29.03.2014 Views

Introduction to the AdS/CFT correspondence

Introduction to the AdS/CFT correspondence

Introduction to the AdS/CFT correspondence

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1/22<br />

<strong>Introduction</strong> <strong>to</strong> <strong>the</strong> <strong>AdS</strong>/<strong>CFT</strong><br />

<strong>correspondence</strong><br />

Dmitri Bykov<br />

Steklov Ma<strong>the</strong>matical Institute, Moscow<br />

Samara, 27 August 2012


2/22<br />

The main concept<br />

<br />

<br />

<br />

Quantum field <strong>the</strong>ory in R D can be described<br />

by gravity in <strong>AdS</strong> D 1 Maldacena, 1997<br />

Especially strong quantitative evidence in <strong>the</strong><br />

conformal case, however we will also describe<br />

<strong>the</strong> non-conformal setup<br />

The extra dimension has <strong>the</strong> interpretation of<br />

RG-scale in QFT


2/22<br />

The main concept<br />

<br />

<br />

<br />

Quantum field <strong>the</strong>ory in R D can be described<br />

by gravity in <strong>AdS</strong> D 1 Maldacena, 1997<br />

Especially strong quantitative evidence in <strong>the</strong><br />

conformal case, however we will also describe<br />

<strong>the</strong> non-conformal setup<br />

The extra dimension has <strong>the</strong> interpretation of<br />

RG-scale in QFT


2/22<br />

The main concept<br />

<br />

<br />

<br />

Quantum field <strong>the</strong>ory in R D can be described<br />

by gravity in <strong>AdS</strong> D 1 Maldacena, 1997<br />

Especially strong quantitative evidence in <strong>the</strong><br />

conformal case, however we will also describe<br />

<strong>the</strong> non-conformal setup<br />

The extra dimension has <strong>the</strong> interpretation of<br />

RG-scale in QFT


2/22<br />

The main concept<br />

<br />

<br />

<br />

Quantum field <strong>the</strong>ory in R D can be described<br />

by gravity in <strong>AdS</strong> D 1 Maldacena, 1997<br />

Especially strong quantitative evidence in <strong>the</strong><br />

conformal case, however we will also describe<br />

<strong>the</strong> non-conformal setup<br />

The extra dimension has <strong>the</strong> interpretation of<br />

RG-scale in QFT


3/22<br />

The <strong>AdS</strong> space<br />

<br />

<br />

<br />

<br />

A non-compact manifold with constant<br />

negative curvature and Lorentzian signature<br />

Can be viewed as a quotient space (coset)<br />

<strong>AdS</strong> D 1 SOp2,Dq<br />

SOp1,Dq<br />

For <strong>the</strong> moment let us set D 2 and<br />

consider <strong>AdS</strong> 3<br />

The simplest model: a hyperboloid<br />

¡Y 2 ¡1 ¡ Y 2<br />

0 Y 2<br />

1 Y 2<br />

2 ¡R2 inside R 2,2 :<br />

ds 2 ¡dY¡1 2 ¡ dY 0 2 dY 1 2 dY 2<br />

2


3/22<br />

The <strong>AdS</strong> space<br />

<br />

<br />

<br />

<br />

A non-compact manifold with constant<br />

negative curvature and Lorentzian signature<br />

Can be viewed as a quotient space (coset)<br />

<strong>AdS</strong> D 1 SOp2,Dq<br />

SOp1,Dq<br />

For <strong>the</strong> moment let us set D 2 and<br />

consider <strong>AdS</strong> 3<br />

The simplest model: a hyperboloid<br />

¡Y 2 ¡1 ¡ Y 2<br />

0 Y 2<br />

1 Y 2<br />

2 ¡R2 inside R 2,2 :<br />

ds 2 ¡dY¡1 2 ¡ dY 0 2 dY 1 2 dY 2<br />

2


3/22<br />

The <strong>AdS</strong> space<br />

<br />

<br />

<br />

<br />

A non-compact manifold with constant<br />

negative curvature and Lorentzian signature<br />

Can be viewed as a quotient space (coset)<br />

<strong>AdS</strong> D 1 SOp2,Dq<br />

SOp1,Dq<br />

For <strong>the</strong> moment let us set D 2 and<br />

consider <strong>AdS</strong> 3<br />

The simplest model: a hyperboloid<br />

¡Y 2 ¡1 ¡ Y 2<br />

0 Y 2<br />

1 Y 2<br />

2 ¡R2 inside R 2,2 :<br />

ds 2 ¡dY¡1 2 ¡ dY 0 2 dY 1 2 dY 2<br />

2


3/22<br />

The <strong>AdS</strong> space<br />

<br />

<br />

<br />

<br />

A non-compact manifold with constant<br />

negative curvature and Lorentzian signature<br />

Can be viewed as a quotient space (coset)<br />

