3 ) there must appear<br />

(1,000 litre) / (0.01 litre/pulse) = 100,000 pulses at the AUX<br />

terminals.<br />

However, the resolution of the display is 100 litres. Hence the<br />

prescaler has to be: 100 litre / 0.01 litre/pulse = 10,000.<br />

The low-resolution pulses are directly accessible by the user,<br />

while the high-resolution pulses appear as an serial data<br />

stream at the M57 connector. Refer to the chapter 9 Test<br />

and adjustment for details. The accumulated high-resolution<br />

pulses can be displayed.<br />

HGQ/HGS Energy Meter has two (galvanic separated) opto<br />

coupler outputs: -VOL+ and -ENERGY+ and the Volume<br />

Meter only the -VOL+ terminal pair.<br />

These are (opto coupler) transistor switch outputs and the<br />

polarity of the connections must be observed. The standard<br />

version has a Darlington, the OEM version a single phototransistor<br />

output.<br />

ON is defined to be a conducting transistor with a LOW<br />

output.<br />

+V<br />

V on<br />

GND<br />

1,6s<br />

T<br />

ton<br />

t off<br />

Output pulse timing<br />

Number of pulses<br />

to increment the<br />

display unit<br />

Pulse factor<br />

7.5 Pulse output specifications<br />

For volume as well as energy consumption there are to types<br />

of pulses inherent in the meter:<br />

• High resolution pulses<br />

• Low resolution pulses<br />

Display<br />

unit<br />

Number of<br />

decimals<br />

on display<br />

Choice<br />

of prescaler<br />

100,000 0.01 l m 3 1 10,000<br />

100,000 0.01 l m 3 2 1,000<br />

100,000 0.01 l m 3 3 100<br />

40,000 0.025 l m 3 1 4,000<br />

40,000 0.025 l m 3 2 400<br />

40,000 0.025 l m 3 3 40<br />

100,000 0.01 Wh kWh 1 10,000<br />

100,000 0.01 Wh kWh 2 1,000<br />

100,000 0.01 Wh kWh 3 100<br />

10,000,000 0.1 Wh MWh 3 10,000<br />

4,000,000 0.25 Wh MWh 3 4,000<br />

100,000 0.01 kWh MWh 1 10,000<br />

100,000 0.01 kWh MWh 2 1,000<br />

100,000 0.01 kWh MWh 3 100<br />

40,000 0.025 kWh MWh 1 4,000<br />

100 0.01 kWh kWh 0 100<br />

100 0.01 kWh kWh 1 10<br />

40 0.025 kWh kWh 0 40<br />

40 0.025 kWh kWh 1 4<br />

10 0.1 kWh kWh 0 10<br />

10 0.1 kWh kWh 1 1<br />

Prescaler examples<br />

STD<br />

OEM<br />

+V max<br />

28 Volt<br />

I max<br />

20 mA 0.8mA<br />

V on max<br />

1,5 Volt 0.6V<br />

Output specification<br />

1. Tolerance of t on<br />

: ± 5ms<br />

2. t off<br />

≥ t on<br />

3. Pulse period T = t on<br />

+ t off<br />

4. t on min<br />

= 20 ms (with increments of 20 ms)<br />

T min<br />

= 40 ms (with increments of 40 ms)<br />

Output pulse timing<br />

+V<br />

Standard & 07<br />

R=<br />

+ V - 1.5<br />

5 mA<br />

Approx. R for<br />

I = 5mA<br />

R=<br />

OEM<br />

- V - 0.6<br />

0.8 mA<br />

Approx. R for<br />

I = 0.8 mA<br />

3V - 3 kΩ<br />

5V 700 Ω 5.5 kΩ<br />

10V 1.7 kΩ 11 kΩ<br />

15V 2.7 kΩ 18 kΩ<br />

20V 3.7 kΩ 25 kΩ<br />

