28.03.2014 Views

Holographic description of interfaces in 2-d CFTs - Physics

Holographic description of interfaces in 2-d CFTs - Physics

Holographic description of interfaces in 2-d CFTs - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

<strong>Holographic</strong> duals <strong>of</strong> two dimensional <strong>in</strong>terface theories<br />

Rockwall Trail<br />

Kootenay National<br />

Park, Alberta, Canada<br />

Great Lakes/SPOCK meet<strong>in</strong>g, C<strong>in</strong>c<strong>in</strong>nati, March 2010


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Based on:<br />

“Half-BPS Solutions locally asymptotic to AdS 3 × S 3 and <strong>in</strong>terface conformal<br />

field theories” by M. Chiodaroli, M. Gutperle and D. Krym arXiv: 0910.0466<br />

“Open worldsheets for <strong><strong>in</strong>terfaces</strong>” by M. Chiodaroli, E. D’Hoker and M.<br />

Gutperle arXiv: 0912.4679<br />

Work <strong>in</strong> progress with J. Hung, B. Shieh, M. Chiodaroli and D. Krym<br />

Other work by:<br />

E. D’Hoker, J. Estes, M.G., D. Krym, P. Sorba<br />

J. Gomis, C. Römmelsberger, F. Passer<strong>in</strong>i, S. Yamaguchi, O. Lun<strong>in</strong>, J. Kumar, A.<br />

Rajaraman


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Plan <strong>of</strong> the talk<br />

• Introduction<br />

• Ansatz for <strong>in</strong>terface theories<br />

• Local solution <strong>of</strong> the BPS equations<br />

• Global regularity conditions<br />

• Half-BPS Janus solution<br />

• Multi-Janus solutions<br />

• Many boundaries<br />

• Conclusions


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

AdS 3 /CF T 2<br />

Introduction<br />

duality is one <strong>of</strong> the best studied examples <strong>of</strong> AdS/CFT<br />

• Near horizon limit <strong>of</strong> D5/D1 or NS5/F1 bound states (or SL(2,Z)<br />

orbits)<br />

• type IIB solution: AdS 3 × S 3 × K 3 (T 4 ) with self-dual NS-NS or R-R<br />

three form flux<br />

• Vacuum preserves 16 supersymmetries<br />

• CFT: N=(4,4) 2 dimensional SCFT<br />

• Important for entropy count<strong>in</strong>g <strong>of</strong> (near) extremal BH, Hawk<strong>in</strong>g<br />

radiation etc.<br />

• NS-NS vacuum can be described us<strong>in</strong>g standard worldsheet<br />

techniques


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Introduction<br />

Defects and <strong><strong>in</strong>terfaces</strong> are <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> 2 dim CFT for many reasons:<br />

• Fold<strong>in</strong>g trick allows to use mach<strong>in</strong>ery <strong>of</strong> boundary CFT<br />

• defect/<strong>in</strong>terface entropy analog <strong>of</strong> boundary entropy<br />

• For higher dimensional <strong><strong>in</strong>terfaces</strong>/defect <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>terplay<br />

between Chern-Simons action, Theta-angles, supersymetry<br />

• Many <strong>in</strong>terest<strong>in</strong>g new developments: topological <strong><strong>in</strong>terfaces</strong>, fusion<br />

<strong>of</strong> <strong><strong>in</strong>terfaces</strong> etc<br />

• Application to condensed matter: Kondo effect, quantum wires<br />

Goal: holographic <strong>description</strong> <strong>of</strong> <strong><strong>in</strong>terfaces</strong> and defects <strong>in</strong><br />

AdS 3 × S 3 × K 3 (T 4 )


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

D5<br />

D1<br />

D3<br />

Introduction<br />

• Intersect<strong>in</strong>g branes (1/4 BPS before near horizon<br />

limit) near horizon limit enhances supersymmetry<br />

0 1 2 3 4 5 6 7 8 9<br />

0+1 defect<br />

• Probe D-branes <strong>in</strong> AdS and sphere. Neglect backreation.<br />

Supersymmetric embedd<strong>in</strong>g: κ-symmetry <strong>of</strong> Born-Infeld action<br />

Example: D3 brane with AdS 2 × S 2 <strong>in</strong> AdS 3 × S 3<br />

AdS 2<br />

S 2<br />

Karch, Randall;<br />

Bachas Petropoulos;<br />

Erdmenger et al...<br />

AdS 3 S 3


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Introduction<br />

Janus solution: holographic <strong>description</strong> <strong>of</strong> a codimenion 1 conformal<br />