<strong>AdS</strong> D 1 SOp2,Dq<br />

SOp1,Dq<br />

For <strong>the</strong> moment let us set D 2 and<br />

consider <strong>AdS</strong> 3<br />

The simplest model: a hyperboloid<br />

¡Y 2 ¡1 ¡ Y 2<br />

0 Y 2<br />

1 Y 2<br />

2 ¡R2 inside R 2,2 :<br />

ds 2 ¡dY¡1 2 ¡ dY 0 2 dY 1 2 dY 2<br />

2


3/22<br />

The <strong>AdS</strong> space<br />

<br />

<br />

<br />

<br />

A non-compact manifold with constant<br />

negative curvature and Lorentzian signature<br />

Can be viewed as a quotient space (coset)<br />

<strong>AdS</strong> D 1 SOp2,Dq<br />

SOp1,Dq<br />

For <strong>the</strong> moment let us set D 2 and<br />

consider <strong>AdS</strong> 3<br />

The simplest model: a hyperboloid<br />

¡Y 2 ¡1 ¡ Y 2<br />

0 Y 2<br />

1 Y 2<br />

2 ¡R2 inside R 2,2 :<br />

ds 2 ¡dY¡1 2 ¡ dY 0 2 dY 1 2 dY 2<br />

2


4/22<br />

The <strong>AdS</strong> space. 2.<br />

<br />

The global coordinates<br />

Y ¡1 cosh prq cos ptq, Y 0 cosh prq sin ptq,<br />

Y 1 sinh prq cos pφq, Y 2 sinh prq sin pφq<br />

ds 2 ¡ cosh prq 2 dt 2 dr 2 sinh prq 2 dφ 2 ,<br />

r P r0, 8q, t P p¡8, 8q, φ P r0, 2πq<br />

A conformal rescaling ds 2 cosh prq 2 d˜s 2<br />

and change of coordinates<br />

w 2 arctan pe r q ¡ π produces a metric<br />

2<br />

d˜s 2 ¡dt 2 dw 2 sin pwq 2 dφ 2 where<br />

w P r0, π 2 s ñ Disc


4/22<br />

The <strong>AdS</strong> space. 2.<br />

<br />

The global coordinates<br />

Y ¡1 cosh prq cos ptq, Y 0 cosh prq sin ptq,<br />

Y 1 sinh prq cos pφq, Y 2 sinh prq sin pφq<br />

ds 2 ¡ cosh prq 2 dt 2 dr 2 sinh prq 2 dφ 2 ,<br />

r P r0, 8q, t P p¡8, 8q, φ P r0, 2πq<br />

A conformal rescaling ds 2 cosh prq 2 d˜s 2<br />

and change of coordinates<br />

w 2 arctan pe r q ¡ π produces a metric<br />

2<br />

d˜s 2 ¡dt 2 dw 2 sin pwq 2 dφ 2 where<br />

w P r0, π 2 s ñ Disc


4/22<br />

The <strong>AdS</strong> space. 2.<br />

<br />

The global coordinates<br />

Y ¡1 cosh prq cos ptq, Y 0 cosh prq sin ptq,<br />

Y 1 sinh prq cos pφq, Y 2 sinh prq sin pφq<br />

ds 2 ¡ cosh prq 2 dt 2 dr 2 sinh prq 2 dφ 2 ,<br />

r P r0, 8q, t P p¡8, 8q, φ P r0, 2πq<br />

A conformal rescaling ds 2 cosh prq 2 d˜s 2<br />

and change of coordinates<br />

w 2 arctan pe r q ¡ π produces a metric<br />

2<br />

d˜s 2 ¡dt 2 dw 2 sin pwq 2 dφ 2 where<br />

w P r0, π 2 s ñ Disc


5/22<br />

The <strong>AdS</strong> space. 3.<br />

<br />

Hence we arrive at <strong>the</strong> Penrose diagram of<br />

<strong>AdS</strong> — a cylinder:


5/22<br />

The <strong>AdS</strong> space. 3.<br />

<br />

Hence we arrive at <strong>the</strong> Penrose diagram of<br />

<strong>AdS</strong> — a cylinder:


6/22<br />

The <strong>AdS</strong> space. 4.<br />

<br />

<br />

<strong>AdS</strong> has a boundary, i.e. a hypersurface<br />

reflecting light rays: r 8<br />

Massive geodesics are confined inside <strong>AdS</strong>


6/22<br />

The <strong>AdS</strong> space. 4.<br />

<br />

<br />

<strong>AdS</strong> has a boundary, i.e. a hypersurface<br />

reflecting light rays: r 8<br />

Massive geodesics are confined inside <strong>AdS</strong>


6/22<br />

The <strong>AdS</strong> space. 4.<br />

<br />

<br />

<strong>AdS</strong> has a boundary, i.e. a hypersurface<br />

reflecting light rays: r 8<br />

Massive geodesics are confined inside <strong>AdS</strong>


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


7/22<br />

Partition functions<br />

<br />

<br />

The <strong>correspondence</strong> can be made more precise<br />

Gubser, Klebanov, Polyakov; Witten, 1998<br />

To every field ϕ in <strong>the</strong> bulk of <strong>AdS</strong> <strong>the</strong>re<br />

corresponds a local opera<strong>to</strong>r Opxq on <strong>the</strong><br />

boundary<br />

For example, g µν ô T µν , A µ ô J µ<br />

<br />

<br />

Moreover, xe i ³ d 4 x φ 0 pxq Opxq y Z bulk pφ 0 q<br />

— <strong>the</strong> partition function of <strong>the</strong> bulk <strong>the</strong>ory<br />

with <strong>the</strong> condition φ Ñ φ 0 at <strong>the</strong> boundary<br />

i<br />

»<br />

d 4 x A µ B pxq J µ pxq is gauge-invariant!


