29.03.2014 Views

Lect. 24: High-Frequency Response of MOSFET CS

Lect. 24: High-Frequency Response of MOSFET CS

Lect. 24: High-Frequency Response of MOSFET CS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

How fast can this operate?<br />

R L , C L due to<br />

Q 2 and external load<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

It can be shown from an exact (but complicated ) analysis that<br />

'<br />

V<br />

−( g ) ( )<br />

mR ⎡<br />

L<br />

1 −s Cgd / g ⎤<br />

m<br />

o<br />

=<br />

⎣<br />

⎦<br />

Vsig<br />

1+ s{ ⎡C C ( 1 g R ) ⎤R ( C C ) R } s ⎡( C C ) C C C ⎤<br />

⎣<br />

+ +<br />

⎦<br />

+ + +<br />

⎣<br />

+ +<br />

⎦<br />

R R<br />

' ' 2 '<br />

gs gd m L sig L gd L L gd gs L gd sig L<br />

Too complex. A simpler way <strong>of</strong> estimating f H , high-frequency 3-dB frequency?<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

Open-Circuit Time Constant Method for approximating f H<br />

1. Select one capacitor, C i , and set others to open.<br />

2. Determine R i , the resistance seen by C i .<br />

3. Repeat above for all capacitors.<br />

Then,<br />

ω<br />

H<br />

~<br />

∑<br />

i<br />

1<br />

CR<br />

i<br />

i<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

For C gs ,<br />

R gs = ?<br />

R gs =R sig<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

For C gd ,<br />

R gd = ?<br />

I<br />

V<br />

I<br />

I<br />

Vgs<br />

+ V<br />

= g V +<br />

R '<br />

x m gs<br />

= −I R<br />

gs x sig<br />

− I R + V<br />

=− g I R +<br />

R<br />

L<br />

'<br />

Rsig<br />

Vx<br />

(1 + g R + ) =<br />

R ' R '<br />

x m x sig<br />

x m sig<br />

L<br />

L<br />

x<br />

x sig x<br />

L<br />

V<br />

I<br />

x<br />

x<br />

Rsig<br />

= (1 + g R + ) R '= R ' + g R R ' + R<br />

R '<br />

m sig L L m sig L sig<br />

L<br />

∴ R = R (1 + g R ') +<br />

R '<br />

gd sig m L L<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

For C L , R L = ?<br />

R L =R L ’<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

ω<br />

Open-Circuit Time Constant Method for approximating f H<br />

1. Select one capacitor, C i , and set others to open.<br />

2. Determine R i , the resistance seen by C i .<br />

3. Repeat above for all capacitors.<br />

1 1<br />

~ = , where τ = C R + C [ R (1 + g R ') + R '] + C R '<br />

τ<br />

H<br />

CR<br />

H H gs sig gd sig m L L L L<br />

∑<br />

i<br />

i<br />

i<br />

Miller Effect!<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

Determine f H for the <strong>CS</strong> shown left.<br />

I REF =100μA, W/L=7.2μm/0.36μm<br />

/0 k n ’=387μA/V 2 , k p ’=86μA/V 2 ,<br />

r o1 =18kΩ, r o2 =22kΩ<br />

C gs =20fF, C gd =5fF, C L =25fF, R sig =10kΩ.<br />

It can be shown<br />

R<br />

τ<br />

gs = C gsR<br />

gs<br />

= 200ps<br />

τ = C R = 714ps<br />

τ<br />

gd gd gd<br />

C L C<br />

L<br />

= C R =<br />

L<br />

= R = 10kΩ<br />

gs sig<br />

'<br />

gd sig<br />

1 m L L<br />

142.8k<br />

'<br />

( g<br />

)<br />

R = R + g R + R = Ω<br />

R<br />

C<br />

<strong>24</strong>6ps<br />

τ = τ + τ + τ = 1160ps<br />

f<br />

H gs gd C L<br />

H<br />

L<br />

= R = 9.82kΩ<br />

1 1<br />

= = = 137 MHz<br />

−12<br />

2 πτ 2 π × 1160 ×<br />

10<br />

H<br />

'<br />

L<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

How accurate is f H = 137MHz estimated<br />

by the open-circuit time constant method?<br />

From the exact analysis,<br />

'<br />

−<br />

( g mR ) ⎡<br />

L ⎣<br />

1 − s ( C<br />

gd / gm<br />

)<br />

( ) ⎤ ( ) ⎡<br />

V<br />

⎤<br />

o<br />

=<br />

⎦<br />

Vsig<br />

1+ s{ ⎡C C 1 g R R C C R } s ( C C ) C C C ⎤<br />

⎣<br />

+ +<br />

⎦<br />

+ + +<br />

⎣<br />

+ +<br />

⎦<br />

R R<br />

f<br />

H<br />

= 145.3MHz<br />

' ' 2 '<br />

gs gd m L sig L gd L L gd gs L gd sig L<br />

What is the most influential capacitor<br />

for f H ?<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

Miller’s Theorem:<br />

Two circuits below are identical assuming the rest <strong>of</strong> circuit does not change<br />

I<br />

V ⎛V − KV<br />

1 1 1<br />

1<br />

= = I =<br />

Z ⎜<br />

1<br />

Z ⎟<br />

⎝ ⎠<br />

VZ Z<br />

V KV −K<br />

1<br />

∴ Z1<br />

= =<br />

1−<br />

1<br />

1<br />

⎞<br />

I<br />

2<br />

0 V 0 KV V KV<br />

= − = − = I =<br />

−<br />

Z Z Z<br />

Z<br />

2 1 1 1<br />

2 2<br />

−KV Z<br />

Z<br />

1<br />

∴<br />

2<br />

= =<br />

V<br />

1<br />

1−<br />

KV1 (1 − )<br />

K<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi


<strong>Lect</strong>. <strong>24</strong>: <strong>High</strong>-<strong>Frequency</strong> <strong>Response</strong> <strong>of</strong> <strong>MOSFET</strong> <strong>CS</strong><br />

<strong>CS</strong> amplifier<br />

With Miller Theorem,<br />

Z<br />

Z<br />

Z1 = , Z2<br />

=<br />

1 − K<br />

1<br />

(1 − )<br />

K<br />

1 1 1<br />

=<br />

sC sC − K<br />

eq1 gd<br />

1<br />

∴ Ceq1 = Cgd (1 − K) = Cgd (1 + gm RL<br />

')<br />

1 1 1<br />

=<br />

sC sC 1−<br />

1/ K<br />

eq2<br />

gd<br />

1<br />

∴ Ceq2<br />

= Cgd (1 − 1 / K) = Cgd<br />

(1 + )<br />

g R '<br />

C eq1 C eq2 For f H , the influence <strong>of</strong> C gd becomes larger<br />

by factor <strong>of</strong> (1+g m R L ’) : Miller Effect<br />

<strong>CS</strong> amplifier is slow!<br />

m<br />

L<br />

Electronic Circuits 1 (09/2)<br />

Pr<strong>of</strong>. Woo-Young Choi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!