24V 4.5 kΩ 30 kΩ<br />

28V 5.3 kΩ 35 kΩ<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 21 of 32


t on<br />

and t off<br />

are programmable in increments of 20 ms, i.e.<br />

increments of T = 40 ms.<br />

The volume/pulse factor V p<br />

has to be set accordingly. Refer<br />

to the following pages.<br />

7.5.1 Pulse Output - Connection (Galvanic separated)<br />

7.5.2 Pulse Output - Connection (NOT galvanic separated)<br />

I<br />

I<br />

+<br />

-VOL+<br />

Terminal pair<br />

+<br />

-<br />

-VOL+<br />

Terminal pair<br />

-<br />

+V<br />

Output galvanic isolated<br />

Output NOT isolated<br />

7.5.3 Minimum Volume/Pulse value V p for q s<br />

HGQ1 HGQ3 HGS5 HGS9 HGS16<br />

q p<br />

m 3 /h 1.2 3 5 9 16<br />

q s<br />

litre/h 1,440 3,600 6,000 10,800 19,200<br />

T = t on<br />

+t off<br />

Pulse period<br />

[ms]<br />

Minimum volume/pulse value V p<br />

(litre/pulse)<br />

For 1.2·q p<br />

at a given pulse period<br />

40 0.025 0.1 0.1 0.25 0.25<br />

80 0.1 0.1 0.25 0.25 1<br />

120 0.1 0.25 0.25 1 1<br />

160 0.1 0.25 1 1 1<br />

200 0.1 0.25 1 1 2.5<br />

240 0.25 1 1 1 2.5<br />

280 0.25 1 1 1 2.5<br />

320 0.25 1 1 1 2.5<br />

360 0.25 1 1 2.5 2.5<br />

400 0.25 1 1 2.5 2.5<br />

440 0.25 1 1 2.5 10<br />

480 0.25 1 1 2.5 10<br />

520 0.25 1 1 2.5 10<br />

560 1 1 2.5 2.5 10<br />

600 1 1 2.5 2.5 10<br />

640 1 1 2.5 2.5 10<br />

680 1 1 2.5 2.5 10<br />

720 1 1 2.5 2.5 10<br />

760 1 1 2.5 2.5 10<br />

800 1 1 2.5 2.5 10<br />

840 to 1,560 1 2.5 10 10 10<br />

Connection of pulse output<br />

7.5.4 Volume/flow pulse value<br />

For other flow values - not covered by the table above - the<br />

volume/pulse value V p<br />

can be calculated:<br />

• Choose a pulse length ton (20 ms ≤ t on<br />

< 800 ms)<br />

resulting in a pulse period of T = 2t on<br />

= t on<br />

+ t off<br />

(40 ms<br />

≤ T < 1.6 s)<br />

• Maximum number of complete output pulse periods T<br />

during the measurement period of 1.6s:<br />

N=1.6 s/T<br />

Get the integer N from this.<br />

• Divide this integer N by 1.6 s and multiply by 3,600 s<br />

in order to obtain the maximum number of complete<br />

output pulse periods per hour:<br />

M=3,600*N/1.6<br />

• Now the minimum volume/pulse value V p<br />

for a given<br />

max. flow q s<br />

can be calculated:<br />

V p<br />

= q s /M<br />

• Choose the next possible higher volume/pulse value.<br />

UK-QB 10.1481/11.04.2006<br />

Example:<br />

HGS16 (with a max. measurable flow of q s<br />

= 1,2 * 16 m 3 /h<br />

= 19.2 m 3 /h)<br />

If you want to measure a max. flow of q max<br />

=15 m 3 /h:<br />

T = 280 ms<br />

Page 22 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


n = (1.6/0.28) = 5.7 pulses/measurement period<br />

The integer of this is:<br />

N = 5 and M = (5*3,600/1,6) = 11,250 complete pulse<br />

periods per hour<br />

V p<br />

= (15,000/11,250) = 1.33 litre/pulse<br />