Partition functions. 2.<br />

<br />

<br />

Imagine a scalar field ϕ in <strong>the</strong> bulk of <strong>AdS</strong><br />

with <strong>the</strong> action<br />

S <br />

»<br />

d 5 y ? ¡g p∇ϕq 2<br />

m 2 ϕ 2¨ obeying<br />

a wave equation ¡△ϕ m 2 ϕ 0, where<br />

△ ? 1<br />

¡g<br />

B µ p ? ¡g g µν B ν ¤q is <strong>the</strong> Laplacian.<br />

We want <strong>to</strong> solve it with a prescribed<br />

boundary value ϕ| boundary<br />

ϕ 0<br />

8/22


Partition functions. 2.<br />

<br />

<br />

Imagine a scalar field ϕ in <strong>the</strong> bulk of <strong>AdS</strong><br />

with <strong>the</strong> action<br />

S <br />

»<br />

d 5 y ? ¡g p∇ϕq 2<br />

m 2 ϕ 2¨ obeying<br />

a wave equation ¡△ϕ m 2 ϕ 0, where<br />

△ ? 1<br />

¡g<br />

B µ p ? ¡g g µν B ν ¤q is <strong>the</strong> Laplacian.<br />

We want <strong>to</strong> solve it with a prescribed<br />

boundary value ϕ| boundary<br />

ϕ 0<br />

8/22


Partition functions. 2.<br />

<br />

<br />

Imagine a scalar field ϕ in <strong>the</strong> bulk of <strong>AdS</strong><br />

with <strong>the</strong> action<br />

S <br />

»<br />

d 5 y ? ¡g p∇ϕq 2<br />

m 2 ϕ 2¨ obeying<br />

a wave equation ¡△ϕ m 2 ϕ 0, where<br />

△ ? 1<br />

¡g<br />

B µ p ? ¡g g µν B ν ¤q is <strong>the</strong> Laplacian.<br />

We want <strong>to</strong> solve it with a prescribed<br />

boundary value ϕ| boundary<br />

ϕ 0<br />

8/22


9/22<br />

Partition functions. 3.<br />

<br />

<br />

Use Poincare coordinates:<br />

ds 2 ¡dt2 d⃗x 2 d¡1 dz2<br />

z 2<br />

. The boundary<br />

is at z 0. The equation takes <strong>the</strong> form<br />

(after <strong>the</strong> ansatz ϕ e i k¤x f pzq)<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

What kind of boundary conditions can one<br />

impose?


9/22<br />

Partition functions. 3.<br />

<br />

<br />

Use Poincare coordinates:<br />

ds 2 ¡dt2 d⃗x 2 d¡1 dz2<br />

z 2<br />

. The boundary<br />

is at z 0. The equation takes <strong>the</strong> form<br />

(after <strong>the</strong> ansatz ϕ e i k¤x f pzq)<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

What kind of boundary conditions can one<br />

impose?


9/22<br />

Partition functions. 3.<br />

<br />

<br />

Use Poincare coordinates:<br />

ds 2 ¡dt2 d⃗x 2 d¡1 dz2<br />

z 2<br />

. The boundary<br />

is at z 0. The equation takes <strong>the</strong> form<br />

(after <strong>the</strong> ansatz ϕ e i k¤x f pzq)<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

What kind of boundary conditions can one<br />

impose?


10/22<br />

Partition functions. 4.<br />

<br />

<br />

In <strong>the</strong> limit z Ñ 0 <strong>the</strong> equation becomes<br />

homogeneous in z:<br />

z Ñ 0 : f 11 1 ¡ d<br />

z<br />

f 1 ¡ pmRq2 f 0.<br />

z 2<br />

Therefore <strong>the</strong> solution is a power function<br />

f z ∆<br />

Plugging <strong>the</strong> ansatz in<strong>to</strong> <strong>the</strong> equation and<br />

solving for ∆, one obtains<br />

dd 2<br />

Ƭ d 2<br />

¨<br />

4<br />

pmRq 2 .


10/22<br />

Partition functions. 4.<br />

<br />

<br />

In <strong>the</strong> limit z Ñ 0 <strong>the</strong> equation becomes<br />

homogeneous in z:<br />

z Ñ 0 : f 11 1 ¡ d<br />

z<br />

f 1 ¡ pmRq2 f 0.<br />

z 2<br />

Therefore <strong>the</strong> solution is a power function<br />

f z ∆<br />

Plugging <strong>the</strong> ansatz in<strong>to</strong> <strong>the</strong> equation and<br />

solving for ∆, one obtains<br />

dd 2<br />

Ƭ d 2<br />

¨<br />

4<br />

pmRq 2 .


10/22<br />

Partition functions. 4.<br />

<br />

<br />

In <strong>the</strong> limit z Ñ 0 <strong>the</strong> equation becomes<br />

homogeneous in z:<br />

z Ñ 0 : f 11 1 ¡ d<br />

z<br />

f 1 ¡ pmRq2 f 0.<br />

z 2<br />

Therefore <strong>the</strong> solution is a power function<br />

f z ∆<br />

Plugging <strong>the</strong> ansatz in<strong>to</strong> <strong>the</strong> equation and<br />

solving for ∆, one obtains<br />

dd 2<br />

Ƭ d 2<br />

¨<br />

4<br />

pmRq 2 .


