27.03.2014 Views

3.12 Buried Structures - Kansas Department of Transportation

3.12 Buried Structures - Kansas Department of Transportation

3.12 Buried Structures - Kansas Department of Transportation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong> <strong>Buried</strong> <strong>Structures</strong><br />

Table <strong>of</strong> Contents<br />

<strong>3.12</strong> <strong>Buried</strong> <strong>Structures</strong> ..................................................................................................................1<br />

<strong>3.12</strong>.1 Geometry .............................................................................................................1<br />

<strong>3.12</strong>.1.1 Definitions ...............................................................................................................1<br />

<strong>3.12</strong>.1.2 Length ......................................................................................................................3<br />

<strong>3.12</strong>.1.3 Skew or Rotation Angle ..........................................................................................3<br />

<strong>3.12</strong>.1.4 Wingwalls ................................................................................................................4<br />

<strong>3.12</strong>.2 Material .............................................................................................................19<br />

<strong>3.12</strong>.2.1 Concrete ................................................................................................................19<br />

<strong>3.12</strong>.2.2 Reinforcing ............................................................................................................19<br />

<strong>3.12</strong>.2.3 Material Density ....................................................................................................19<br />

<strong>3.12</strong>.3 Loads .................................................................................................................20<br />

<strong>3.12</strong>.3.1 Vehicle Load (LL) .................................................................................................20<br />

<strong>3.12</strong>.3.2 Dynamic Load Allowance (IM) ............................................................................20<br />

<strong>3.12</strong>.3.3 Distribution ............................................................................................................21<br />

<strong>3.12</strong>.3.4 Live Load Surcharge (LS) .....................................................................................21<br />

<strong>3.12</strong>.3.5 Future Wearing Surface (DW) ..............................................................................21<br />

<strong>3.12</strong>.3.6 Earth and Water Pressure (EV)(EH)(WA) ............................................................21<br />

<strong>3.12</strong>.3.7 Earth Surcharge (ES) .............................................................................................23<br />

<strong>3.12</strong>.3.7 Fill Height (Hf) ......................................................................................................24<br />

<strong>3.12</strong>.3.8 Summary <strong>of</strong> Low Fill Culvert Protection ..............................................................28<br />

<strong>3.12</strong>.4 Load Factors and Modifiers ..............................................................................29<br />

<strong>3.12</strong>.4.1 Load Factors ..........................................................................................................29<br />

<strong>3.12</strong>.4.2 Load Modifiers ......................................................................................................29<br />

<strong>3.12</strong>.5 Soils Information ...............................................................................................29<br />

<strong>3.12</strong>.5.1 Introduction ...........................................................................................................29<br />

<strong>3.12</strong>.5.2 Soils Data ..............................................................................................................30<br />

<strong>3.12</strong>.5.3 Bearing Capacity ...................................................................................................30<br />

<strong>3.12</strong>.5.4 Backfill ..................................................................................................................30<br />

<strong>3.12</strong>.5.5 Camber ..................................................................................................................31<br />

<strong>3.12</strong>.6 Analysis and Design ..........................................................................................33<br />

<strong>3.12</strong>.6.1 Analysis .................................................................................................................33<br />

<strong>3.12</strong>.6.2 Design Summary ...................................................................................................34<br />

<strong>3.12</strong>.6.3 Detailing ................................................................................................................37<br />

<strong>3.12</strong>.6.4 Practical Considerations for Structure Type .........................................................38<br />

<strong>3.12</strong>.7 Wingwall Structural Considerations .................................................................39<br />

<strong>3.12</strong>.7.1 Assumptions ..........................................................................................................39<br />

<strong>3.12</strong>.7.2 Earth Pressure ........................................................................................................40<br />

<strong>3.12</strong>.8 Precast Members ...............................................................................................44<br />

<strong>3.12</strong>.8.1 Box Culverts ..........................................................................................................44<br />

<strong>3.12</strong>.8.2 Precast Arch Culverts ............................................................................................47<br />

Volume III US (LRFD)<br />

Version 9/13<br />

3 - 12 - i<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.9 Miscellaneous ....................................................................................................52<br />

<strong>3.12</strong>.9.1 Guardrail ................................................................................................................52<br />

<strong>3.12</strong>.9.1.1 Sidewalks, Fence, Slab Rest ............................................................................52<br />

<strong>3.12</strong>.9.2 Vehicle Grate .........................................................................................................52<br />

<strong>3.12</strong>.9.3 Entrance Bevel ......................................................................................................52<br />

<strong>3.12</strong>.9.4 Hubguard ...............................................................................................................53<br />

<strong>3.12</strong>.9.5 Strike Line .............................................................................................................53<br />

<strong>3.12</strong>.9.6 Weep Holes ...........................................................................................................53<br />

<strong>3.12</strong>.9.7 Seal Course ............................................................................................................53<br />

<strong>3.12</strong>.9.8 Scour Apron ..........................................................................................................54<br />

<strong>3.12</strong>.9.9 Soil Saver ..............................................................................................................54<br />

List <strong>of</strong> Figures<br />

Figure <strong>3.12</strong>.1.1-1 Single/Multiple Cell RCB ..................................................................................5<br />

Figure <strong>3.12</strong>.1.1-2 RCB Plan Views ................................................................................................6<br />

Figure <strong>3.12</strong>.1.1-3 Box Size Definitions ..........................................................................................7<br />

Figure <strong>3.12</strong>.1.1-4 Bridge Box, 10’ to 20’ Structure (500 Series), or Road Culvert .......................8<br />

Figure <strong>3.12</strong>.1.2-1 RCB Plan View and Section ..............................................................................9<br />

Figure <strong>3.12</strong>.1.3-1 Normal, Skewed and Rotated Crossing ...........................................................10<br />

Figure <strong>3.12</strong>.1.4-1 Wingwall Flare Angle ......................................................................................11<br />

Figure <strong>3.12</strong>.1.4-2 Embankment at Wingwalls ..............................................................................12<br />

Figure <strong>3.12</strong>.1.4-3 Wingwall Dimensions for 0 Degree Skew RCB’s ...........................................13<br />

Figure <strong>3.12</strong>.1.4-4 Wingwall Dimensions for 30 Degree Skewed RCB’s .....................................14<br />

Figure <strong>3.12</strong>.1.4-5 Wingwall Dimensions for 45 Degree Skewed RCB’s .....................................15<br />

Figure <strong>3.12</strong>.1.4-6 Straight Wingwall Details ................................................................................16<br />

Figure <strong>3.12</strong>.1.4-7 Wingwall Dimensions for Straight Wings .......................................................17<br />

Figure <strong>3.12</strong>.1.4-8 Straight Wingwall Plan Details ........................................................................18<br />

Figure <strong>3.12</strong>.3.1-1 Live Load Distribution ....................................................................................20<br />

Figure <strong>3.12</strong>.3.6-1 Summary <strong>of</strong> Loading Conditions .....................................................................22<br />

Figure <strong>3.12</strong>.3.6-2 Buoyancy Effects on Backfill Materials ..........................................................23<br />

Figure <strong>3.12</strong>.3.7-1 Design Fill Height Category ...........................................................................24<br />

Figure <strong>3.12</strong>.3.7-3 Unequal Fill Height .........................................................................................27<br />

Figure <strong>3.12</strong>.5.5-1 Settlement <strong>of</strong> Culvert .......................................................................................32<br />

Figure <strong>3.12</strong>.6.1-1 Model <strong>of</strong> Culvert ..............................................................................................33<br />

Figure <strong>3.12</strong>.6.2-1 Strength Design ................................................................................................35<br />

Figure <strong>3.12</strong>.7.2-1 Design Assumptions - Vertical Cantilever .......................................................42<br />

Figure <strong>3.12</strong>.7.2-2 Typical Backfill and Toe Dimensions ..............................................................43<br />

Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert Details .............................................................................46<br />

Figure <strong>3.12</strong>.8.2-1 Precast Arch Details .........................................................................................50<br />

Figure <strong>3.12</strong>.8.2-2 Closure Pour ....................................................................................................51<br />

Figure <strong>3.12</strong>.9.1-1 Minimum Box Length With Guardrail ............................................................55<br />

Figure <strong>3.12</strong>.9.6-1 RCB Auxiliary Details (Std BR020b) ..............................................................56<br />

Figure <strong>3.12</strong>.9-3 Typical Culvert Extensions (Std RD080) ...........................................................57<br />

Figure <strong>3.12</strong>.9-4 Bridge Excavation (Std BR100) ..........................................................................58<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - ii<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9-5 Alignment & Details for Guardrail Protection on Low Fill Culverts (Std RD617c)<br />

59<br />

List <strong>of</strong> Tables<br />

Table <strong>3.12</strong>.4.1-1 LRFD Load Factors. ..........................................................................................29<br />

Appendixs<br />

Appendix A <strong>Kansas</strong> Automated RCB System ...............................................................................1<br />

Appendix B Wingwall Moment & Reaction Coefficients ..............................................................1<br />

Appendix C LRFD RCB Mathcadd Loads ..................................................................................... 1<br />

Appendix D Doubly Reinforced and Shear Capactiy <strong>of</strong> Concrete .................................................1<br />

Appendix E Miscellaneous Example Details ..................................................................................1<br />

References<br />

REFERENCES ...............................................................................................................................1<br />

Volume III US (LRFD)<br />

Version 9/13<br />

3 - 12 - iii<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Disclaimer:<br />