<strong>in</strong>terface <strong>in</strong> preserve SO(2,d-1) <strong>of</strong> SO(2,d) symmetry: Use<br />

slicl<strong>in</strong>g <strong>of</strong><br />

AdS d<br />

AdS d+1<br />

AdS d+1<br />

ds 2 = dx 2 + f(x)ds 2 AdS d<br />

φ = φ(x)


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Introduction<br />

Janus solution: holographic <strong>description</strong> <strong>of</strong> a codimenion 1 conformal<br />

<strong>in</strong>terface <strong>in</strong> preserve SO(2,d-1) <strong>of</strong> SO(2,4) symmetry: Use<br />

slicl<strong>in</strong>g <strong>of</strong><br />

AdS d<br />

AdS d+1<br />

AdS d+1<br />

ds 2 = dx 2 + f(x)ds 2 AdS d<br />

φ = φ(x)<br />

as x → ±∞<br />

(asymptotic AdS region)<br />

lim<br />

x→±∞ ds2 = dx 2 + e2|x|<br />

z 2<br />

In Po<strong>in</strong>care coord<strong>in</strong>ates the spatial<br />

section <strong>of</strong> the boundary consists <strong>of</strong><br />

two three dimensional half planes<br />

jo<strong>in</strong>ed by a two dimensional <strong>in</strong>terface.<br />

<br />

− dt 2 + dx 2 1 + ···+ dx 2 d−2 + dz 2<br />

x<br />

z =0<br />

x → −∞ x → +∞


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Ansatz for <strong>in</strong>terface theory AdS 3 × S 3 × M 4<br />

Construction proceeds analogous to constructions <strong>of</strong> Susy Janus solutions:<br />

• AdS 3 × S 3 has global bosonic symmetry SO(2, 2) × SO(4)<br />

•1 dim conformal defect preserves SO(2, 1) corresp. to AdS 2<br />

• Superconformal defect preserves 8 <strong>of</strong> the 16 supersymmetries:<br />

type II solution should have 8 unbroken susys<br />

• SO(4) R-symmetry is reduced to SO(3) corresp. to S 2 express<br />

three sphere as a fibration <strong>of</strong> a two sphere over an <strong>in</strong>terval<br />

Susy-Janus ansatz depends on two coord<strong>in</strong>ates x,y<br />

y ∈ [0, π]<br />

• Internal moduli associated with four torus or K3 are not turned on<br />

Ansatz:<br />

fibration over Riemann surface<br />

AdS 2 × S 2 × K 3 Σ 2


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Ansatz for <strong>in</strong>terface theory AdS 3 × S 3 × M 4<br />

Bosonic fields <strong>of</strong> type IIB supergravity depend only on<br />

metric: ds 2 = f1 2 ds 2 AdS 2<br />

+ f2 2 ds 2 S + f 2 2 3 ds 2 K 3<br />

+ ρ 2 dzd¯z<br />

i =0, 1 j =2, 3 k =4, ··· , 7 a =8, 9<br />

dilaton/axion: Q = q a e a , P = P a e a<br />

complex 3-form:<br />

Self-dual 5 form:<br />

G = g a (1) e a01 + g a<br />

(2)<br />

Σ<br />

e a23<br />

AdS 2 S 2<br />

AdS 2 × S 2 K 3<br />

F 5 = h a e a0123 + ˜h a e a4567


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Local solution <strong>of</strong> BPS-equations<br />

Susy variation <strong>of</strong> dilat<strong>in</strong>o and gravit<strong>in</strong>o vanishes for unbroken susy<br />

δλ = i(Γ · P )B −1 ε ∗ − i (Γ · G)ε<br />

24<br />

δψ M = D µ ε + i<br />

480 (Γ · F (5))Γ µ ε − 1<br />

96 (Γ µ(Γ · G) + 2(Γ · G)Γ µ ) B −1 ε ∗<br />

Expand<br />

<strong>in</strong> terms <strong>of</strong> Kill<strong>in</strong>g sp<strong>in</strong>ors on AdS 2 × S 2 × K 3<br />

= η 1 ,η 2<br />

χ η1 ,η 2 ,η 3<br />

⊗ ξ η1 ,η 2 ,η 3<br />

2 dim sp<strong>in</strong>ors on Σ<br />

Use discrete symmetries <strong>of</strong> the equation to reduce BPS equations to a<br />

s<strong>in</strong>gle 2 dim sp<strong>in</strong>or ξ<br />

Solution <strong>of</strong> reduced BPS equations give 8 unbroken susys


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Local solution <strong>of</strong> BPS-equations<br />