Partition functions. 5.<br />

<br />

<br />

<br />

Therefore we impose <strong>the</strong> condition<br />

ϕpx, zq| zÑ0<br />

Ñ z ∆¡ ϕ 0 pxq<br />

To solve <strong>the</strong> equation with this b.c. one needs<br />

<strong>to</strong> find a function Kp⃗x, ⃗y, zq — <strong>the</strong><br />

boundary-<strong>to</strong>-boundary propaga<strong>to</strong>r — with <strong>the</strong><br />

property Kp⃗x, ⃗y, zq| zÑ0<br />

Ñ z ∆¡ δp⃗x ¡ ⃗yq .<br />

Then <strong>the</strong> desired solution may be written as<br />

ϕp⃗x, zq <br />

»<br />

d 4 y Kp⃗x, ⃗y, zq ϕ 0 pyq<br />

Check that this function is<br />

z ¨∆<br />

K <br />

z 2 p⃗x ¡ ⃗yq 2<br />

11/22


Partition functions. 5.<br />

<br />

<br />

<br />

Therefore we impose <strong>the</strong> condition<br />

ϕpx, zq| zÑ0<br />

Ñ z ∆¡ ϕ 0 pxq<br />

To solve <strong>the</strong> equation with this b.c. one needs<br />

<strong>to</strong> find a function Kp⃗x, ⃗y, zq — <strong>the</strong><br />

boundary-<strong>to</strong>-boundary propaga<strong>to</strong>r — with <strong>the</strong><br />

property Kp⃗x, ⃗y, zq| zÑ0<br />

Ñ z ∆¡ δp⃗x ¡ ⃗yq .<br />

Then <strong>the</strong> desired solution may be written as<br />

ϕp⃗x, zq <br />

»<br />

d 4 y Kp⃗x, ⃗y, zq ϕ 0 pyq<br />

Check that this function is<br />

z ¨∆<br />

K <br />

z 2 p⃗x ¡ ⃗yq 2<br />

11/22


Partition functions. 5.<br />

<br />

<br />

<br />

Therefore we impose <strong>the</strong> condition<br />

ϕpx, zq| zÑ0<br />

Ñ z ∆¡ ϕ 0 pxq<br />

To solve <strong>the</strong> equation with this b.c. one needs<br />

<strong>to</strong> find a function Kp⃗x, ⃗y, zq — <strong>the</strong><br />

boundary-<strong>to</strong>-boundary propaga<strong>to</strong>r — with <strong>the</strong><br />

property Kp⃗x, ⃗y, zq| zÑ0<br />

Ñ z ∆¡ δp⃗x ¡ ⃗yq .<br />

Then <strong>the</strong> desired solution may be written as<br />

ϕp⃗x, zq <br />

»<br />

d 4 y Kp⃗x, ⃗y, zq ϕ 0 pyq<br />

Check that this function is<br />

z ¨∆<br />

K <br />

z 2 p⃗x ¡ ⃗yq 2<br />

11/22


Partition functions. 5.<br />

<br />

<br />

<br />

Therefore we impose <strong>the</strong> condition<br />

ϕpx, zq| zÑ0<br />

Ñ z ∆¡ ϕ 0 pxq<br />

To solve <strong>the</strong> equation with this b.c. one needs<br />

<strong>to</strong> find a function Kp⃗x, ⃗y, zq — <strong>the</strong><br />

boundary-<strong>to</strong>-boundary propaga<strong>to</strong>r — with <strong>the</strong><br />

property Kp⃗x, ⃗y, zq| zÑ0<br />

Ñ z ∆¡ δp⃗x ¡ ⃗yq .<br />

Then <strong>the</strong> desired solution may be written as<br />

ϕp⃗x, zq <br />

»<br />

d 4 y Kp⃗x, ⃗y, zq ϕ 0 pyq<br />

Check that this function is<br />

z ¨∆<br />

K <br />

z 2 p⃗x ¡ ⃗yq 2<br />

11/22


12/22<br />

Partition functions. 6.<br />

<br />

<br />

To compute <strong>the</strong> path integral for <strong>the</strong> scalar<br />

field ϕ with <strong>the</strong> prescribed b.c. we calculate<br />

<strong>the</strong> value of <strong>the</strong> action S on <strong>the</strong> solution:<br />

S <br />

»<br />

»<br />

d D x B µ p ? ¡g g µν φB ν φq <br />

¡ d D x 1 Bϕ<br />

ɛD¡1ϕ Bz<br />

³ | zɛ<br />

For z Ñ 0 we have <strong>the</strong> asymp<strong>to</strong>tics<br />

ϕ Ñ z ∆ ¡ ϕ 0 pxq z ∆ d 4 y ϕ 0pyq<br />

2∆ , so<br />

|x¡y|<br />

S div.terms ¡<br />

»<br />

d 4 x d 4 y ϕ 0pxq ϕ 0 pyq<br />

|x ¡ y| 2∆


12/22<br />

Partition functions. 6.<br />

<br />

<br />

To compute <strong>the</strong> path integral for <strong>the</strong> scalar<br />

field ϕ with <strong>the</strong> prescribed b.c. we calculate<br />

<strong>the</strong> value of <strong>the</strong> action S on <strong>the</strong> solution:<br />