Disclaimer:Thisdocumentisprovidedforusebypersonsoutside<strong>of</strong>the<strong>Kansas</strong><strong>Department</strong><strong>of</strong><br />

<strong>Transportation</strong>asinformationonly.The<strong>Kansas</strong><strong>Department</strong><strong>of</strong><strong>Transportation</strong>,theState<strong>of</strong><strong>Kansas</strong>,its<br />

<strong>of</strong>ficersoremployees,bymakingthisdocumentavailableforusebypersonsoutside<strong>of</strong>KDOT,donot<br />

undertakeanydutiesorresponsibilities<strong>of</strong>anysuchpersonorentitywhochoosestousethisdocument.<br />

Thisdocumentshouldnotbesubstitutedfortheexercise<strong>of</strong>apersonsownUPr<strong>of</strong>essionalEngineering<br />

JudgementU.Itistheusersobligationtomakesurethathe/sheusestheappropriatepractices.Any<br />

personusingthisdocumentagreesthatKDOTwillnotbeliableforanycommercialloss;inconvenience;<br />

loss<strong>of</strong>use,time,data,goodwill,revenues,pr<strong>of</strong>its,orsaving;oranyotherspecial,incidental,indirect,or<br />

consequentialdamagesinanywayrelatedtoorarisingfromuse<strong>of</strong>thisdocument.<br />

TypographicConventions:<br />

Thetypographicalconventionforthismanualisasfollows:<br />

<br />

NonitalicreferencesrefertolocationswithintheKDOTBridgeDesignManuals(eithertheLRFDorLFD),<br />

orHyperlinksshowninred,asexamples:<br />

<br />

<br />

Section3.2.9.12<strong>Transportation</strong><br />

Table3.9.21DeckProtection<br />

<br />

<br />

ItalicreferencesandtextrefertolocationswithintheAASHTOLRFDDesignManual,forexample:<br />

<br />

Article5.7.3.4<br />

<br />

ItalicreferenceswithaLFDlabelandtextrefertolocationswithintheAASHTOLFDStandard<br />

Specifications,forexample:<br />

<br />

LFDArticle3.5.1<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - iv<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong> <strong>Buried</strong> <strong>Structures</strong><br />

The following criteria are intended as guidelines in the structural design and detail <strong>of</strong> cast-inplace<br />

(CIP) reinforced concrete box culverts. The criteria are applicable to culverts for which<br />

KDOT has direct design responsibility and for which KDOT has a responsibility for plan review.<br />

It is not intended that these guidelines answer all questions <strong>of</strong> design or details <strong>of</strong> design. Additional<br />

information will be added to this document, as needed, for clarification. It is expected that<br />

the applicability <strong>of</strong> these guidelines to actual field conditions or to designs outside the limits considered<br />

in this report will be verified by an Engineer. The hydraulic design and selection <strong>of</strong> culvert<br />

size are discussed in other documents.<br />

This section also contains information on precast box culverts and precast arch strucures.<br />

Reference to the “KDOT Design Engineer” considered to be appropriately either the State Road<br />

Engineer or the State Bridge Engineer.<br />

Unless otherwise noted, AASHTO references are to the 2007 American Association <strong>of</strong> State<br />

Highway and <strong>Transportation</strong> Official’s LRFD Specifications for Highway Bridges, including the<br />

2009 interims.<br />

<strong>3.12</strong>.1 Geometry<br />

<strong>3.12</strong>.1.1 Definitions<br />

For purposes <strong>of</strong> this report, a reinforced concrete box culvert is considered to consist <strong>of</strong> two components:<br />

a rectangular conduit (box, barrel, etc.) to convey water and a retaining structure (headwalls,<br />

wingwalls, etc.) to prevent erosion <strong>of</strong> the embankment fill. The wingwalls provide a<br />

hydraulic transition at the entrance and exit <strong>of</strong> the conduit.<br />

The standard designation for the size <strong>of</strong> a box culvert shall be the span followed by the rise (see<br />

Figure <strong>3.12</strong>.1.1-1 Single/Multiple Cell RCB). For example, a 10 x 8 designation is a box culvert<br />

with a span <strong>of</strong> 10 ft. and a rise (height) <strong>of</strong> 8 ft. The designation for a multiple cell box culvert shall<br />

be the number <strong>of</strong> cells followed by the cell size. For example, a 3-10 x 8 is a triple cell box culvert<br />

with each cell measuring 10 ft. span by 8 ft. rise. For Standard Box Culverts, all cells <strong>of</strong> a multiple<br />

cell box culvert shall be the same size. The span by rise designation shall be measured as the clear<br />

distance from the inside faces <strong>of</strong> walls, and the clear inside distance from top to bottom slabs. For<br />

normal practice, the rise dimension is considered vertical and the end face <strong>of</strong> the RCB is assumed<br />

to be constructed vertical. The span by rise designation is an indication <strong>of</strong> the hydraulic flow area.<br />

The structural-design span length for slab and wall members shall be determined by the applicable<br />

AASHTO specifications.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

For purposes <strong>of</strong> classification, a box culvert can be classified as a Bridge Box, a 10 ft. to 20 ft.<br />

Structure (Formerly known as ‘500’ Series), or a Road Culvert. (See Figure <strong>3.12</strong>.1.1-2 RCB Plan<br />

Views, Figure <strong>3.12</strong>.1.1-3 Box Size Definitions, and Figure <strong>3.12</strong>.1.1-4 Bridge Box, 10’ to 20’<br />

Structure (500 Series), or Road Culvert<br />

Bridge Box: A bridge box is defined as a structure having a length greater than 20 ft. measured<br />

along the centerline <strong>of</strong> the roadway from the inside faces <strong>of</strong> both exterior walls (including<br />

all span widths and the thickness <strong>of</strong> all interior walls). The total length along the centerline<br />

<strong>of</strong> project shall consider the effects <strong>of</strong> the skew or rotation. For example, a 20 x 10 box culvert<br />

constructed normal to centerline <strong>of</strong> project is not a bridge. A 20 x 10 box culvert constructed<br />

skewed or rotated to centerline <strong>of</strong> project would be classified as a bridge. A 2-10<br />

x 8 box culvert would be classified as a bridge, i.e. two (2) 10 ft. clear spans plus an interior<br />

wall exceeds 20 ft.<br />

10 ft. to 20 ft. <strong>Structures</strong>, (Formerly known as ‘500’ Series Boxes): Box culverts with a total<br />

width <strong>of</strong> 10 ft. or greater (measured perpendicular to the centerline <strong>of</strong> box) to less than or<br />

equal to 20 ft. (measured along the centerline <strong>of</strong> the roadway) are considered 10 ft. to 20<br />

ft. <strong>Structures</strong>. Measurements are taken from the inside faces <strong>of</strong> both exterior walls and<br />

include all span widths and the thicknesses <strong>of</strong> all interior walls.)<br />

Road Culvert: A Road Culvert is defined as a structure having a length <strong>of</strong> less than 10 ft. from the<br />

inside faces <strong>of</strong> both exterior walls measured perpendicular to the centerline <strong>of</strong> the box.<br />

RCB vs. RFB: Box culverts are further defined as RCB’s (“Pinned”) and RFB’s (“Fixed”).<br />

A “Pinned” box is designed with the walls and slabs assumed to be simple spans<br />

(independent <strong>of</strong> one another). Normally there is only one layer <strong>of</strong> steel in the walls <strong>of</strong><br />

pinned boxes (unless the cell height is greater than 10 ft.). In addition, pinned boxes do not<br />

have fillets in the corners <strong>of</strong> the box.<br />

“Fixed” (also referred to as Rigid Frame) boxes are designed with the slabs and walls<br />

assumed to be continuous (connected to one another). Therefore, in Rigid Frame Boxes<br />

(RFB’s), there will always be an L-shaped reinforcing bar in the corners <strong>of</strong> the box near<br />

the outside face. This corner reinforcing bar distributes some <strong>of</strong> the load from the slab to<br />

the wall and vice-versa. Rigid Frame culverts always have two layers <strong>of</strong> steel in the wall.<br />

All KDOT Rigid Frame Boxes have fillets in the corners <strong>of</strong> the box. This fillet helps<br />

provide rigidity to the frame.<br />

On the Plan/Pr<strong>of</strong>ile Sheets and Title Sheet, in the note that specifies location, size and type<br />

<strong>of</strong> box culverts; label “pinned” boxes as RCB’s, and label “fixed” boxes as RFB’s.<br />

The State Road Office is responsible for the design and detail generation <strong>of</strong> “Road Culverts” and<br />

“10 ft. to 20 ft. <strong>Structures</strong>”. The State Bridge Office is responsible for “Bridge Boxes”. The 10 ft.<br />

to 20 ft. structures have a unique serial number for their respective county. This requires coordination<br />

with the Bridge Special Assignments Section in acquiring a serial number.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.1.2 Length<br />

The length <strong>of</strong> an RCB is considered to be the horizontal length measured along the centerline <strong>of</strong><br />

the culvert from exterior face to exterior face and shall be rounded up to the nearest inch. The<br />

Roadway length (right or left) is the horizontal distance from the centerline <strong>of</strong> roadway (or project)<br />

to the roadway side <strong>of</strong> the hubguard and is measured normal (90) to the centerline <strong>of</strong> roadway<br />