The next possible higher value is V p act<br />

= 2.5 litre/pulse has<br />

to be chosen in order not to exceed the maximum possible<br />

pulses/ hour of 11,250.<br />

Recalculation of the actual pulse periods/hour:<br />

M act<br />

= (q s<br />

/ V p<br />

) = 15,000 litre/h /2.5 litre/pulse = 6,000 complete<br />

pulse periods per hour<br />

which (of course) is less than 11,250.<br />

7.5.5 Max. measurable flow before limit<br />

Refer to tables on following pages showing the dependency<br />

of pulse period T, pulse value Vp and the associated maximum<br />

flow where a limitation occurs.<br />

During the measuring period of 1.6s a pulse train appears<br />

with a pulse period T and a pulse value Vp (litre/pulse).<br />

Whenever the pulse count times the pulse period time T<br />

exceeds the measuring period, the maximum measurable<br />

flow is exceeded and limited according to the table values.<br />

Bold numbers indicate the absolute maximum flow of the<br />

meter itself; the other ones show the limited flow due to the<br />

choice of pulse period T and the litre/pulse scaling.<br />

Example: HGQ1: 0.25 litre/pulse. Up to 520 ms the maximum<br />

flow is the meters inherent maximum of 1440 litre/h.<br />

For T>520 ms the max. measurable flow is limited to 563<br />

litre/h.<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 23 of 32


HG meter type HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16 HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16<br />

q p<br />

l/h 1200 3000 5000 9000 16000 1200 3000 5000 9000 16000<br />

1,2 x q p<br />

1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

T =t on<br />

+t off<br />

Pulse value = 0.01 liter/pulse Pulse value = 0.025 liter/pulse<br />

[ms]<br />

[l/h]<br />

40 900 900 900 900 900 1440 2250 2250 2250 2250<br />

80 450 450 450 450 450 1125 1125 1125 1125 1125<br />

120 293 293 293 293 293 731 731 731 731 731<br />

160 225 225 225 225 225 563 563 563 563 563<br />

200 180 180 180 180 180 450 450 450 450 450<br />

240 135 135 135 135 135 338 338 338 338 338<br />

280 113 113 113 113 113 281 281 281 281 281<br />

320 113 113 113 113 113 281 281 281 281 281<br />

360 90 90 90 90 90 225 225 225 225 225<br />

400 90 90 90 90 90 225 225 225 225 225<br />

440 68 68 68 68 68 169 169 169 169 169<br />

480 68 68 68 68 68 169 169 169 169 169<br />

520 68 68 68 68 68 169 169 169 169 169<br />

560 45 45 45 45 45 113 113 113 113 113<br />

600 45 45 45 45 45 113 113 113 113 113<br />

640 45 45 45 45 45 113 113 113 113 113<br />

680 45 45 45 45 45 113 113 113 113 113<br />

720 45 45 45 45 45 113 113 113 113 113<br />

760 45 45 45 45 45 113 113 113 113 113<br />

800 45 45 45 45 45 113 113 113 113 113<br />

840 to 1560 23 23 23 23 23 56 56 56 56 56<br />

HG meter type HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16 HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16<br />