S <br />

»<br />

»<br />

d D x B µ p ? ¡g g µν φB ν φq <br />

¡ d D x 1 Bϕ<br />

ɛD¡1ϕ Bz<br />

³ | zɛ<br />

For z Ñ 0 we have <strong>the</strong> asymp<strong>to</strong>tics<br />

ϕ Ñ z ∆ ¡ ϕ 0 pxq z ∆ d 4 y ϕ 0pyq<br />

2∆ , so<br />

|x¡y|<br />

S div.terms ¡<br />

»<br />

d 4 x d 4 y ϕ 0pxq ϕ 0 pyq<br />

|x ¡ y| 2∆


12/22<br />

Partition functions. 6.<br />

<br />

<br />

To compute <strong>the</strong> path integral for <strong>the</strong> scalar<br />

field ϕ with <strong>the</strong> prescribed b.c. we calculate<br />

<strong>the</strong> value of <strong>the</strong> action S on <strong>the</strong> solution:<br />

S <br />

»<br />

»<br />

d D x B µ p ? ¡g g µν φB ν φq <br />

¡ d D x 1 Bϕ<br />

ɛD¡1ϕ Bz<br />

³ | zɛ<br />

For z Ñ 0 we have <strong>the</strong> asymp<strong>to</strong>tics<br />

ϕ Ñ z ∆ ¡ ϕ 0 pxq z ∆ d 4 y ϕ 0pyq<br />

2∆ , so<br />

|x¡y|<br />

S div.terms ¡<br />

»<br />

d 4 x d 4 y ϕ 0pxq ϕ 0 pyq<br />

|x ¡ y| 2∆


13/22<br />

A confining potential<br />

Let us assume that <strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r 1 z 2 is<br />

cut-off at some finite value z 0 of <strong>the</strong><br />

coordinate z


13/22<br />

A confining potential<br />

Let us assume that <strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r 1 z 2 is<br />

cut-off at some finite value z 0 of <strong>the</strong><br />

coordinate z


14/22<br />

A confining potential. 2.<br />

<br />

<br />

The solution of <strong>the</strong> equation<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

may be written as<br />

f pk, zq e i k¤x z d{2 K ν p|k| zq, ν ∆ ¡ ∆ ¡<br />

2<br />

The boundary condition f pk, z 0 q 0 leads<br />

<strong>to</strong> <strong>the</strong> quantization of k 2 n λ n — <strong>the</strong><br />

spectrum of masses of <strong>the</strong> mesons


14/22<br />

A confining potential. 2.<br />

<br />

<br />

The solution of <strong>the</strong> equation<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

may be written as<br />

f pk, zq e i k¤x z d{2 K ν p|k| zq, ν ∆ ¡ ∆ ¡<br />

2<br />

The boundary condition f pk, z 0 q 0 leads<br />

<strong>to</strong> <strong>the</strong> quantization of k 2 n λ n — <strong>the</strong><br />

spectrum of masses of <strong>the</strong> mesons


14/22<br />

A confining potential. 2.<br />

<br />

<br />

The solution of <strong>the</strong> equation<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

may be written as<br />

f pk, zq e i k¤x z d{2 K ν p|k| zq, ν ∆ ¡ ∆ ¡<br />

2<br />

The boundary condition f pk, z 0 q 0 leads<br />

<strong>to</strong> <strong>the</strong> quantization of k 2 n λ n — <strong>the</strong><br />

spectrum of masses of <strong>the</strong> mesons


14/22<br />

A confining potential. 2.<br />

<br />

<br />

The solution of <strong>the</strong> equation<br />

f 11 1 ¡ d<br />

z f 1 ¡ pk 2 pmRq 2<br />

q f 0<br />

z 2<br />

may be written as<br />

f pk, zq e i k¤x z d{2 K ν p|k| zq, ν ∆ ¡ ∆ ¡<br />

2<br />

The boundary condition f pk, z 0 q 0 leads<br />

<strong>to</strong> <strong>the</strong> quantization of k 2 n λ n — <strong>the</strong><br />

spectrum of masses of <strong>the</strong> mesons


15/22<br />

The Wilson loop<br />

<br />

<br />

<br />

µ An important observable in a QFT is <strong>the</strong><br />

dt A µ 9x qy,<br />

Wilson loop xtr pP exp i ³<br />

which depends on <strong>the</strong> con<strong>to</strong>ur C in spacetime<br />

<strong>AdS</strong>/<strong>CFT</strong> provides a method for calculating it<br />

Maldacena, 1998<br />

At large ’t Hooft coupling λ one should find a<br />

minimal area surface ending on <strong>the</strong> Wilson<br />

loop at <strong>the</strong> boundary<br />

C


15/22<br />

The Wilson loop<br />

<br />

<br />

<br />

µ An important observable in a QFT is <strong>the</strong><br />

dt A µ 9x qy,<br />

Wilson loop xtr pP exp i ³<br />

which depends on <strong>the</strong> con<strong>to</strong>ur C in spacetime<br />

<strong>AdS</strong>/<strong>CFT</strong> provides a method for calculating it<br />