(or project). The ‘Roadway Length’ is a parameter used in determining guardrail<br />

requirements, encroachments in the safety recovery zone, and other features <strong>of</strong> Geometric Roadway<br />

Design. As an example, a 10 x 8 x 272’-3” RCB has a horizontal length (to the nearest inch)<br />

<strong>of</strong> 272’-3”, but may have combinations <strong>of</strong> ‘Roadway Left’ and ‘Roadway Right’ depending on<br />

the grade <strong>of</strong> the box and the angle <strong>of</strong> skew or rotation. Roadway lengths are rounded to the nearest<br />

0.01 ft. (see Figure <strong>3.12</strong>.1.2-1 RCB Plan View and Section). For normal practice, it is sufficient to<br />

station the location to the nearest ft.<br />

<strong>3.12</strong>.1.3 Skew or Rotation Angle<br />

A skewed RCB is defined as an RCB that intersects the centerline <strong>of</strong> project at an angle other than<br />

90 and has an entrance and exit face that is parallel to the centerline <strong>of</strong> project.<br />

A rotated RCB is defined as an RCB that intersects the centerline <strong>of</strong> project at an angle other than<br />

90° and has an entrance and exit face that is normal to the centerline <strong>of</strong> the RCB. For rotated<br />

structures the roadway length reference location is the inside <strong>of</strong> the hubguard closest to the road.<br />

This location is also used to determine the minimum structure dimension when providing a structure<br />

which is outside <strong>of</strong> the clear zone and thus may not need guardrail.<br />

The skew angle or rotation angle is the acute angle measured from a line normal to the centerline<br />

<strong>of</strong> project. A skew angle (or rotation angle) is considered a ‘right’ skew (or rotation) when the<br />

acute angle <strong>of</strong> intersection from a line normal to the centerline <strong>of</strong> project and the centerline <strong>of</strong> the<br />

RCB is measured clockwise. Conversely, a ‘left’ skew angle is measured counterclockwise (see<br />

Figure <strong>3.12</strong>.1.3-1 Normal, Skewed and Rotated Crossing).<br />

Ordinary design practice allows normal (90 crossing) box culverts to be rotated to angles up to<br />

15 degrees. Standard skewed boxes <strong>of</strong> 30 skew and 45 skew angles may be used at skewed<br />

waterway crossings with local channel realignment to improve the approach and exit direction <strong>of</strong><br />

the stream.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.1.4 Wingwalls<br />

Wingwalls are referred to as ‘flared’ when the axis <strong>of</strong> the wingwall forms an acute angle with the<br />

centerline axis <strong>of</strong> the box. ‘Straight’ wingwalls are an extension or continuation <strong>of</strong> the box walls.<br />

(See Figure <strong>3.12</strong>.1.4-8 Straight Wingwall Plan Details) Wingwalls constructed at 90 to the barrel<br />

or constructed parallel to centerline <strong>of</strong> roadway are not considered hydraulically efficient and are<br />

not recommended for use on KDOT Standard RCB’s. Flared wingwalls will be used on the Standards<br />

at the entrance ends <strong>of</strong> culverts for hydraulic reasons. However, straight wings may be<br />

specified at the entrance end when the hydraulics and additional costs are adequately considered.<br />

Straight wings, compared to flared wings, for a rise <strong>of</strong> 8.0 ft. or less may be economically specified<br />

for single cell boxes. For multiple cell boxes, the cost for straight wings, including the floor,<br />

may exceed the cost for flared wings; however, at sites where erosion aprons are specified,<br />

straight wings may be appropriate. Otherwise, ‘flared’ wings will be used at the exit end.<br />

The ‘flare’ angle for normal or rotated culverts will be 45 degrees. For Standard 30 and 45<br />

skewed boxes, the ‘flare’ angle will be as shown on Figure <strong>3.12</strong>.1.4-1 Wingwall Flare Angle.<br />

The reference point for wingwall geometry is considered the intersection <strong>of</strong> the back face <strong>of</strong> the<br />

wingwall and the exterior face <strong>of</strong> the box. The length <strong>of</strong> the wingwall is measured from the free<br />

end to the reference point along the back face <strong>of</strong> the wall. (see Figure <strong>3.12</strong>.1.4-2 Embankment at<br />

Wingwalls)<br />

Length <strong>of</strong> flared walls will be based on a local embankment slope behind the wing <strong>of</strong> 3.5:1 and a<br />

2:1 slope in front <strong>of</strong> the wing. (see Figure <strong>3.12</strong>.1.4-2 Embankment at Wingwalls) The computed<br />

length <strong>of</strong> the wall will be rounded up to the next 6 inches. The elevation at the end <strong>of</strong> flared walls<br />

shall be computed from the flow line with a 2:1 slope and the height at the end <strong>of</strong> the wing shall<br />

be rounded up to the nearest inch. Flared wingwalls are available for standard box heights from 3<br />

ft. to 20 ft. (See Figure <strong>3.12</strong>.1.4-3 Wingwall Dimensions for 0 Degree Skew RCB’s, Figure<br />

<strong>3.12</strong>.1.4-4 Wingwall Dimensions for 30 Degree Skewed RCB’s, and Figure <strong>3.12</strong>.1.4-5 Wingwall<br />

Dimensions for 45 Degree Skewed RCB’s for flared wingwall dimensions)<br />

Length <strong>of</strong> straight walls will be based on a local embankment slope beyond the hubguard <strong>of</strong> 3:1.<br />

(see Figure <strong>3.12</strong>.1.4-6 Straight Wingwall Details) The computed length <strong>of</strong> the wall will be<br />

rounded up to the next 6 inches. The elevation at the end <strong>of</strong> the straight walls shall be computed at<br />

the end <strong>of</strong> the wall as h/4 above the flow line (2.5 ft. maximum) and rounded up to the nearest<br />

inch. (see Figure <strong>3.12</strong>.1-8) Straight wingwalls are available for standard box heights from 2 ft. to<br />

10 ft. (See Figure <strong>3.12</strong>.1.4-7 Wingwall Dimensions for Straight Wings for straight wingwall<br />

dimensions)<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 4<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.1-1 Single/Multiple Cell RCB<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 5<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.1-2 RCB Plan Views<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 6<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.1-3 Box Size Definitions<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 7<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.1-4 Bridge Box, 10’ to 20’ Structure (500 Series), or Road Culvert<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 8<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.2-1 RCB Plan View and Section<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 9<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.3-1 Normal, Skewed and Rotated Crossing<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 10<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-1 Wingwall Flare Angle<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 11<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-2 Embankment at Wingwalls<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 12<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-3 Wingwall Dimensions for 0 Degree Skew RCB’s<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 13<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-4 Wingwall Dimensions for 30 Degree Skewed RCB’s<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 14<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-5 Wingwall Dimensions for 45 Degree Skewed RCB’s<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 15<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-6 Straight Wingwall Details<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 16<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-7 Wingwall Dimensions for Straight Wings<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 17<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.1.4-8 Straight Wingwall Plan Details<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 18<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.2 Material<br />

<strong>3.12</strong>.2.1 Concrete<br />

Grade 4.0(AE)<br />

Grade 4.0<br />

f’c = 4,000 psi<br />

f’c = 4,000 psi<br />

Grade 4.0 concrete shall be used for design and construction <strong>of</strong> Reinforced Concrete Boxes<br />

except that Grade 4.0 (AE) concrete shall be used in the top slab at locations where the top slab is<br />

the riding surface (or where the actual fill is 2 ft. less) and it is expected that the top slab will be<br />

exposed to frequent applications <strong>of</strong> deicing salts. Air-entrained concrete should be used in conjunction<br />

with epoxy-coated reinforcing steel (see Section <strong>3.12</strong>.6.3 Detailing for corrosion protection<br />

for reinforcing).<br />

When specified by the plans or required by the Plan Engineer, a seal course <strong>of</strong> unreinforced concrete<br />

(Commercial Grade) may be used.<br />

<strong>3.12</strong>.2.2 Reinforcing<br />

ASTM A615 Grade 60 Fy = 60 ksi<br />

Maximum length <strong>of</strong> bars #5 through #11 shall not exceed 60.0 ft. Maximum length <strong>of</strong> #3 and #4<br />

bars shall be 40.0 ft. This is a field handling consideration. See Section <strong>3.12</strong>.6.3 Detailing for size,<br />

spacing, and clearance requirements.<br />

<strong>3.12</strong>.2.3 Material Density<br />

The following densities are assumed for design purposes (taken from Table 3.5.1-1):<br />

Concrete ..............................................................150 pcf<br />

Asphalt ................................................................135 pcf<br />

Compacted Sand .................................................115 pcf<br />

Loose (Dumped Sand) ........................................100 pcf<br />

Compacted Sand-Gravel .....................................120 pcf<br />

Soil .......................................................................120 pcf<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 19<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.3 Loads<br />