q p<br />

l/h 1200 3000 5000 9000 16000 1200 3000 5000 9000 16000<br />

1,2 x q p<br />

1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

T =t on<br />

+t off<br />

Pulse value = 0.1 liter/pulse Pulse value = 0.25 liter/pulse<br />

[ms]<br />

[l/h]<br />

40 1440 3600 6000 9000 9000 1440 3600 6000 10800 19200<br />

80 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

120 1440 2925 2925 2925 2925 1440 3600 6000 7313 7313<br />

160 1440 2250 2250 2250 2250 1440 3600 5625 5625 5625<br />

200 1440 1800 1800 1800 1800 1440 3600 4500 4500 4500<br />

240 1350 1350 1350 1350 1350 1440 3375 3375 3375 3375<br />

280 1125 1125 1125 1125 1125 1440 2813 2813 2813 2813<br />

320 1125 1125 1125 1125 1125 1440 2813 2813 2813 2813<br />

360 900 900 900 900 900 1440 2250 2250 2250 2250<br />

400 900 900 900 900 900 1440 2250 2250 2250 2250<br />

440 675 675 675 675 675 1440 1688 1688 1688 1688<br />

480 675 675 675 675 675 1440 1688 1688 1688 1688<br />

520 675 675 675 675 675 1440 1688 1688 1688 1688<br />

560 450 450 450 450 450 1125 1125 1125 1125 1125<br />

600 450 450 450 450 450 1125 1125 1125 1125 1125<br />

640 450 450 450 450 450 1125 1125 1125 1125 1125<br />

UK-QB 10.1481/11.04.2006<br />

680 450 450 450 450 450 1125 1125 1125 1125 1125<br />

720 450 450 450 450 450 1125 1125 1125 1125 1125<br />

760 450 450 450 450 450 1125 1125 1125 1125 1125<br />

800 450 450 450 450 450 1125 1125 1125 1125 1125<br />

840 to 1560 225 225 225 225 225 563 563 563 563 563<br />

Page 24 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


HG meter type HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16 HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16<br />

q p<br />

l/h 1200 3000 5000 9000 16000 1200 3000 5000 9000 16000<br />

1,2 x q p<br />

1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

T =t on<br />

+t off<br />

Pulse value = 1 liter/pulse Pulse value = 2.5 liter/pulse<br />

[ms]<br />

[l/h]<br />

40 1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

80 1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

120 1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

160 1440 3600 6000 10800 19200 1440 3600 6000 10800 19200<br />

200 1440 3600 6000 10800 18000 1440 3600 6000 10800 19200<br />

240 1440 3600 6000 10800 13500 1440 3600 6000 10800 19200<br />

280 1440 3600 6000 10800 11250 1440 3600 6000 10800 19200<br />

320 1440 3600 6000 10800 11250 1440 3600 6000 10800 19200<br />

360 1440 3600 6000 9000 9000 1440 3600 6000 10800 19200<br />

400 1440 3600 6000 9000 9000 1440 3600 6000 10800 19200<br />

440 1440 3600 6000 6750 6750 1440 3600 6000 10800 16875<br />

480 1440 3600 6000 6750 6750 1440 3600 6000 10800 16875<br />

520 1440 3600 6000 6750 6750 1440 3600 6000 10800 16875<br />

560 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

600 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

640 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

680 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

720 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

760 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

800 1440 3600 4500 4500 4500 1440 3600 6000 10800 11250<br />

840 to 1560 1440 2250 2250 2250 2250 1440 3600 5625 5625 5625<br />

HG meter<br />

type<br />

HGQ 1 HGQ 3 HGS 5 HGS 9 HGS 16<br />

q p<br />

l/h 1200 3000 5000 9000 16000<br />

1,2 x q p<br />

1440 3600 6000 10800 19200<br />

T =t on<br />

+t off<br />

Pulse value >= 10 liter/pulse<br />

[ms]<br />

[l/h]<br />

40 to 1560 1440 3600 6000 10800 19200<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 25 of 32