Maldacena, 1998<br />

At large ’t Hooft coupling λ one should find a<br />

minimal area surface ending on <strong>the</strong> Wilson<br />

loop at <strong>the</strong> boundary<br />

C


15/22<br />

The Wilson loop<br />

<br />

<br />

<br />

µ An important observable in a QFT is <strong>the</strong><br />

dt A µ 9x qy,<br />

Wilson loop xtr pP exp i ³<br />

which depends on <strong>the</strong> con<strong>to</strong>ur C in spacetime<br />

<strong>AdS</strong>/<strong>CFT</strong> provides a method for calculating it<br />

Maldacena, 1998<br />

At large ’t Hooft coupling λ one should find a<br />

minimal area surface ending on <strong>the</strong> Wilson<br />

loop at <strong>the</strong> boundary<br />

C


15/22<br />

The Wilson loop<br />

<br />

<br />

<br />

µ An important observable in a QFT is <strong>the</strong><br />

dt A µ 9x qy,<br />

Wilson loop xtr pP exp i ³<br />

which depends on <strong>the</strong> con<strong>to</strong>ur C in spacetime<br />

<strong>AdS</strong>/<strong>CFT</strong> provides a method for calculating it<br />

Maldacena, 1998<br />

At large ’t Hooft coupling λ one should find a<br />

minimal area surface ending on <strong>the</strong> Wilson<br />

loop at <strong>the</strong> boundary<br />

C


The quark-antiquark potential<br />

<br />

<br />

Let us calculate <strong>the</strong> Wilson loop depicted<br />

above at strong coupling<br />

The area is A <br />

»<br />

dσ dτ ? det h with h<br />

<br />

<strong>the</strong> induced metric: h ab BXM BX M<br />

Bσ a Bσ b<br />

<strong>AdS</strong> 3 with coordinates pX, T, Zq. We set<br />

X σ, T τ, Z ZpX q, <strong>the</strong>refore<br />

A T<br />

2»<br />

L<br />

dX<br />

d<br />

Z 12 1<br />

Z 4 16/22<br />

¡ L 2


The quark-antiquark potential<br />

<br />

<br />

Let us calculate <strong>the</strong> Wilson loop depicted<br />

above at strong coupling<br />

The area is A <br />

»<br />

dσ dτ ? det h with h<br />

<br />

<strong>the</strong> induced metric: h ab BXM BX M<br />

Bσ a Bσ b<br />

<strong>AdS</strong> 3 with coordinates pX, T, Zq. We set<br />

X σ, T τ, Z ZpX q, <strong>the</strong>refore<br />

A T<br />

2»<br />

L<br />

dX<br />

d<br />

Z 12 1<br />

Z 4 16/22<br />

¡ L 2


The quark-antiquark potential<br />

<br />

<br />

Let us calculate <strong>the</strong> Wilson loop depicted<br />

above at strong coupling<br />

The area is A <br />

»<br />

dσ dτ ? det h with h<br />

<br />

<strong>the</strong> induced metric: h ab BXM BX M<br />

Bσ a Bσ b<br />

<strong>AdS</strong> 3 with coordinates pX, T, Zq. We set<br />

X σ, T τ, Z ZpX q, <strong>the</strong>refore<br />

A T<br />

2»<br />

L<br />

dX<br />

d<br />

Z 12 1<br />

Z 4 16/22<br />

¡ L 2


The quark-antiquark potential<br />

<br />

<br />

Let us calculate <strong>the</strong> Wilson loop depicted<br />

above at strong coupling<br />

The area is A <br />

»<br />

dσ dτ ? det h with h<br />

<br />

<strong>the</strong> induced metric: h ab BXM BX M<br />

Bσ a Bσ b<br />

<strong>AdS</strong> 3 with coordinates pX, T, Zq. We set<br />

X σ, T τ, Z ZpX q, <strong>the</strong>refore<br />

A T<br />

2»<br />

L<br />

dX<br />

d<br />

Z 12 1<br />

Z 4 16/22<br />

¡ L 2


17/22<br />

The quark-antiquark potential. 2.<br />

<br />

<br />

Check that <strong>the</strong> solution has <strong>the</strong> form<br />

X ¨<br />

» z m<br />

z<br />

z m¨2<br />

dz<br />

b1 ¡<br />

z<br />

z m¨4<br />

The regularized area is<br />

A 2T<br />

Z<br />

» z m<br />

ɛ<br />

dz<br />

z 2b1 z<br />

¨4 T1 ¡ ɛ ¡<br />

z m<br />

?<br />

2π π<br />

Γp 1 4 q2 z m<br />

¤ ¤ ¤ <br />

<br />

<br />

The first term corresponds <strong>to</strong> mass<br />

renormalization<br />

The second term is <strong>the</strong> (Coulomb) potential


17/22<br />

The quark-antiquark potential. 2.<br />

<br />

<br />

Check that <strong>the</strong> solution has <strong>the</strong> form<br />

X ¨<br />

» z m<br />

z<br />

z m¨2<br />

dz<br />

b1 ¡<br />

z<br />

z m¨4<br />

The regularized area is<br />

A 2T<br />

Z<br />

» z m<br />

ɛ<br />

dz<br />

z 2b1 z<br />

¨4 T1 ¡ ɛ ¡<br />

z m<br />

?<br />

2π π<br />

Γp 1 4 q2 z m<br />

¤ ¤ ¤ <br />

<br />

<br />

The first term corresponds <strong>to</strong> mass<br />

renormalization<br />

The second term is <strong>the</strong> (Coulomb) potential