<strong>3.12</strong>.3.1 Vehicle Load (LL)<br />

KDOT uses a one ft. strip method to analyze the top slab <strong>of</strong> culverts. The HS20 live load or design<br />

tandem only shall be used (Article 3.6.1.3.3 for spans in the longitudinal direction), whichever<br />

produces the greatest stress. Per Article 3.6.1.3, the lane load included in the HL-93 load is not<br />

used for box culverts. Where traffic travels parallel to the span, the designs will be limited to one<br />

lane loaded and use a multiple presence factor <strong>of</strong> 1.2 per Article C3.6.1.3.3. In rare cases where<br />

the traffic travels perpendicular to the span a special analysis is required. KDOT will not make<br />

any corrections for skewed structures, per Article 12.11.2.4. Live load need not be considered for<br />

single cell structures where the fill is greater than 8 ft., or for multi-cell structures with the fill<br />

height greater than the overall box width. See Appendix C LRFD RCB Mathcadd Loads for<br />

example calculations.<br />

Figure <strong>3.12</strong>.3.1-1 Live Load Distribution<br />

<strong>3.12</strong>.3.2 Dynamic Load Allowance (IM)<br />

Impact shall be applied as per Article 3.6.2.2, and will have influence only to a depth <strong>of</strong> 8 ft. for<br />

single cell structures or to a depth <strong>of</strong> fill equal to the out-to-out dimension for multi-cell structures.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 20<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.3.3 Distribution<br />

Per Article 4.6.2.10, where the depth <strong>of</strong> fill is less than 2.0 ft., the live load shall be distributed<br />

over a distance E, measured perpendicular to the span, and E span measured parallel to the span per<br />

Equations 4.6.2.10.2-1 and Equations 4.6.2.10.2-2 respectfully. KDOT uses 1.00 for the Live<br />

Load Distribution Factor (LLDF). This assumes the distribution <strong>of</strong> the live load through depth <strong>of</strong><br />

fill will be consistent with soil.<br />

When the depth <strong>of</strong> fill is 2.0 ft. or more (Article 3.6.1.2.6), the live load is distributed over a rectangular<br />

area starting from a contact patch <strong>of</strong> 10 in. x 20 in. per Article 3.6.1.2.5. KDOT uses a<br />

22.5 degree angle, 0.500:1 from each side <strong>of</strong> the patch to the top <strong>of</strong> the culvert. This article also<br />

allows the use <strong>of</strong> a 0.575:1 factor for granular fill which would increase the size <strong>of</strong> the rectangular<br />

area and decrease the load intensity. Unless special circumstances exist, which would change the<br />

overburden material on the culvert from that covered in KDOT’s Standard Specifications, the<br />

default <strong>of</strong> 0.500:1 is used.<br />

For the design <strong>of</strong> KDOT ‘Standard Culverts’, it is assumed that the culvert is founded on a yielding<br />

foundation using embankment construction methods. The vertical earth load shall be the soil<br />

weight with applicable design factors.<br />

The foundation is considered to be on springs (compression only) derived from an average modulus<br />

<strong>of</strong> subgrade reaction <strong>of</strong> 125 pci. These springs replace the distribution <strong>of</strong> load (reaction) to the<br />

bottom slab specified in Article 12.11.2.3. The passive resistance <strong>of</strong> the walls is similar to the<br />

floor. The value <strong>of</strong> the reaction is half that <strong>of</strong> the floor reaction. These spring supports, representing<br />

the soil, at the foundation are based on a modulus <strong>of</strong> subgrade reaction recommended by<br />

KDOT’s Geotechnical Engineer. This may be unconservative for culverts founded on rock. <strong>Structures</strong><br />

founded on rock may require a special design, and can be investigated for by adjusting the<br />

spring constant and determining the effects.<br />

<strong>3.12</strong>.3.4 Live Load Surcharge (LS)<br />

KDOT will use a live load surcharge as stated in Article 3.11.6.4, where vehicular load is expected<br />

to act on the surface <strong>of</strong> the backfill within a distance equal to one-half <strong>of</strong> the wall height. The<br />

range <strong>of</strong> values are from 2.0 ft. to 4.0 ft. <strong>of</strong> equivalent soil. (see Figure <strong>3.12</strong>.3.6-1 Summary <strong>of</strong><br />

Loading Conditions)<br />

<strong>3.12</strong>.3.5 Future Wearing Surface (DW)<br />

KDOT policy is to use a paved surface on top <strong>of</strong> the standard RCB’s. An allowance for future<br />

wearing surface (FWS) will not be used in the design <strong>of</strong> an RCB ‘At Grade’ box. When the top<br />

slab is the wearing surface, FWS should be considered.<br />

<strong>3.12</strong>.3.6 Earth and Water Pressure (EV)(EH)(WA)<br />

Coulomb Earth Pressure Theory is appropriate for walls with no heels and backfill materials<br />

which may not be free draining; see Article C 3.11.5.3 for additional information. Rankine Earth<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 21<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Pressure Theory uses equivalent earth pressure and is appropriate for long heeled cantilever walls<br />

and backfill material which is free draining. Acceptable backfill materials will meet criteria<br />

specified in the <strong>3.12</strong>.5.4 Backfill.<br />

The following values are used for the design <strong>of</strong> KDOT Standard Reinforced Concrete Box Culverts:<br />

Saturated Soil Unit Weight ...................................................... 135 pcf<br />

Soil Weight Unit Weight ......................................................120 pcf<br />

Coefficient <strong>of</strong> ‘at-rest’ earth .................................................... 0.50<br />

Because the designer may not be sure which method <strong>of</strong> construction will occur in the field, KDOT<br />

assumes that “Embankment” rather than “Trench” type construction is used. This assumption<br />

results in conservative values for the unfactored vertical earth loads per Article 12.11.2.2.<br />

Figure <strong>3.12</strong>.3.6-1 Summary <strong>of</strong> Loading Conditions<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 22<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.3.6-2 Buoyancy Effects on Backfill Materials<br />

Water Effects:<br />

The height <strong>of</strong> the water table will be taken to be level with the top <strong>of</strong> the box. The internal effect<br />

assumes that the box is completely full. The soil below the top <strong>of</strong> the barrel is considered submerged;<br />

soil in the EH (earth horizontal) load is buoyant. Use the effective unit weight to calculate<br />

this force effect, except for structures with fill heights less than 10 ft. as described below.<br />

Hydrostatic forces (WA) are applied to both the exterior and interior portions <strong>of</strong> the barrel that<br />

maximize the force effects. The vertical force effect for (WA) is used on the bottom slab. These<br />

two effects are to be considered independent effects which are combined to maximized the greatest<br />

effect. The assumed effects <strong>of</strong> water and buoyancy are shown in Figure <strong>3.12</strong>.3.6-2 Buoyancy<br />

Effects on Backfill Materials.<br />

Special Considerations:<br />

In <strong>Kansas</strong>, road ditches and creeks in small drainage areas have a water surface elevation which<br />

changes rapidly with each hydraulic event. The probability <strong>of</strong> saturating the soil in the backfill, as<br />

described in the previous section, is low. The Standard KDOT RCB with less than 10 ft. <strong>of</strong> fill<br />

will not be designed for this condition, as it would be overly conservative most <strong>of</strong> the time. If the<br />

designer anticipates the possibility <strong>of</strong> a sustained high water event, for example in a flood plain or<br />

at a detention storage location, then a custom design may be warranted.<br />

<strong>3.12</strong>.3.7 Earth Surcharge (ES)<br />

Occasionally, construction activities require accelerated settlement by loading portions <strong>of</strong> the new<br />

roadway embankment with excessive overburden. The Standard KDOT RCB was not designed<br />

for this loading condition. If the Engineer anticipates this construction condition, a special analysis<br />

will be done to evaluate the potentials for distress in the box culvert.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 23<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.3.7 Fill Height (H f )<br />

For normal crowned roadways, the design fill height will be measured from the top <strong>of</strong> the riding<br />

surface at the outside edge <strong>of</strong> the shoulder to top <strong>of</strong> box. A structure with “0.0 ft.” <strong>of</strong> design fill<br />

height should be only used when traffic is directly on the top <strong>of</strong> the box. For traffic directly on the<br />

structure, adjust the top bar reinforcement cover to a minimum <strong>of</strong> 3 in.<br />

For super-elevated roadways, extreme sloping boxes, or unusual cross-sections, judgment will be<br />

exercised in determining the design fill height. In all cases, the fill height will be noted on the<br />

plans for review and future reference. KDOT’s practice requires that one fill height be used for the<br />

structural design <strong>of</strong> the entire length <strong>of</strong> the box.<br />

Figure <strong>3.12</strong>.3.7-1 Design Fill Height Category<br />

Category<br />

‘At Grade’ Box<br />

‘Low Fill’ Box<br />

‘Moderate Fill’ Box<br />

‘High Fill’ Box<br />

Design Fill Height<br />

0.0 to 2.0 ft., or* where top slab is driving surface.<br />

Over 2.0 ft. to 10.0 ft.<br />

Over 10.0 ft. to 20.0 ft.<br />

Over 20.0 ft. to 50.0 ft.<br />

*Note: Driving directly on the top slab or with a nomial amount <strong>of</strong> pavement is the only time 0.0<br />

ft. should be used as the fill height.<br />

For superelevated roadway sections as shown in the graphic, the design fill height may be either a<br />

minimum fill, or a maximum fill section. Investigate both to determine the most conservative<br />

design.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 24<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Fill Heights:<br />