α<br />

Sp<strong>in</strong>or ξ =<br />

β<br />

BPS equations become<br />

<br />

dilat<strong>in</strong>o: 4P z α ∗ − g z (1) + ig z<br />

(2) β =0 4¯P z β −<br />

<br />

ḡ z (1) + i ḡ z<br />

(2) α ∗ =0<br />

gravit<strong>in</strong>o AdS:<br />

gravit<strong>in</strong>o sphere:<br />

1<br />

α + 2D zf 1<br />

β − 2h z β −<br />

f 1 f 1<br />

1<br />

β ∗ − 2D zf 1<br />

α ∗ − 2h z α ∗ +<br />

f 1 f 1<br />

ν<br />

α + 2D zf 2<br />

β − 2h z β +<br />

f 2 f 2<br />

ν<br />

β ∗ + 2D zf 2<br />

α ∗ +2h z α ∗ +<br />

f 2 f 2<br />

3<br />

4 g(1) z<br />

1<br />

4 g(1) z<br />

3 4ḡ(1)<br />

z<br />

1 4ḡ(1)<br />

z<br />

− i 4 g(2) z<br />

− i 4ḡ(2)<br />

z<br />

− i 3 4 g(2) z<br />

− i 3 4ḡ(2)<br />

z<br />

<br />

α ∗ =0<br />

<br />

β =0<br />

<br />

α ∗ =0<br />

<br />

β =0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

gravit<strong>in</strong>o K3:<br />

gravit<strong>in</strong>o Σ:<br />

Local solution <strong>of</strong> BPS-equations<br />

2D z f 3<br />

β +2h z β +<br />

f 3<br />

2D z f 3<br />

α ∗ − 2h z α ∗ +<br />

f 3<br />

1<br />

4 g(1) z<br />

1 4ḡ(1)<br />

z<br />

<br />

D z + i 2 ω z − iq <br />

z<br />

2 + h z α − 1 4<br />

<br />

D z − i 2 ω z − iq <br />

z<br />

β − 1 2 8<br />

<br />

D z − i 2 ω z + iq <br />

z<br />

α ∗ − 1 2 8<br />

<br />

D z + i 2 ω z + iq <br />

z<br />

2 − h z β ∗ − 1 4<br />

+ i 1 4 g(2) z<br />

+ i 1 4ḡ(2)<br />

z<br />

<br />

α ∗ =0<br />

<br />

β =0<br />

<br />

g z (1) − ig z<br />

(2)<br />

<br />

<br />

g z (1) + ig z<br />

(2)<br />

<br />

ḡ z (1) + iḡ z<br />

(2)<br />

α ∗ =0<br />

<br />

β =0<br />

<br />

ḡ z (1) − iḡ z<br />

(2)<br />

β ∗ =0<br />

<br />

α =0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Local solution <strong>of</strong> BPS-equations<br />

• Dilat<strong>in</strong>o, grav-AdS, grav-S, grav-K3 are used to express metric factors<br />

axion dilaton an five form <strong>in</strong> terms <strong>of</strong> sp<strong>in</strong>ors<br />

• 2 <strong>of</strong> 4 grav-Σ can be used to solve sp<strong>in</strong>or <strong>in</strong> terms <strong>of</strong> two<br />

holomorphic functions<br />

• The rema<strong>in</strong><strong>in</strong>g equation and the Bianchi identity <strong>of</strong> the five form can<br />

be solved <strong>in</strong> terms <strong>of</strong> two harmonic functions.<br />

Local solution: All bosonic fields are expressed <strong>in</strong> term <strong>of</strong><br />

2 holomorphic functions A(z),B(z)<br />

2 harmonic functions H(z, ¯z),K(z, ¯z)<br />

Satisfies all equations <strong>of</strong> motion and Bianchi identities <strong>of</strong> type<br />