UK-QB 10.1481/11.04.2006<br />

8. Data communication<br />

8.1 Data protocol<br />

8.1.1 M-Bus protocol<br />

Remote reading of the meter data requires an appropriate<br />

program, such as MCOM from SVM North Node AB (former<br />

ABB Metering) in Sweden.<br />

When using RS232 and M-Bus automatic remote reading<br />

time can be programmed, while The LON- module has a fixed<br />

readout interval of 20 seconds and cannot be altered.<br />

In connection with the automatic remote readout the peak<br />

values and mean temperature values in user menu#2 are<br />

reset.<br />

Communication modules within the calculator unit handle<br />

the serial data communication with its hardware modules<br />

M-Bus, RS232 and LON.<br />

The available modules are small plug-in circuits on a pin<br />

strip. The modules can be used in all <strong>Brunata</strong> volume and<br />

energy meters. The modules are powered from the meter.<br />

Essential registers within the calculator unit can be accessed<br />

via standard M-Bus protocol, as specified in the European<br />

standard EN 1434, part 3.<br />

When reading the meter remote using RS232 or M-Bus the<br />

exact time for the remote reading is registered and is readable<br />

on the display.<br />

8.1.2 M-Bus telegram<br />

Example from HGQ acquired by the MCOM software version<br />

2.91<br />

14:21 22-05-2003:<br />

Copenhagen Road 69 Bill Haley<br />

Aux1 Hot Water 64 m 3<br />

Aux2 Meter 725 KW/h<br />

Average High Temperature 111.84 °C<br />

Low Temperature 74.81 °C<br />

Temperature Difference<br />

36,98 K<br />

Errors Error None<br />

Error Code 0<br />

Error Time<br />

Identification Address 110<br />

32,955 h<br />

Error, Date 22-05-2003<br />

Error, Time 11:24:00<br />

Customer Data<br />

Hardware Version 8<br />

AVEDØRE<br />

ID Copenhagen Road 69<br />

Manufacturer ID<br />

Meter ID 30000001<br />

Name<br />

Bill Haley<br />

BHG<br />

Software Version 58<br />

Version 5<br />

Peak Flow 2.092 m 3 /h<br />

Flow, Date 07-03-2003<br />

Flow, Time 15:13:00<br />

Low Temp, Crsp. High Temp<br />

86,23 °C<br />

Low Temp, Date 14-03-2003<br />

Low Temp, Time 09:34:00<br />

Low Temperature 129.50 °C<br />

Power<br />

340.229 kW<br />

Power, Date 14-03-2003<br />

Power, Time 09:57:00<br />

Temp Diff 139.43<br />

Temp Diff, Date 14-03-2003<br />

Temp Diff, Time 09:37:00<br />

Readout Energy 3.176 GJ<br />

K<br />

Flow 0.838 m 3 /h<br />

Power<br />

35.356 kW<br />

Volume 100,011.592 m 3<br />

Volume (Flow Sensor)<br />

11,767 m 3<br />

Status Access Number 20<br />

Position Heat: outlet<br />

Tariff Energy 3.588 GJ<br />

Tariff Criterium 1 2,500<br />

Tariff Criterium 2 0<br />

Tariff Type 1<br />

Volume 161.316 m 3<br />

Temperature Difference 37.01 K<br />

High 111.80 °C<br />

Low 74.76 °C<br />

Time Date 22-05-2003<br />

PC Date 22-05-2003<br />

PC Time 14:20:25<br />

Runtime 65,607 h<br />

Time 14:13:00<br />

8.2 Addressing of communication<br />

modules<br />

M-Bus primary and secondary addresses are programmed<br />

according the M-Bus standard.<br />

Primary M-Bus address is a numeric value between 1 and<br />

250, default programmed as the last two digits in the serial<br />

number (can be read on the side of the meter). If the serial<br />

number ends with 00, the M-Bus primary address is 100.<br />

On request the meter will be delivered with custom specified<br />

primary M-Bus address. The user can not change the primary<br />

M-Bus address. On meters with custom primary M-Bus<br />

address the address will be displayed in menu 4.<br />

Page 26 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


Secondary M-Bus address is the 8-digit serial number, and is<br />

factory programmed. The number can be read on the side<br />

of the meter.<br />

8.3 RS232 module<br />

The <strong>Brunata</strong> RS232 module is<br />

designed according to RS232<br />

standard, thus a d-sub plug<br />

can be connected directly into<br />

a PC and the cable terminated<br />

to the meter.<br />

8.4 M-Bus module<br />

The Mbus communication<br />

module is a small Plug In<br />

module, which is to be<br />

mounted on a pin strip in all<br />

<strong>Brunata</strong> volume and energy<br />

meters. It is powered from<br />

the meter.<br />

RS232 Module<br />

8.7 Communication<br />

modem<br />

To communicate using a<br />

modem, the meter needs<br />

the RS232 module installed.<br />

Modems can be either for<br />

PSTN, GSM, GPRS and IPmodem.<br />

The modem shall<br />

have support for 11-bit communication.<br />

GSM Modem<br />

Several modems can provide<br />

support for either 10-bit or<br />

11-bit communication. Each of these modems is factory<br />

configured for default 10-bit communication. To configure a<br />

local modem for 11-bit communication, consult the manual<br />

for the modem.<br />

The baudrate used in the meter is 2400 baud.<br />

Mbus module<br />

8.5 LON module<br />

Refer to Appendix A.4 HGLON.<br />

Using LON module the meter<br />

can communicate according to<br />

FTT10A standard used in for<br />

example building automation<br />

systems.<br />

Using the LON-module for<br />

communication the remote<br />

reading occurs every 20<br />

second and the display will<br />

be updated accordingly each<br />

20 second.<br />

LON module<br />

8.6 Analogue<br />

output device<br />

There are two converters<br />

available:<br />

For regulation purpose the<br />

HG-F/I-420SD flow-to-current<br />

converter can be used. This<br />

converter uses a data output<br />

in the flowmeter, and therefore<br />

updates every 1.6 s.<br />

HG Analogue Box<br />

The HG-F/I-420 converter uses the pulse output in the meter,<br />

and converts the pulse frequency to current. This converter<br />

are recommended for the energy output, but should not be<br />

used for regulation purpose hence the output are updated<br />

more slowly.<br />

Both converters are galvanic isolated, and contains an active<br />

current source. Further information in appendix 3.<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 27 of 32