1) The designer needs to specify the proper depth <strong>of</strong> fill on the RCB. Design fills<br />

should be specified as follows:<br />

Actual Fill<br />

Fill to specify<br />

on plans<br />

0 < 0.5 ft. 0.0*<br />

> 0.5 ft. < 2 ft. 2 ft.<br />

> 2 ft. < 3 ft. 3 ft.<br />

> 3 ft. < 5 ft. 5 ft.<br />

> 5 ft. < 10 ft. 10 ft.<br />

> 10 ft. < 15 ft. 15 ft.<br />

> 15 ft. < 20 ft. 20 ft.<br />

> 20 ft. < 25 ft. 25 ft.<br />

> 25 ft. < 30 ft. 30 ft.<br />

> 30 ft. < 35 ft. 35 ft.<br />

> 35 ft. < 40 ft. 40 ft.<br />

> 40 ft. < 45 ft. 45 ft.<br />

> 45 ft. < 50 ft. 50 ft.<br />

* Special Case when traffic is directly on top slab.<br />

2) Below is a graphical representation showing the importance <strong>of</strong> specifying the<br />

proper amount <strong>of</strong> fill. Arbitrarily adding fill height does not necessarily provide a<br />

stronger RCB. In some instances, engineering judgment may be required to<br />

specify the proper amount <strong>of</strong> fill (i.e.; RCB Extensions, RCB's under superelevated<br />

roadways).<br />

For fill heights < 10’-0”, the Designer (s<strong>of</strong>tware) will investigate 5 ft., 3 ft. and 2<br />

ft. fill heights to determine the most conservative design.<br />

The fill heights used in the RCB Program rounds the actual fill to the Design fill<br />

height. It is KDOT’s policy to round actual fill height <strong>of</strong> 4.99 ft. and less to the<br />

most conservative value <strong>of</strong> 2 ft. which is governed by the truck loadings. Round<br />

fill heights <strong>of</strong> 5.00 ft. and greater to the next conservative fill value in which earth<br />

pressure controls.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 25<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

For ‘At Grade’ Boxes an equivalent soil fill height should be used, considering mass and thickness<br />

<strong>of</strong> the pavement, pavement base, and sub-base. The design value shall be noted on the plans.<br />

For other than ‘At Grade’ Boxes, the weight <strong>of</strong> pavement and base may be assumed as earth density<br />

at 120 pcf.<br />

Design Fills over 50.0 ft. will be considered as special circumstances and will require a review by<br />

the KDOT Design Engineer.The design fill value is a representative design parameter not<br />

intended for use in field construction or for hydraulic analysis.<br />

In special circumstances where unusual variance in fill heights may occur and savings may be<br />

effected as in the case <strong>of</strong> large and/or long boxes under ‘high fill’, more than one Design Fill<br />

Height may be used and shall be so noted on the plans. Culverts designed with more than one<br />

Design Fill Height will require a documented economic analysis to be reviewed by the KDOT<br />

Design Engineer. Where a design life is needed for economic evaluation, a design life <strong>of</strong> 75 years<br />

will be assumed. The minimum length <strong>of</strong> culvert section with multiple Design Fill Height shall be<br />

60.0 ft.<br />

Unequal Fill: For locations where unequal fill could be a concern, such as when a box culvert is<br />

installed parallel to the embankment slope, use an RFB. When the differential in fill height is<br />

equal to or greater than 20% a special analysis is required.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 26<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.3.7-3 Unequal Fill Height<br />

Structure Top Slab Protection:<br />

For box structures where the design fill height is less than or equal to 2 ft. , measured at the outside<br />

edge <strong>of</strong> the shoulder, the box will have a multi-layer protection system. Cast-in-place box<br />

structures will have 100% epoxy coated reinforcement in the barrel, not just the top slab portion<br />

as in past practice. Wings need not have epoxy protection. Air Entrained (AE) concrete will be<br />

used for the top <strong>of</strong> slab when a design fill height is less than or equal to 2 ft. The exterior (dirt<br />

side) portion <strong>of</strong> the top slab plus 12 in. <strong>of</strong> the top <strong>of</strong> the exterior wall will be protected by an<br />

approved non-coal tar “Bridge Backwall Protection System” comprised <strong>of</strong> needle punched bentonite<br />

panels.<br />

For box structures using a precast alternate, the concrete will provide for a low permeability structure.<br />

For design fill heights less than or equal to 2 ft. use an “Bridge Back wall Protection System”<br />

in the cast in place structure is required. Epoxy reinforcement is not required for precast structures.<br />

For structures where the driving surface is the top slab and hot mix asphalt will be placed directly<br />

on the top slab there are two additional requirements. The designer will use “Pavement Waterpro<strong>of</strong>ing<br />

Membrane” from Section 800 and increase the cover to the top mat <strong>of</strong> reinforcement to a<br />

minimum <strong>of</strong> 3 in. by adding 1 in. <strong>of</strong> concrete. In-leiu <strong>of</strong> the waterpro<strong>of</strong>ing membrane the Contractor<br />

may supply a minium <strong>of</strong> 3 in. <strong>of</strong> dirt to thermaly insulate the backwall protection from the<br />

hot mix asphalt.<br />

* See Section <strong>3.12</strong>.3.8 for summary <strong>of</strong> protection for all culvert types.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 27<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.3.8 Summary <strong>of</strong> Low Fill Culvert Protection<br />

Precast Culvert (Special Provision 07-07019)<br />

Precast Arch<br />

• Fill less than or equal 3 feet<br />

• Epoxy reinforcement in entire precast arch and closure pour<br />

• Pavement waterpro<strong>of</strong>ing membrane over closure + 18 in.<br />

• Air entrained concrete for entire arch<br />

• Bridge Backwall Protection covering the middle 1/3 <strong>of</strong> top <strong>of</strong> the structure<br />

• 2 feet <strong>of</strong> aggregate on top and sides<br />

Precast Rigid Frame<br />

• Fill less than or equal 3 feet<br />

• Epoxy reinforcement in entire precast frame<br />

• Air entrained concrete for entire frame<br />

• Bridge Backwall Protection covering the entire top + 12 in. down the sides<br />

• 2 feet <strong>of</strong> aggregate on top and sides<br />

Precast Box Culvert (Special Provision 07-07-07017)<br />

• Fill less than or equal 2 feet<br />

• Epoxy reinforcement for entire box or Bridge Backwall Protection covering the entire top +<br />

12 in. down the sides<br />

• Air entrained concrete for entire box<br />

• Additional 1 1/4 in. clearance for top mat in top slab<br />

Cast-In-Place Box Culvert (Bridge Standard per RCB Program + BR020B)<br />

• Fill less than or equal 2 feet<br />

• Epoxy reinforcement for entire box and Bridge Backwall Protection covering the entire top +<br />

12 in. down the sides<br />

• Air entrained concrete for top slab<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 28<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.4 Load Factors and Modifiers<br />

<strong>3.12</strong>.4.1 Load Factors ( )<br />

The factors below are taken from Table 3.4.1-2 to maximize the effects to the structure.<br />

Table <strong>3.12</strong>.4.1-1 LRFD Load Factors.<br />

Load<br />

* For special designs.<br />

<strong>3.12</strong>.4.2 Load Modifiers ( )<br />

At the Strength Limit State buried structures are considered redundant for live loads and nonredundant<br />

for earth fill per Article 12.5.4. KDOT RCB Standards use a load modifier 1.00 for all<br />

force effects instead <strong>of</strong> 1.05 for earth fill. However, for all custom /non-standard designs use a<br />

load modifier <strong>of</strong> 1.05 for earth fill.<br />

<strong>3.12</strong>.5 Soils Information<br />

Strength I Load Factors<br />

Minimum<br />

Maximum<br />

Service I Load Factors<br />

DC 0.90 1.25 1.00<br />

DW 0.65 1.50 1.00<br />

LL,IM,LS 0.00 1.75 1.00<br />

EH 0.50<br />

(Article 3.11.7)<br />

1.35 1.00 or 0.50<br />

(Article 3.11.7)<br />

EV 0.90 1.30 1.00<br />

WA 0.00 1.00 1.00<br />

* ES 0.50<br />

(Article 3.11.7)<br />

1.50 1.00 or 0.50<br />

<strong>3.12</strong>.5.1 Introduction<br />

This information is intended to be used to select the proper backfill for a box, to guide the<br />

designer in ascertaining soil properties for normal foundation conditions, and calculating the<br />

required camber for boxes under fills <strong>of</strong> less than 20 ft. in height.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 29<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.5.2 Soils Data<br />

Soil data for the design <strong>of</strong> boxes may be obtained from a special investigation <strong>of</strong> the proposed<br />

site. A KDOT Soil Survey or data from a Soil Conservation Service (SCS) Soil Survey may be<br />

use for this purpose. The majority <strong>of</strong> boxes will probably be designed using the SCS data, since<br />

most drainage structures will not warrant a special investigation or may not be located on the state<br />

system. Therefore, the soil classifications used in this report will be those <strong>of</strong> the Unified Soil<br />

Classification System.<br />

The information <strong>of</strong> interest to designers in the SCS Soil Surveys is contained in the Engineering<br />

Index Properties table and the detailed soil maps. The soil maps are used to identify the soil type<br />

in the area <strong>of</strong> the project, and the Engineering Index Properties give the classification and index<br />

properties <strong>of</strong> the soil. This information may then be used to identify the type <strong>of</strong> footings and backfill<br />

required to properly construct the box.<br />

<strong>3.12</strong>.5.3 Bearing Capacity<br />

The design <strong>of</strong> footings should be done using a nominal bearing pressure <strong>of</strong> 6000 psf unless the<br />

box is sited in a soil <strong>of</strong> low bearing capacity. Soils with a low bearing capacity are CH, MH, OH,<br />

and OL type soils. Footings in low bearing capacity soils should be designed using an nominal<br />

bearing pressure <strong>of</strong> 4500 psf. In both cases a value <strong>of</strong> 0.45 should be used.<br />