II B supergravity


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

axion/dilaton: e 4Φ = 1 4<br />

Local solution <strong>of</strong> BPS-equations<br />

2<br />

(B + ¯B)<br />

A + Ā −<br />

A +<br />

K<br />

χ = 1 B 2 − ¯B 2 <br />

− A +<br />

2i K Ā<br />

Ā −<br />

(B − ¯B)<br />

2<br />

K<br />

<br />

metric:<br />

f 2 1 = ce−2Φ<br />

2f 2 3<br />

f 2 2 = ce−2Φ<br />

2f 2 3<br />

|H|<br />

K<br />

|H|<br />

K<br />

f3 4 = 4c 2 e2Φ K<br />

A + Ā<br />

ρ 4 = e 2Φ K |∂ wH| 4<br />

H 2<br />

(A +<br />

(A +<br />

A + Ā<br />

|B| 4<br />

Ā)K − (B − ¯B)<br />

2<br />

Ā)K − (B + ¯B)<br />

2


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Local solution <strong>of</strong> BPS-equations<br />

3 form AST can be written as a total derivative<br />

where<br />

b (2) = −i<br />

5-brane Page-charges supported on various three spheres<br />

q NS5 =<br />

<br />

f 2 2 ρe −Φ Re(g (2)<br />

z )=∂ w b (2)<br />

f 2 2 ρe Φ Im(g (2)<br />

z )+χf 2 2 ρe −Φ Re(g (2)<br />

z )=∂ w c (2)<br />

H(B − ¯B)<br />

(A + Ā)ĥ − (B − ¯B) + ˜h 1 , ˜h1 = 1 2 2i<br />

c (2) H(A<br />

= −<br />

¯B + ĀB)<br />

(A + Ā)ĥ − (B − ¯B) + h 2, h 2 = 1 <br />

2 2<br />

S 3 e −Φ Re(G), q D5 =<br />

<br />

<br />

∂w H<br />

B<br />

+ c.c.<br />

A<br />

B ∂ wH + c.c.<br />

S 3 <br />

e +Φ Im(G)+χe −Φ Re(G) <br />

similar expressions exist for D1 brane and fundamental str<strong>in</strong>gs charges


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

self dual five form AST is given by<br />

Local solution <strong>of</strong> BPS-equations<br />

f 4 3 ρ˜h z = ∂ w C K , C K = i 2<br />

B 2 − ¯B 2<br />

A + Ā<br />

+ 1 2 ˜K<br />

Where ˜K is the conjugate harmonic function, i.e.<br />

K(z, ¯z) =k(z)+¯k(¯z), ˜K(z, ¯z) =−i<br />

k(z) − ¯k(¯z)<br />

<br />

D3-brane charge:<br />

<br />

C×K 3 F 5 =<br />

<br />

dzf 4 3 ρ˜h z + cc


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

How does AdS 3 × S 3 with RR flux look like ?<br />

Σ is <strong>in</strong>f<strong>in</strong>ite strip<br />

w = x + iy,<br />

x ∈ [−∞, ∞]<br />

y ∈ [0, π]<br />

f 1 →∞<br />

H →∞<br />

π<br />

f 2 → 0<br />

H → 0<br />

f 2 → 0<br />

0 x<br />

H → 0<br />

f 1 →∞<br />

H →∞<br />

f 2 1 = cosh 2 x, f 2 2 =s<strong>in</strong> 2 y, ρ =1, f 3 = const<br />

H = −i s<strong>in</strong>h(w)+c.c. K = i<br />

A = i<br />

1<br />

s<strong>in</strong>h w ,<br />

B = icosh(w) s<strong>in</strong>h w<br />

1<br />

s<strong>in</strong>h w + c.c.


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

• Local solution solves BPS and equation <strong>of</strong> motion, solution can be<br />

s<strong>in</strong>gular, geodesically <strong>in</strong>complete or real fields can be complex<br />

• Boundary <strong>of</strong> Riemann surface; Locus where 2 sphere shr<strong>in</strong>ks to<br />

zero size: f 2 → 0<br />

• Asymptotic region <strong>of</strong> AdS 3 isolated po<strong>in</strong>ts where AdS 2 blows up<br />

f 1 →∞<br />

• Volume <strong>of</strong><br />

K 3 and dilaton/axion must rema<strong>in</strong> f<strong>in</strong>ite<br />

f1 2 f2 2 f3 4 = H 2<br />

Boundary <strong>of</strong> Σ: H vanishes apart form isolated poles


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

• Local solution solves BPS and equation <strong>of</strong> motion, solution can be<br />

s<strong>in</strong>gular, geodesically <strong>in</strong>complete or real fields can be complex<br />