9. Test and adjustment<br />

Reference conditions:<br />

Fluid temperature: 20 ºC ± 5 K<br />

Ambient temperature: 20 ºC ± 5 K<br />

Warm Up time: 30 Minutes<br />

High-resolution volume pulses:<br />

• After a suitable volume e.g. 1. 5 or 10 litre’s, the accumulated<br />

pulses is compared to the wanted number<br />

of pulses. The OFFSET factor is adjusted with the<br />

HG-STOOL*) program so that the number of pulses is<br />

within the wanted accuracy. E.g. ±0.5 % equals 100 ±<br />

0.5 pulses every 1.6 s.<br />

J1<br />

M57<br />

M52<br />

M52<br />

M57<br />

J1<br />

9.1 Displaying high resolution volume<br />

pulses<br />

The high resolution pulses can be accumulated and shown<br />

on the display, which is a very convenient feature during the<br />

test and type approvals during the verification of the q min<br />

accuracy and performance.<br />

There is room for a maximum 9 digit display of 999.999.999<br />

pulses. The next pulse will reset this counter register to 0. At<br />

q max<br />

this will this overrun occur after approx. 14 hours.<br />

Simultaneously with this programmable function the summing<br />

icon (water drop) is displayed<br />

The summing register will be cleared at power on.<br />

UK-QB 10.1481/11.04.2006<br />

HGQ1 HGQ3 HGS5 HGS9 HGS16<br />

Pulses / litre 46875 18750 11250 6250 3516,63<br />

The five-pin connector M57 is a data output for high-resolution<br />

volume pulses, which can be converted into real pulses<br />

by means of the external HG High frequency Pulse converter.<br />

The FH-Pulses have the following values:<br />

These pulses trains are transmitted once every 1.60 seconds.<br />

Adjustment of water flow:<br />

• The flow is set to maximum permanent flow (q p<br />

). This<br />

makes the meter generate 25,000 pulses per 1.60 s.<br />

• The GAIN factor is adjusted with the HG-STOOL*)<br />

program so that the number of pulses is within the<br />

wanted accuracy. E.g. ±0.5 % equals 25,000 ± 125<br />

pulses per 1.6 s.<br />

• The flow is set to minimum flow (q i<br />

). This makes the<br />

meter generate 100 pulses per 1.60 s.<br />

9.2 Verification<br />

Verification sealing:<br />

Programming and communication terminal M52 or jumper<br />

J1 is sealed with VOID -label.<br />

After installation the meters in casing can be sealed through<br />

the holes in the transparent lid and bottom. However, meters<br />

delivered after June 2000 can be sealed and locked at the<br />

same time using a special plastic seal, which will brake when<br />

the meter is opened.<br />

9.3 Calibration<br />

The resistance thermometers can be measured, paired and<br />

certified at temperatures between 20 and 200 °C in any<br />

accredited test laboratory.<br />

Page 28 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


9.4 Zeroing of peak values<br />

Refer to chapter 4.10 Reset function<br />

9.5 Clock adjustment<br />

Refer to chapter 11 HGQ/HGS Service Program<br />

10. Installation requirements<br />

10.1 Installing the Flow Sensor<br />

The flow sensor must be installed in the return pipe, unless it<br />

is specified for the flow pipe, see data on the meter label. The<br />

arrow on the flow sensor must point in the flow direction<br />

The arrow on the flow sensor label must point in the flow direction.<br />