<strong>3.12</strong>.5.4 Backfill<br />

Soil used to backfill reinforced concrete boxes shall have a liquid limit less than 50, and a plasticity<br />

index less than 22. Backfill soil shall be essentially free <strong>of</strong> all organic matter. High plasticity<br />

and organic soils are not considered free draining materials and should not be used. Soils unacceptable<br />

for use as backfill are CH, MH, OH, and OL type soils. Where soils <strong>of</strong> this type are<br />

encountered, a clean, granular backfill will be required. Specifying granular backfill in areas<br />

where there are expansive soils, will help reduce soil pressures and are consistent with design<br />

assumptions.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 30<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.5.5 Camber<br />

Unless other information is furnished by a soils report, camber will be shown for design fill<br />

heights over 20 ft. The camber used will vary linearly from the maximum deflection to zero<br />

deflection at the end <strong>of</strong> the box.<br />

If a field investigation will not be performed to determine foundation settlement, an estimate may<br />

be determined from the report, “Guidelines on the Use <strong>of</strong> Soils Information for Box Design”. The<br />

graph in Figure <strong>3.12</strong>.5.5-1 Settlement <strong>of</strong> Culvert, contains a set <strong>of</strong> five settlement curves for five<br />

generalized soil types. These curves relate fill height to settlement up to a maximum fill height <strong>of</strong><br />

20 ft. For fill heights greater than 20 ft., settlement may be estimated by adding together the<br />

equivalent thicknesses. (ie the settlement for 30 ft. <strong>of</strong> fill equals to the settlements for 10 ft. plus<br />

20 ft. added together)<br />

The five settlement curves were developed using the assumption <strong>of</strong> a 20 ft. compressible layer. If<br />

there is less than 20 ft. <strong>of</strong> compressible material below the culvert in the foundation, the settlement<br />

may be proportioned relative to the thickness <strong>of</strong> the compressible layer. (ie the settlement for<br />

a culvert with a 10 ft. compressible layer would be taken as 0.5 that shown for that curve)<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 31<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.5.5-1 Settlement <strong>of</strong> Culvert<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 32<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.6 Analysis and Design<br />

<strong>3.12</strong>.6.1 Analysis<br />

The existing box standards (barrel portion) where checked against the 2007 LRFD AASTHO<br />

Specifications including 2009 Interims. The reinforced concrete box (RCB) model consisted <strong>of</strong><br />

two node prismatic beam elements with three degrees <strong>of</strong> freedom per node. The tops <strong>of</strong> the walls<br />

for the RCB are considered to be pinned with no rotational resistance. This “pinned” condition is<br />

created by releasing the moment continuity at the end <strong>of</strong> the wall member which frames into the<br />

either the top slab or the bottom slab. The rigid frame box (RFB) model is similar except the fillets<br />

in the corners are stepped beam elements. The supports are linear translation springs representing<br />

a yielding support based on the modulus <strong>of</strong> subgrade reaction. This differs from Article<br />

12.11.2.3. All models are planer and represent a 1.0 ft. slice, which maximizes the live load loading<br />

patches and minimizes two way action. This one way action (beam action) is a conservative<br />

assumption. The discretization is shown below in Figure <strong>3.12</strong>.6.1-1 Model <strong>of</strong> Culvert. Nodes are<br />

placed at 1.0 ft. increments and at critical locations such as midpoint <strong>of</strong> the span and at fillet toes.<br />

The live load was evaluated by the use <strong>of</strong> influence lines. A unit load was placed on the top slab<br />

and moved in three inch increments. All points <strong>of</strong> analysis whether located on the floor, walls, or<br />

slab had their own slab live load influence lines (one for each force type <strong>of</strong> moment, shear and<br />

axial) generated by retreiving the force at the analysis point for each movement <strong>of</strong> the point load<br />

along the slab. All design truck and tandem possibilities are then applied and distributed per Article<br />

<strong>3.12</strong>.3.3. The maximum and minimum force effects are then calculated for each point. The<br />

controlling effects are combined into strength, service limit states. Concrete design calculation are<br />

done for the given results (loads) and compared to the capacities (resistances) provided.<br />

Figure <strong>3.12</strong>.6.1-1 Model <strong>of</strong> Culvert<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 33<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.6.2 Design Summary<br />

All structures are designed for traffic to be parallel to the span using a single lane loaded with a<br />

multiple presence factor <strong>of</strong> 1.2. per Article C12.11.2.1. No design adjustments are made for skew<br />

effect.<br />

Loads:<br />

Live loads for the top <strong>of</strong> slab consist <strong>of</strong> axle load <strong>of</strong> the design truck or design tandem without<br />

lane loads per Article 3.6.1.3. Where the live load and impact force effects in Article 3.6.1.2.6<br />

exceed the effects from Article 4.6.2.10, use the latter. KDOT will use only Article 3.6.1.2.6 for<br />

fill heights greater than 2 ft. For the design tandem, where wheels overlap the total load will be<br />

uniform over the area. Live load effects are neglected for single cell structures with fill greater<br />

than 8 ft. or multi-cell structures where the fill is greater than the out-to-out dimension <strong>of</strong> the barrels.<br />

(See Figure <strong>3.12</strong>.3.1-1 Live Load Distribution)<br />

Coulomb earth pressure theory will be used for the barrel designs per the definition in Article<br />

3.11.5.3. The vertical earth load (EV) is based on Article 12.11.2.2.1 using embankment construction<br />

methods, assuming that compacted fill is placed along the sides <strong>of</strong> the barrel. Assuming<br />

compacted fill effectively limits the soil-structure interaction factor for embankment construction.<br />

Design Assumptions:<br />

For the design <strong>of</strong> the KDOT Standard RCB’s, it is assumed that the culvert is founded on a yielding<br />

foundation.<br />

• For design, span lengths shall be considered as center to center <strong>of</strong> supports for continuous and<br />

rigid joints. The location <strong>of</strong> the design negative bending moment shall be taken at the face <strong>of</strong><br />

support, except where fillets are used in determining the structural stiffness <strong>of</strong> the member, in<br />

which case the design moment may be at the toe <strong>of</strong> the fillet as allowed by Article 12.11.4.2.<br />

• The Service I Limit State is used to evaluated cracking per Article 12.5.2. Strength is used to<br />

evaluate shear, moment and thrust capacities per Article 12.5.3. Extreme Event Loading<br />

where not considered in design per Article 12.6.1 and Article C12.5.3.<br />

• The design shear will be taken at a distance <strong>of</strong> d v away from the inside face for pinned boxes<br />

per Article 5.8.3.2 and d v away from the toe <strong>of</strong> the fillet for fixed boxes per Article<br />

C5.13.3.6.1-1. Shear capacity will be based on the shear capacity <strong>of</strong> the concrete per Article<br />

5.13.3.6.2 and the unused flexural reinforcement as capacity per ACI and dowel action Article<br />

5.10.11.4.4. See “Appendix D Doubly Reinforced and Shear Capactiy <strong>of</strong> Concrete” for<br />

additional information.<br />

• KDOT will apply distribution steel requirements found in Article 5.14.4.1, to the top slab<br />

with fill heights 2 ft. and less.<br />

• Rigid Frame <strong>Structures</strong> (RFB) are designed and detailed to resist bending moments thoughout<br />

the structure acting continously between all adjacent members. RCB’s will be considered<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 34<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

a pinned frame acting as simple beams in the corners. For RCB’s intermediate supports at<br />

walls in multiple cell boxes are considered as knife edge supports.<br />

• Because the bottom slab is cast against foundation stabilization, none <strong>of</strong> the bottom <strong>of</strong> the<br />

bottom slab is neglected for computation <strong>of</strong> design depth.<br />

• Use shear<br />

= 0.85 and moment<br />

= 0.90 per Table 12.5.5-1 for buried structures. This<br />

assumes tension controlled regions. Flexure and axial force interaction and design capacities<br />

are evaluated as rectangular column sections as shown below.<br />

• For minimum reinforcement requirements as described in Article 5.7.3.3.2. the phi factor<br />

implied in the 1.2xM cr is 1.0. the gross concrete section is used as well as a singly reinforced<br />

cracked section for calculating As req’d .<br />

Figure <strong>3.12</strong>.6.2-1 Strength Design<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 35<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Design Assumptions - Continued<br />

• Crack Control provisions (Article 5.7.3.4) are checked only when the concrete stress on the<br />

gross section at the Service Limit State is greater than 80% <strong>of</strong> the Modulus <strong>of</strong> Rupture as<br />

described in Article 5.4.2.6. The RCB design program uses the worst case Class II exposure<br />

factor (0.75) for the top slab members when the fill is at 0 ft. For all other members the program<br />

uses Class I exposure factor (1.00). At the Service Limit State the stress in the tension<br />

reinforcement is calculated using a doubly reinforce section as decribed in Appendix D Doubly<br />

Reinforced and Shear Capactiy <strong>of</strong> Concrete or calculated using Article C.12.11.3 in members<br />

with high compressive forces.<br />

• Where earth pressure may reduce the effects caused by other loads, Article 3.11.7 allows a<br />

50% reduction in these force effects. This is reflected in Table <strong>3.12</strong>.4.1-1 LRFD Load Factors.<br />