• Boundary <strong>of</strong> Riemann surface; Locus where 2 sphere shr<strong>in</strong>ks<br />

tozero size: f 2 → 0 H → 0<br />

• Asymptotic region <strong>of</strong> AdS 3 isolated po<strong>in</strong>ts where AdS 2 blows up<br />

f 1 →∞<br />

• Volume <strong>of</strong><br />

K 3 and dilaton/axion rema<strong>in</strong>s f<strong>in</strong>ite<br />

f1 2 f2 2 f3 4 = H 2<br />

Boundary <strong>of</strong> Σ: H vanishes apart form isolated poles


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

• Local solution solves BPS and equation <strong>of</strong> motion, solution can be<br />

s<strong>in</strong>gular, geodesically <strong>in</strong>complete or real fields can be complex<br />

• Boundary <strong>of</strong> Riemann surface; Locus where 2 sphere shr<strong>in</strong>ks<br />

tozero size: f 2 → 0 H → 0<br />

• Asymptotic region <strong>of</strong> AdS 3 isolated po<strong>in</strong>ts where AdS 2 blows up<br />

f 1 →∞<br />

H →∞<br />

• Volume <strong>of</strong><br />

K 3 and dilaton/axion rema<strong>in</strong>s f<strong>in</strong>ite<br />

f1 2 f2 2 f3 4 = H 2<br />

Boundary <strong>of</strong> Σ: H vanishes apart form isolated poles


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

At the boundary<br />

H → 0<br />

f 2 1 = ce−2Φ<br />

2f 2 3<br />

f 2 2 = ce−2Φ<br />

2f 2 3<br />

|H|<br />

K<br />

|H|<br />

K<br />

f3 4 = 4c 2 e2Φ K<br />

A + Ā<br />

ρ 4 = e 2Φ K |∂ wH| 4<br />

H 2<br />

(A +<br />

(A +<br />

A + Ā<br />

|B| 4<br />

Ā)K − (B − ¯B)<br />

2<br />

Ā)K − (B + ¯B)<br />

2<br />

All functions satisfy Dirichlet boundary conditions on ∂Σ<br />

K =(A + Ā) =(B + ¯B) =H = 0 on ∂Σ


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

At the boundary<br />

H → 0<br />

f 2 1 = ce−2Φ<br />

2f 2 3<br />

f 2 2 = ce−2Φ<br />

2f 2 3<br />

|H|<br />

K<br />

|H|<br />

K<br />

f3 4 = 4c 2 e2Φ K<br />

A + Ā<br />

ρ 4 = e 2Φ K |∂ wH| 4<br />

H 2<br />

(A + Ā)K − (B − ¯B)<br />

2<br />

K → 0<br />

(A + Ā)K − (B + ¯B)<br />

2<br />

A + Ā<br />

|B| 4<br />

All functions satisfy Dirichlet boundary conditions on ∂Σ<br />

K =(A + Ā) =(B + ¯B) =H = 0 on ∂Σ


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

At the boundary<br />

H → 0<br />

f 2 1 = ce−2Φ<br />

2f 2 3<br />

f 2 2 = ce−2Φ<br />

2f 2 3<br />

|H|<br />

K<br />

|H|<br />

K<br />

f3 4 = 4c 2 e2Φ K<br />

A + Ā<br />

ρ 4 = e 2Φ K |∂ wH| 4<br />

H 2<br />

(A + Ā)K − (B − ¯B)<br />

2<br />

K → 0<br />

(A + Ā)K − (B + ¯B)<br />

2 B + ¯B → 0<br />

A + Ā<br />

|B| 4<br />

All functions satisfy Dirichlet boundary conditions on ∂Σ<br />

K =(A + Ā) =(B + ¯B) =H = 0 on ∂Σ


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

At the boundary<br />

H → 0<br />

f 2 1 = ce−2Φ<br />

2f 2 3<br />

f 2 2 = ce−2Φ<br />

2f 2 3<br />

|H|<br />

K<br />

|H|<br />

K<br />

f3 4 = 4c 2 e2Φ K<br />

A + Ā<br />

ρ 4 = e 2Φ K |∂ wH| 4<br />

H 2<br />

(A + Ā)K − (B − ¯B)<br />

2<br />

K → 0<br />

(A + Ā)K − (B + ¯B)<br />

2 B + ¯B → 0<br />

A + Ā → 0<br />

A + Ā<br />

|B| 4<br />

All functions satisfy Dirichlet boundary conditions on ∂Σ<br />

K =(A + Ā) =(B + ¯B) =H = 0 on ∂Σ


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Global regularity conditions<br />

Us<strong>in</strong>g the explicit expressions for the metric factors one can show<br />

that the follow<strong>in</strong>g conditions guarantee a globally regular solutions<br />