17/22<br />

The quark-antiquark potential. 2.<br />

<br />

<br />

Check that <strong>the</strong> solution has <strong>the</strong> form<br />

X ¨<br />

» z m<br />

z<br />

z m¨2<br />

dz<br />

b1 ¡<br />

z<br />

z m¨4<br />

The regularized area is<br />

A 2T<br />

Z<br />

» z m<br />

ɛ<br />

dz<br />

z 2b1 z<br />

¨4 T1 ¡ ɛ ¡<br />

z m<br />

?<br />

2π π<br />

Γp 1 4 q2 z m<br />

¤ ¤ ¤ <br />

<br />

<br />

The first term corresponds <strong>to</strong> mass<br />

renormalization<br />

The second term is <strong>the</strong> (Coulomb) potential


17/22<br />

The quark-antiquark potential. 2.<br />

<br />

<br />

Check that <strong>the</strong> solution has <strong>the</strong> form<br />

X ¨<br />

» z m<br />

z<br />

z m¨2<br />

dz<br />

b1 ¡<br />

z<br />

z m¨4<br />

The regularized area is<br />

A 2T<br />

Z<br />

» z m<br />

ɛ<br />

dz<br />

z 2b1 z<br />

¨4 T1 ¡ ɛ ¡<br />

z m<br />

?<br />

2π π<br />

Γp 1 4 q2 z m<br />

¤ ¤ ¤ <br />

<br />

<br />

The first term corresponds <strong>to</strong> mass<br />

renormalization<br />

The second term is <strong>the</strong> (Coulomb) potential


17/22<br />

The quark-antiquark potential. 2.<br />

<br />

<br />

Check that <strong>the</strong> solution has <strong>the</strong> form<br />

X ¨<br />

» z m<br />

z<br />

z m¨2<br />

dz<br />

b1 ¡<br />

z<br />

z m¨4<br />

The regularized area is<br />

A 2T<br />

Z<br />

» z m<br />

ɛ<br />

dz<br />

z 2b1 z<br />

¨4 T1 ¡ ɛ ¡<br />

z m<br />

?<br />

2π π<br />

Γp 1 4 q2 z m<br />

¤ ¤ ¤ <br />

<br />

<br />

The first term corresponds <strong>to</strong> mass<br />

renormalization<br />

The second term is <strong>the</strong> (Coulomb) potential


18/22<br />

The advent of mesons<br />

What will change if we impose a cut-off z 0 on<br />

<strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r, as before?<br />

The surface will ‘flatten’ at z z 0 .<br />

At a large separation L <strong>the</strong> arcs will be<br />

negligible, and <strong>the</strong> area will be proportional <strong>to</strong><br />

<strong>the</strong> area of <strong>the</strong> rectangle, i.e. xW y e ¡ T L<br />

z<br />

0<br />

2<br />

The area law and a linear potential!


18/22<br />

The advent of mesons<br />

What will change if we impose a cut-off z 0 on<br />

<strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r, as before?<br />

The surface will ‘flatten’ at z z 0 .<br />

At a large separation L <strong>the</strong> arcs will be<br />

negligible, and <strong>the</strong> area will be proportional <strong>to</strong><br />

<strong>the</strong> area of <strong>the</strong> rectangle, i.e. xW y e ¡ T L<br />

z<br />

0<br />

2<br />

The area law and a linear potential!


18/22<br />

The advent of mesons<br />

What will change if we impose a cut-off z 0 on<br />

<strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r, as before?<br />

The surface will ‘flatten’ at z z 0 .<br />

At a large separation L <strong>the</strong> arcs will be<br />

negligible, and <strong>the</strong> area will be proportional <strong>to</strong><br />

<strong>the</strong> area of <strong>the</strong> rectangle, i.e. xW y e ¡ T L<br />

z<br />

0<br />

2<br />

The area law and a linear potential!


18/22<br />

The advent of mesons<br />

What will change if we impose a cut-off z 0 on<br />

<strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r, as before?<br />

The surface will ‘flatten’ at z z 0 .<br />

At a large separation L <strong>the</strong> arcs will be<br />

negligible, and <strong>the</strong> area will be proportional <strong>to</strong><br />

<strong>the</strong> area of <strong>the</strong> rectangle, i.e. xW y e ¡ T L<br />

z<br />

0<br />

2<br />

The area law and a linear potential!


18/22<br />

The advent of mesons<br />

What will change if we impose a cut-off z 0 on<br />

<strong>the</strong> <strong>AdS</strong> warp fac<strong>to</strong>r, as before?<br />

The surface will ‘flatten’ at z z 0 .<br />

At a large separation L <strong>the</strong> arcs will be<br />

negligible, and <strong>the</strong> area will be proportional <strong>to</strong><br />

<strong>the</strong> area of <strong>the</strong> rectangle, i.e. xW y e ¡ T L<br />

z<br />

0<br />

2<br />

The area law and a linear potential!