Special Design:<br />

• For culverts founded on rock, an evaluation <strong>of</strong> the RCB height, depth <strong>of</strong> fill, and depth <strong>of</strong><br />

trench shall be made to determine if the Standard RCB is applicable for construction on a<br />

rock foundation. Use a minimum average modulus <strong>of</strong> subgrade reaction <strong>of</strong> 400 lbs/in 3 for<br />

culverts founded in rock. The designer may give considerations to using a three sided structure<br />

if the founding materials are not prone to scour actions. All boxes constructed without a<br />

floor (bottom slab) will be designed as Rigid Frames.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 36<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.6.3 Detailing<br />

Skewed or Rotated RCB:<br />

Skewed or rotated structures will be designed and detailed with reinforcing, placed normal to the<br />

centerline <strong>of</strong> the box.<br />

Reinforcing:<br />

Truss bars (crank shaft bars) for single cell Rigid Frames or for multiple cell RCB design will normally<br />

not be required and are not recommended. Spacing <strong>of</strong> the interior face <strong>of</strong> reinforcing may<br />

be independent <strong>of</strong> the exterior face for rigid frame boxes. However, for ease <strong>of</strong> placing, it is preferable<br />

that all reinforcing in a particular face (exterior or interior) shall be placed at the same<br />

spacing. For normal practice it is intended that the wall reinforcing will be placed vertical. Detailing<br />

practice will reflect that intention. Minimum spacing shall be 5 in. centers. Spacing increments<br />

will be in ½ in. intervals. The limits <strong>of</strong> bar shall be #4 through #11 sizes.<br />

New Boxes:<br />

• All clearances are 2 in. where permanently in contact with the earth and 1½ in. otherwise.<br />

Because KDOT concrete mixes are cement rich with a low W/C ratio, the cover on the nonearth<br />

contact face was reduced by ½ in. (per Article 5.12.3). The clearance for the bottom mat<br />

<strong>of</strong> reinforcement will be 2 in. Table 5.12.3-1 states that members cast against the earth will<br />

have 3 in. <strong>of</strong> clearance. However, because KDOT uses a granular foundation stabilization, it<br />

is not considered cast against the earth. This is considered a Class I exposure for crack control.<br />

• For the top <strong>of</strong> the top slab with a fill height <strong>of</strong> 0 ft., Class II exposure is used for crack control;<br />

otherwise Class I is used.<br />

• When the top slab will be exposed to frequent applications <strong>of</strong> deicing salts, epoxy coated<br />

reinforcing bars and air-entrained (AE) concrete should be specified in the top slab. Epoxy<br />

coated bars and (AE) concrete should not normally be specified for box sizes less than 6 ft. x<br />

6 ft. or when the roadway is not surfaced. The default for the RCB design program is to use<br />

epoxy reinforcement and (AE) concrete when the fill height equal to or less than 2 ft.<br />

Box Extensions:<br />

• All <strong>of</strong> the above criteria may also apply to box culvert extensions. Normally, epoxy coated<br />

reinforcing and (AE) concrete will not be used for extensions except in urban areas where the<br />

extension will be subject to deicing salts.<br />

• The depth <strong>of</strong> fill to specify for extensions shall be the fill depth at the end <strong>of</strong> the existing box<br />

culvert.<br />

• See road design standard drawing RD080 (Figure <strong>3.12</strong>.9-3 Typical Culvert Extensions (Std<br />

RD080) for extension details.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 37<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Member Size:<br />

Thickness <strong>of</strong> concrete members shall be designed in increments <strong>of</strong> ½ in. The wall thickness shall<br />

preferably be not less than 2/3 the largest slab thickness. The minimum wall thickness shall not be<br />

less than 7 in. for spans 6 ft. and greater, and not less than 6 in. for spans less than 6 ft. Minimum<br />

slab thickness will be 6 in. The minimum fillet size shall be 4 in. x 4 in.<br />

<strong>3.12</strong>.6.4 Practical Considerations for Structure Type<br />

For purposes <strong>of</strong> structural discussion and design, an RCB will be referenced as a Rigid Frame or<br />

as a Pinned Frame. Ordinary design procedure will assume all exterior corners to be pinned or<br />

rigid, i.e., no mixing <strong>of</strong> pinned and rigid joints. (See Section <strong>3.12</strong>.1.1 Definitions for additional<br />

definitions).<br />

As a general rule, pinned boxes (RCB’s) for culverts with spans 10 ft. or less are more economical<br />

than rigid frame boxes (RFB’s). However, for mainline structures on State routes do not use a<br />

pinned type (RCB) structure for fill heights less 5.0 ft.<br />

Framing costs per unit volume for fixed boxes less than 6.0 ft. are higher than average. It is<br />

suggested that concrete cost be increased 20% for cost comparisons. Basic concrete and<br />

reinforcing steel costs may be estimated at $359/cu.yd. and $0.71/lb. respectively.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 38<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.7 Wingwall Structural Considerations<br />

<strong>3.12</strong>.7.1 Assumptions<br />

• All flared wingwalls have cantilever retaining walls with freestanding detached stem walls.<br />

The footings are detailed as attached and continuous with the culvert floor. One way action<br />

(beam design) is used based on a 1’-0” strip taken at the maximum wall height. This configuration<br />

allows some settlement to occur at the wing ends without causing distress in the barrel<br />

<strong>of</strong> the culvert.<br />

• For lateral earth pressure the Rankine Earth Pressure Theory as defined in Article C 3.11.5.3<br />

is used with the coefficient <strong>of</strong> active earth equal to 0.33. This theory is consistent with a long<br />

heeled cantilever with free draining granular material. Granular backfill materials consistent<br />

with SB or SCA materials as specified on Figure <strong>3.12</strong>.9.6-1 RCB Auxiliary Details (Std<br />

BR020b) are used.<br />

• Wingwalls for culverts with a rise over 16 ft. shall have a site evaluation <strong>of</strong> foundation and<br />

backfill conditions to determine if actual field conditions will approximate the assumptions<br />

<strong>of</strong> design. Where conditions are different, the KDOT Design Engineer shall be notified.<br />

• Because <strong>of</strong> continuity in the footing, between the wing wall and the barrel, stability is met<br />

when the resultant <strong>of</strong> the force reactions act within the middle one-half <strong>of</strong> the base for soils<br />

and the middle three-fourths when founded on rock. This check is made at the Service Limit<br />

State. Therefore, no Load Factors will be applied to earth pressures for stability analysis. The<br />

height <strong>of</strong> the wall used for the stability check is at 3/4th <strong>of</strong> the maximum wing wall height.<br />

• Unless otherwise determined by a soils analysis, the foundation will be over-excavated and<br />

backfilled with 6 inches <strong>of</strong> granular material (Foundation Stabilization) to aid in the sliding<br />

friction factor. The Sliding resistance for the wall footing is considered the sum <strong>of</strong> the soil<br />

plus the one-half <strong>of</strong> the shear resistance <strong>of</strong> the concrete footing.<br />

• LRFD Strength I and Service I Limit States will be used for Structural Design <strong>of</strong> Members.<br />

See Load Combinations <strong>of</strong> Tables) 3.4.1-1 and -2 for additional information. The following<br />

load factors where used:<br />

DC stability 0.90<br />

DC bearing 1.25<br />

EV stability 1.00<br />

EV bearing 1.35<br />

EH 1.50<br />

Class I Exposure 1.00<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 39<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Assumptions Continued:<br />

• Clearance to reinforcing will be 2 in. from formed surfaces in contact with the earth and<br />

1 1/2 in. clear for surfaces that are not. For the bottom <strong>of</strong> the footings cast on foundation stabilization<br />

the clearance to the reinforcing steel will be 2 in., and the top reinforcing steel<br />

cover is 2 in. regardless <strong>of</strong> fill height.<br />

• Fatigue limit state need not be investigated according to Article 5.5.3.<br />

• Member sizes will preferably remain constant throughout the length <strong>of</strong> the wall. The minimum<br />

wingwall thickness will be 7 in. The front face will be reinforced for shrinkage and<br />

temperature for walls over 9 in. thick. The footing will be detailed monolithic with the bottom<br />

slab <strong>of</strong> the RCB. Reinforcement will extend continuously from the wall footing into the<br />

bottom slab.<br />

<strong>3.12</strong>.7.2 Earth Pressure<br />

Founding Material:<br />

All box culverts and wingwall are supported by 6” <strong>of</strong> Foundation Stabilization Foundation per<br />

Section 204 <strong>of</strong> KDOT Standard Specifications “Excavation and Backfill for <strong>Structures</strong>”. Verification<br />

<strong>of</strong> founding material below that shall be estimated from a KDOT Soils Report when available,<br />

from site knowledge, or from the “Soil Conservation Service - County Soil Survey” reports,<br />

which are on file in the KDOT Bridge Section or available from the SCS Office in Salina. As a<br />

general guideline, soils judged as high-plasticity clays, fat clays, expansive clays, or organic clays<br />

will be considered poor foundation for culverts and will not be used. Soils that are classified as<br />

CH, OH, OL, or MH fall within the description <strong>of</strong> poor soils. High water table levels are considered<br />

poor foundation conditions and require evaluation to determine if the standard wingwalls are<br />

adequate.<br />

Backfill Material:<br />

The Standard KDOT wingwall design is based on backfill material consistent with SB-1, SB-2,<br />

SCA-2, SCA-3 and SCA-5 per Bridge Standard BR020. This material is described in Section<br />