R1: A + Ā, B + ¯B,K have common s<strong>in</strong>gularities<br />

R2: No s<strong>in</strong>gularities <strong>in</strong> the bulk <strong>of</strong><br />

Σ<br />

R3: The harmonic functions A + Ā, B + ¯B,Kcannot have any zeros<br />

<strong>in</strong> the bulk <strong>of</strong><br />

Σ<br />

R4: The holomorphic function B und ∂ u H have common zeros<br />

R5: The harmonic functions satisfy the <strong>in</strong>equality:<br />

(A + Ā)K − (B + ¯B) 2 > 0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Simple deformation <strong>of</strong><br />

Σ is <strong>in</strong>f<strong>in</strong>ite strip<br />

w = x + iy,<br />

x ∈ [−∞, ∞]<br />

y ∈ [0, π]<br />

Half-BPS Janus solutions<br />

H = −iL s<strong>in</strong>h(w + ψ)+c.c.<br />

2 cosh θ +s<strong>in</strong>hθ cosh w<br />

A = ik + ib<br />

s<strong>in</strong>h w<br />

B =<br />

cosh(w + ψ)<br />

ik<br />

cosh ψ s<strong>in</strong>h w<br />

ĥ =<br />

cosh θ − s<strong>in</strong>h θ cosh w<br />

i + c.c.<br />

s<strong>in</strong>h w<br />

AdS 3 × S 3 with RR flux<br />

f 2 → 0<br />

π H → 0<br />

f 1 →∞<br />

H →∞<br />

0 x<br />

f 2 → 0<br />

H → 0<br />

f 1 →∞<br />

H →∞<br />

k, b SL(2,R) transformations<br />

L<br />

size <strong>of</strong> AdS<br />

θ, ψ deformation parameter


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Half-BPS Janus solutions<br />

axion and<br />

dilaton:<br />

e 4Φ = k 4 cosh2 (x + ψ)sech 2 ψ + cosh 2 θ − sech 2 ψ s<strong>in</strong> 2 y<br />

<br />

cosh x − cos y tanh θ<br />

2<br />

χ = − k2<br />

2<br />

s<strong>in</strong>h 2θ s<strong>in</strong>h x − 2 tanh ψ cos y<br />

cosh x cosh θ − cos y s<strong>in</strong>h θ<br />

− b<br />

Plot for ψ = 1 , θ =0,b=0,k =1L =1 dilaton jumps !<br />

2


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Half-BPS Janus solutions<br />

axion and<br />

dilaton:<br />

e 4Φ = k 4 cosh2 (x + ψ)sech 2 ψ + cosh 2 θ − sech 2 ψ s<strong>in</strong> 2 y<br />

<br />

cosh x − cos y tanh θ<br />

2<br />

χ = − k2<br />

2<br />

s<strong>in</strong>h 2θ s<strong>in</strong>h x − 2 tanh ψ cos y<br />

cosh x cosh θ − cos y s<strong>in</strong>h θ<br />

− b<br />

Plot for ψ =0, θ = 1 ,b=0,k =1,L=1 axion jumps !<br />

2


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Half-BPS Janus solutions<br />

metric factors are<br />

regular<br />

plot <strong>of</strong> solution with<br />

ψ = 1 2 , θ = 1 2<br />

b =0,k =1,L=1<br />

3 form AST charges q RR = πkL cosh θ cosh ψ, q NS =0<br />

5 form AST charge q F 5 =0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Half-BPS Janus solutions<br />

holographic <strong>in</strong>terpretation: Two comb<strong>in</strong>ations <strong>of</strong> massless scalars<br />

e −2Φ f 4 3 and χ − k 2 C K<br />

coupl<strong>in</strong>g constant <strong>of</strong> 2d CFT ( α ) blowup mode <strong>of</strong> orbifold<br />

dual to ∆ =2operator<br />

O 0 dual to ∆ =2operator<br />

T 0<br />

Take different values <strong>in</strong> the two asymptotic regions<br />

φ = φ 0 − + φ 1 −(y)e x + ... for x → −∞<br />

φ = φ 0 + + φ 1 +(y)e −x + ... for x →∞<br />

In the dual 2dim CFT, the operators are added which jump<br />

across a 1dim <strong>in</strong>terface:<br />

L 1 = L 0 + Θ(x ⊥ )c 1 O 0 + Θ(x ⊥ )c 2 T 0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Half-BPS Janus solutions<br />