There are no requirements regarding straight pipe sections<br />

before or after the flow sensor, only the meter must always be<br />

filled with water. Never insulate the housing of the flow sensor<br />

10.2 Mounting and connections of the<br />

electronic unit<br />

The HGQ/HGS is a wall mounted piece of equipment, which<br />

should be installed in suitable distance from the flow sensor<br />

and in an indoor environment. Mount the unit an even surface<br />

with 3 screws.<br />

All connections to the meter must be installed before connecting<br />

with power.<br />

10.3 Temperature sensors<br />

The two sensors are marked red and blue indicating high<br />

and low temperature. The HGS energy meter is delivered<br />

with pocket sensors, but it can also be delivered with sensors<br />

for direct installation. HGQ energy meters come with direct<br />

sensors, and they can be installed using a R½” connecting<br />

piece, f.inst. in a T-piece.<br />

When using pocket sensors a min. of 20mm of the pocket<br />

must be placed in the middle of the water flow. To install<br />

the sensors they are pushed into the pocket, and the cable<br />

should be twisted backwards and forwards a few times to be<br />

sure that the sensor goes down into teh bottom of the sensor<br />

pocket. The terminal screw must be fastened completely and<br />

hereafter slackened to the first slot opposite the hole of the<br />

seal. By later dismounting of the sensor, the terminal screw<br />

must be removed completely.<br />

Sensor cables should not be fastened to neither cold nor<br />

warm pipes.<br />

10.4 Security seals<br />

The electronic unit is sealed with VOID labels when delivered.<br />

The box is closed and sealed with <strong>Brunata</strong> HG special<br />

seal made of plastic, which is pushed into the narrow hole<br />

on the bottom of the box. The seal can be removed with<br />

a screwdriver. The broken piece of the seal is to be pushed<br />

into the box with the screwdriver and hereafter the box can<br />

be opened. Alternatively the box can be closed with the<br />

enclosed screw and sealed with thread through the hole<br />

next to the screw for the lid.<br />

The flow sensor is sealed with thread through the hole in<br />

the screwed connections and the same method is used for<br />

the temperature sensors.<br />

10.5 Starting up the meter<br />

When the meter is connected to the mains for the first time<br />

the display will always show ”Error 1”, as the meter has been<br />

powerless during transportation. By pushing the button once<br />

the error sign will disappear, and the meter is then ready. If<br />

there is no water in the system the meter will not be damaged,<br />

however it meter will register a random flow.<br />

UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 29 of 32


UK-QB 10.1481/11.04.2006<br />

Page 30 of 32 Copyright ® <strong>Brunata</strong> a/s 2006


UK-QB 10.1481/11.04.2006<br />

Copyright ® <strong>Brunata</strong> a/s 2006<br />

Page 31 of 32


UK-QB 10.1481/11.04.2006<br />

<strong>Brunata</strong> a/s · Vesterlundvej 14 · DK-2730 Herlev · Phone +45 77 77 70 00 · Fax +45 77 77 70 01<br />

www.brunata.dk · brunata@brunata.dk<br />

Page 32 of 32 Copyright ® <strong>Brunata</strong> a/s 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!