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


19/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

N 4 SYM — <strong>the</strong> maximally<br />

supersymmetric conformal QFT in D 4<br />

A vec<strong>to</strong>r multiplet + 3 chiral multiplets (in<br />

N 1 superspace)<br />

P SU p2, 2|4q isometries of <strong>AdS</strong> 5 ¢ S 5<br />

<br />

<br />

The bosonic part is SOp2, 4q ¢ SU p4q — <strong>the</strong><br />

conformal symmetry and <strong>the</strong> R-symmetry<br />

(rotating <strong>the</strong> scalars, for example)<br />

λ gY 2 M N — <strong>the</strong> ‘t Hooft coupling,<br />

g Y M Ñ 0, N Ñ 8


20/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

<br />

<br />

<br />

<br />

The string coupling g st 1 is small,<br />

N<br />

<strong>the</strong>refore <strong>the</strong> string is free<br />

»<br />

ñ Described by <strong>the</strong> σ-model<br />

?<br />

λ<br />

S d 2 σ γ ab B a X M G MN B b X N<br />

2π<br />

At strong coupling λ Ñ 8 may be treated<br />

semiclassically<br />

Turns out <strong>to</strong> be integrable; <strong>the</strong> spectrum of<br />

states may be computed exactly! 2002—now


20/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

<br />

<br />

<br />

<br />

The string coupling g st 1 is small,<br />

N<br />

<strong>the</strong>refore <strong>the</strong> string is free<br />

»<br />

ñ Described by <strong>the</strong> σ-model<br />

?<br />

λ<br />

S d 2 σ γ ab B a X M G MN B b X N<br />

2π<br />

At strong coupling λ Ñ 8 may be treated<br />

semiclassically<br />

Turns out <strong>to</strong> be integrable; <strong>the</strong> spectrum of<br />

states may be computed exactly! 2002—now


20/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

<br />

<br />

<br />

<br />

The string coupling g st 1 is small,<br />

N<br />

<strong>the</strong>refore <strong>the</strong> string is free<br />

»<br />

ñ Described by <strong>the</strong> σ-model<br />

?<br />

λ<br />

S d 2 σ γ ab B a X M G MN B b X N<br />

2π<br />

At strong coupling λ Ñ 8 may be treated<br />

semiclassically<br />

Turns out <strong>to</strong> be integrable; <strong>the</strong> spectrum of<br />

states may be computed exactly! 2002—now


20/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

<br />

<br />

<br />

<br />

The string coupling g st 1 is small,<br />

N<br />

<strong>the</strong>refore <strong>the</strong> string is free<br />

»<br />

ñ Described by <strong>the</strong> σ-model<br />

?<br />

λ<br />

S d 2 σ γ ab B a X M G MN B b X N<br />

2π<br />

At strong coupling λ Ñ 8 may be treated<br />

semiclassically<br />

Turns out <strong>to</strong> be integrable; <strong>the</strong> spectrum of<br />

states may be computed exactly! 2002—now


20/22<br />

<strong>AdS</strong> 5 ¢ S 5 vs. N 4 SYM<br />

<br />

<br />

<br />

<br />

The string coupling g st 1 is small,<br />

N<br />

<strong>the</strong>refore <strong>the</strong> string is free<br />

»<br />

ñ Described by <strong>the</strong> σ-model<br />

?<br />

λ<br />

S d 2 σ γ ab B a X M G MN B b X N<br />

2π<br />

At strong coupling λ Ñ 8 may be treated<br />

semiclassically<br />

Turns out <strong>to</strong> be integrable; <strong>the</strong> spectrum of<br />

states may be computed exactly! 2002—now


21/22<br />

Questions / Answers<br />

We have discussed <strong>the</strong> following <strong>to</strong>pics:<br />

Properties of <strong>the</strong> <strong>AdS</strong> space<br />

<br />

<br />

<br />

Semiclassical calculation of <strong>the</strong> scalar field<br />

partition function<br />

The holographic calculation of Wilson loops<br />

The <strong>AdS</strong> 5 ¢ S 5 string <strong>the</strong>ory


21/22<br />

Questions / Answers<br />

We have discussed <strong>the</strong> following <strong>to</strong>pics:<br />

Properties of <strong>the</strong> <strong>AdS</strong> space<br />

<br />

<br />

<br />

Semiclassical calculation of <strong>the</strong> scalar field<br />

partition function<br />

The holographic calculation of Wilson loops<br />

The <strong>AdS</strong> 5 ¢ S 5 string <strong>the</strong>ory


21/22<br />

Questions / Answers<br />

We have discussed <strong>the</strong> following <strong>to</strong>pics:<br />

Properties of <strong>the</strong> <strong>AdS</strong> space<br />

<br />

<br />

<br />

Semiclassical calculation of <strong>the</strong> scalar field<br />

partition function<br />

The holographic calculation of Wilson loops<br />

The <strong>AdS</strong> 5 ¢ S 5 string <strong>the</strong>ory


21/22<br />

Questions / Answers<br />

We have discussed <strong>the</strong> following <strong>to</strong>pics:<br />

Properties of <strong>the</strong> <strong>AdS</strong> space<br />

<br />

<br />

<br />

Semiclassical calculation of <strong>the</strong> scalar field<br />

partition function<br />

The holographic calculation of Wilson loops<br />

The <strong>AdS</strong> 5 ¢ S 5 string <strong>the</strong>ory


Thank you!<br />

22/22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!