What are the operators O 0 and T 0 ? N=(4,4) SCFT<br />

For simplicity consider (T 4 ) n /S n orbifold<br />

S = 1 <br />

d 2 z ∂X i,a ¯∂Xi,a + ψ i,a ¯∂ψi,a +<br />

4π<br />

¯ψ i,a ∂ ¯ψ<br />

<br />

i,a<br />

i,a<br />

O 0 (h, ¯h)<br />

<br />

=(1, 1) descendant <strong>of</strong> ψa i ¯ψ a j (h, ¯h) =(1/2, 1/2)<br />

lim<br />

z→w<br />

O 0 = ∂X i,a ¯∂Xi,a + fermions<br />

i,a<br />

T<br />

operator with vanish<strong>in</strong>g SU(2)xSU(2) R-symmetry<br />

0 (h, ¯h) =(1, 1)<br />

descendant <strong>of</strong> Z_2 twist field<br />

<br />

G 2 (z) ˜G 1† (¯z) − G 1† (z) ˜G 2† (¯z) Σ 1 2 , 1 2 (w, ¯w) =<br />

1<br />

(z − w)(¯z − ¯w) T 0 (w, ¯w)+···<br />

a


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Multi-Janus solutions<br />

Generalization <strong>of</strong> half-BPS Janus solution to an arbitary number <strong>of</strong><br />

asymptotic regions: map strip to upper half plane u = e w<br />

Asymptotic regions are mapped to u =0,u= ∞<br />

Harmonic function H s<strong>in</strong>gularity is a simple pole at u =0<br />

c0<br />

H = i<br />

u − c <br />

0<br />

+reg<br />

ū<br />

Works for A,K as well. Superimpose simple poles and solve for<br />

regularity condition Constra<strong>in</strong>ts on parameters


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

H = i<br />

n<br />

i=1<br />

c H,i<br />

u − x H,i<br />

+ c.c.<br />

Im(u)<br />

Multi-Janus solutions<br />

Σ<br />

f 2 → 0<br />

Vol(S 2 ) → 0<br />

Σ<br />

x H,1 x H,2<br />

x H,3 x H,4<br />

Re(u)<br />

f 1 →∞<br />

asymptotic region<br />

corresponds to half spaces<br />

<strong>in</strong> the holographic dual


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

H = i<br />

n<br />

i=1<br />

c H,i<br />

u − x H,i<br />

+ c.c.<br />

Multi-Janus solutions<br />

S 3<br />

Im(u)<br />

Σ<br />

S 3<br />

Σ<br />

X A,1<br />

X A,2n−2<br />

x H,1 x H,2<br />

x H,3 x H,4<br />

Re(u)<br />

f 1 →∞<br />

asymptotic region<br />

corresponds to half spaces<br />

<strong>in</strong> the holographic dual<br />

Additional 2n-2 moduli: position <strong>of</strong><br />

poles and residues <strong>of</strong> A(u)<br />

A = i<br />

2n−2<br />

<br />

i=1<br />

c A,i<br />

u − x A,i<br />

+ ib


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

c B,i =<br />

Multi-Janus solutions<br />

The other two functions are completely determ<strong>in</strong>ed by regularity<br />

R1 and R4: holomorphic B has zeros <strong>of</strong><br />

R1 R2 and R4: K is determ<strong>in</strong>ed<br />

2n−2<br />

ĉ i<br />

K = i<br />

+ c.c.<br />

u − x A,i<br />

where<br />

i=1<br />

B =<br />

lim (u − x A,i )B(u)<br />

u→x A,i<br />

∂ u H<br />

n−1<br />

i=1 (u − x H,i) 2<br />

∂ uH<br />

2n−2<br />

i=1 (u − x A,i)<br />

It can shown that with these choices<br />

dilaton, metric factors are real (R5 is<br />

automatically satisfied)<br />

ĉ i = c2 B,i<br />

c A,i<br />

and poles <strong>of</strong> A<br />

(A + Ā)ĥ − (B + ¯B) 2 > 0


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

3-pole soultion<br />

u → 0<br />

Simplest Case: H has 3 poles at 0,1 and ∞:<br />

c0<br />

H = i<br />

u + c <br />

1<br />

u − 1 − c ∞u<br />

+ c.c.<br />

Σ<br />

u →∞<br />

CFT: Fold 3 CFT’s on half spaces dual to asymptotic AdS regions<br />

u → 1<br />

CFT 1<br />

CFT 2<br />

CFT 3<br />

Interface= Boundary <strong>in</strong> CFT 1 ⊗ CFT 2 ⊗ CFT 3


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Multi-Janus solutions<br />

Summary<br />

• Solution with n asymptotic regions has n half spaces glued by an<br />

<strong>in</strong>terface<br />

• Moduli space <strong>of</strong> solutions has dimension 6n-6<br />

• In each asymptotic region there is 3-sphere and NS-NS or R-R flux<br />

(or both)<br />

• Scalar fields take different asymptotic values: Generalization <strong>of</strong> Janus<br />

solution to many asymptotic regions.<br />

• Central charge <strong>of</strong> CFT can be different <strong>in</strong> different asymptotic regions<br />

• No five form charge (no D3 brane flux)<br />

• Many <strong>in</strong>terest<strong>in</strong>g th<strong>in</strong>gs to calculate: <strong>Holographic</strong> calculation <strong>of</strong><br />

correlation functions, <strong>in</strong>terface entropy etc<br />

• Fusion <strong>of</strong> <strong><strong>in</strong>terfaces</strong> <strong>in</strong> holographic dual ?<br />

• Application to physical systems


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Many boundaries<br />

Multi-Janus solution can be generalized<br />

M. Chiodaroli, E. D’Hoker and<br />

M. Gutperle arXiv:0912.4679<br />

• Riemann surface with h boundaries (and g-handles)<br />

• F<strong>in</strong>d solutions with nonzero five brane charge<br />

• Degenerations <strong>of</strong> Riemann surfaces: what do they mean for<br />

<strong>in</strong>terface theory ?<br />

Simplest example: annulus with two poles on the same boundary<br />

S 3<br />

x H,1 x H,2<br />

C<br />

Two nontrivial three cycles and charges<br />

˜K is not s<strong>in</strong>gle valued around C: five form<br />

charge does not vanish<br />

S 3


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Many boundaries<br />

Multi-Janus solution can be generalized<br />

M. Chiodaroli, E. D’Hoker and<br />

M. Gutperle arXiv:0912.4679<br />

• Riemann surface with h boundaries (and g-handles)<br />

• F<strong>in</strong>d solutions with nonzero five brane charge<br />

• Degenerations <strong>of</strong> Riemann surfaces: what do they mean for<br />

<strong>in</strong>terface theory ?<br />

Simplest example: annulus with two poles on the same boundary<br />

x H,1 x H,2<br />

˜K is not s<strong>in</strong>gle valued around C: five form<br />

charge does not vanish<br />

Two nontrivial three cycles and charges<br />

Shr<strong>in</strong>k one boundary: po<strong>in</strong>t on disk<br />

position <strong>of</strong> 3-brane probe <strong>in</strong> AdS 3 × S 3


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Many boundaries<br />

annulus can be generalized to a surface with arbitrary number<br />

<strong>of</strong> boundaries, us<strong>in</strong>g the doubl<strong>in</strong>g trick and the mach<strong>in</strong>ery <strong>of</strong><br />

higher loop str<strong>in</strong>g perturbation theory<br />

boundaries are<br />

fixed po<strong>in</strong>ts <strong>of</strong><br />

Involution I<br />

Σ = ¯Σ/I<br />

I(A i )=A i<br />

I(B i )=−B i<br />

Harmonic function expressed <strong>in</strong> terms <strong>of</strong> holomorphic differential,<br />

Prime forms etc. Non-contractible cycles support 3 brane charge


<strong>Holographic</strong> duals <strong>of</strong> 2d <strong>in</strong>terface theories<br />

M. Gutperle UCLA<br />

Conclusions<br />

•We have constructed the half BPS Janus solution for type IIB<br />

which is locally asymptotic to AdS 3 × S 3 × K 3<br />

• <strong>Holographic</strong> dual to <strong>in</strong>terface CFT <strong>in</strong> 2dim D5/D1 CFT<br />

• Solution with more than two asymptotic regions: Both NS<br />

and RR 3 form charges, different central charges <strong>in</strong> AdS regions<br />

Backreacted solution <strong>of</strong> <strong>in</strong>tersect<strong>in</strong>g branes ?<br />

• No Five form charge present if Riemann surface Σ is the disk<br />

• Constructed solution where Riemann surface Σ is disk with n<br />

holes.<br />

• Noncontractible cycles support 5 brane charge<br />

• Candidate for backreacted solution <strong>of</strong> D3 brane probe with<br />

AdS 2 × S 2 worldvolume

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!