1107 <strong>of</strong> the KDOT Standard Specifications “Aggregates for Backfill”. This is a granular material<br />

that is free draining, and is consistent with the design assumptions used for cantilevered, freestanding<br />

wingwalls.<br />

Live Load Surcharge:<br />

A value <strong>of</strong> 2.0 ft. will be included in the design <strong>of</strong> all wingwalls in consideration <strong>of</strong> traffic loading<br />

and construction equipment loading when the distance from wingwall to the traveled roadway is<br />

less than half the height <strong>of</strong> the wall.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 40<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Design Parameters:<br />

The following will be assumed for the Standard KDOT wingwall design:<br />

• All passive pressure in front <strong>of</strong> the toe and wall will be neglected.<br />

• Wingwalls are designed as vertical cantilever walls: (See Figure <strong>3.12</strong>.7.2-1 Design Assumptions<br />

- Vertical Cantilever)<br />

• Wingwall Design Soil Parameters as follows:<br />

Lateral Pressure ........................................... Rankine Active Earth Pressure Theory<br />

Live Load Surcharge ...................... Use 2’-0” <strong>of</strong> overburden as equivalent force<br />

Granular Backfill Material.....................................................................Density 120 pcf<br />

Ultimate Bearing Pressure ...............................................................................6,000 psf<br />

Phi Factor for Bearing is ..........................................................................................0.45<br />

Phi Factor for Sliding is ..........................................................................................0.80<br />

Coefficient or Active Earth Pressure....................................................................... 0.33<br />

Internal Friction Angle............................................................................................ 30<br />

Stability..................Check that the resultant is within the middle 1/2 <strong>of</strong> the footing<br />

(using 3/4 <strong>of</strong> the maximum wall height)<br />

• A friction factor <strong>of</strong> 0.50 assumes that the foundation condition will be a granular material<br />

with a tan = 0.50.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 41<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.7.2-1 Design Assumptions - Vertical Cantilever<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 42<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.7.2-2 Typical Backfill and Toe Dimensions<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 43<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.8 Precast Members<br />

<strong>3.12</strong>.8.1 Box Culverts<br />

When specifying bridge sized cast-in-place reinforced concrete boxes on plans, allow the Contractor<br />

the option <strong>of</strong> using precast boxes when extenuating circumstances requires their use. In no<br />

case shall a precast option be granted if: 1) the structure is on highly erodible soils or poor foundation<br />

materials 2) the top <strong>of</strong> the structure will be the wearing surface 3) the structure will be<br />

located within an MSE wall. For non-bridge sized structures see Volumn I, Part C Section 10 <strong>of</strong><br />

the Road Design Manual.<br />

Precast boxes shall meet the same load requirements as cast-in-place box culverts. The design<br />

shall be a rigid frame design to account for loads expected during construction and shipping. The<br />

precast sections shall meet the requirements ASTM C1577 except as noted in this section. The<br />

precast box design s<strong>of</strong>tware “BOXCAR” has been updated and is now acceptable for use on<br />

KDOT projects. Versions <strong>of</strong> “BOXCAR” 1.95 or later are acceptable.<br />

Fill heights <strong>of</strong> less than 2 ft. require a distribution slab. A cast-in-place distribution slab shall be 6<br />

in. thick with #4 bars at 1.5 ft. transversely and #5 bars at 1 ft. along the barrel. Substitution <strong>of</strong> an<br />

equivalent welded wire fabric is acceptable. Precast distribution slabs with the same reinforcement<br />

may be used for fill heights over 1 ft. Center the joints over the barrel segments. Provide a<br />

minimum <strong>of</strong> 3 in. <strong>of</strong> granular material between the barrel and the precast distribution slab.<br />

In general, do not allow precast boxes for multiple-cell installations (greater than two cells wide)<br />

unless there is economic justification.<br />

A special cast-in-place end section shall be required to transition from precast sections to flared<br />

wingwalls. See Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert Details (Standard BR031) for additional<br />

details. Flared wingwalls are required to be cast-in-place. Straight wingwalls may be precast sections<br />

and may be placed without a cast-in-place transition.<br />

Clearances to reinforcing shall be a minimum <strong>of</strong> 1¼ in. from all faces, except when the depth <strong>of</strong><br />

fill is less than 2 ft., in which case the clearance to reinforcing in the top <strong>of</strong> the slab shall be 2½ in.<br />

Epoxy-coated reinforcing shall be as noted in Section <strong>3.12</strong>.6.3 Detailing. Welded wire fabric is an<br />

acceptable substitute.<br />

Longitudinal reinforcing for shrinkage and temperature requirements shall be a minimum <strong>of</strong> 0.06<br />

sq. in. per ft.<br />

Shop drawings will be required, detailing all phases <strong>of</strong> construction, including layout, joint<br />

details, lifting devices, casting methods, construction placement and details <strong>of</strong> cast-in-place segments<br />

or transitions that may be required. The weights <strong>of</strong> the precast sections and proposed transportation<br />

methods shall be noted on the shop drawings. Copies <strong>of</strong> over height and overload<br />

permits, when required, shall be submitted with the shop drawings.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 44<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Review <strong>of</strong> some typical Precast Box Culverts Question and Answers<br />

1) Is a precast option prohibited by Plan Note? (CIP only)<br />

Precast allowed unless shown on the Plan Details<br />

2) Does the box design meet the minimum ASTM C 1577 requirement details?<br />

Yes, this is the LRFD equivalent to C 1433, use Table 2 for member sizes, members will be<br />

at a minimum 3/4 the thickness <strong>of</strong> the CIP equivalent RFB, but no smaller than 6”.<br />

3) Can the precast option be an arch culvert?<br />

Yes, see Section <strong>3.12</strong>.8.2 Precast Arch Culverts for criteria.<br />

4) Was the box designed with BOXCAR s<strong>of</strong>tware 1.95 or later?<br />

No, a structural review is needed.<br />

5) Do low fill boxes require a distribution slab?<br />

Yes, see Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert Details (Standard BR031) for additional<br />

criteria. (Note: Min. 3 in. granular material cushion between box/slab)<br />

6) Are multiple single cells allowed (or double cells required)?<br />

Yes, multi-cells are allowed, but ties between cells may be required – also the Contractors<br />

Engineer is required to develop plan details.<br />

7) Is a transition section to CIP end section with flared wings required?<br />

Yes, with a maximum transition <strong>of</strong> 4:1, the Contractors Engineer is required to develop<br />

plan details. (Straight wings may be precast without transition)<br />

8) Design criteria:<br />

• > 2 ft. Fill min. 1.25 in. clearance, uncoated rebar<br />

• < 2 ft. Fill min. 2.5 in. clearance, epoxy coated rebar required<br />

• Min. shrinkage & temperature requirement (0.06 in 2 /ft)<br />

• Slab & wall thicknesses will be > 75% <strong>of</strong> the CIP Standard.<br />

• See KDOT Std. Specs. 735 for additional information<br />

• Substitution <strong>of</strong> equivalent WWF:<br />

(If cross-sectional area is less than rebar, structural review is needed)<br />

9) Are Precast Box Culverts > 10 ft. reviewed by KDOT?<br />

Yes, All culverts are reviewed by KDOT.<br />

10) Are Precast Arch Culverts reviewed by KDOT?<br />

Yes, All culverts are reviewed by KDOT.<br />

11) What is the design criteria for the CIP end sections and wings?<br />

The minimum will be the equivalent CIP KDOT Standard and not the section provided<br />

in #2 above. The Contractors Engineer will detail transitions for differences in member<br />

thicknesses.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 45<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert Details<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 46<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.8.2 Precast Arch Culverts<br />

Precast Arch Culverts may <strong>of</strong>fer a cost-effective, convenient alternative that can be considered on<br />

certain projects. Bottomless culverts are well suited for areas where spread footings or pedestal<br />

walls can be keyed into non-erodible bedrock, the use <strong>of</strong> a natural channel may be advantageous<br />

to mitigate environmental concerns. The following design limitations, design responsibilities, site<br />

limitations and plan processing procedures are noted. Questions relative to the interpretation <strong>of</strong><br />

these requirements should be directed to the State Bridge Office for clarification.<br />

* Note: Fully resolved forces will result in the accounting <strong>of</strong> the forces through<br />

connections and members resulting in minimal damage to the arch structure or<br />

headwall. Contact the Local Projects Team Leader for barrier loading requirements.<br />

** Use granular backfill meeting the requirements <strong>of</strong> SB-1,SB-2,SCA-2, 3 or 5.<br />

Design Criteria:<br />

Items Grade Separation Stream Crossing<br />

Maximum Span: 60’-0” 42’-0”<br />

Live Load: HL-93 HL-93<br />

Foundation:<br />

Span Bridge Criteria per<br />

Section 3.4.1<br />

1. The structure will be designed in accordance with the current AASHTO LRFD edition<br />

and latest interim requirements for structurally reinforced concrete structures.<br />

2. The design plans will include a Contour Map, Construction Layout and Geology Sheet<br />

with Geology Report. The Geology Report shall bear the seal <strong>of</strong> the Pr<strong>of</strong>essional<br />

Geologist. The geology sheet will show the limits <strong>of</strong> the maximum potential scour<br />

line, include long-term degradation, contraction scour, local scour and lateral<br />

migration.<br />

3. Skews in excess <strong>of</strong> 45 will not be permitted.<br />

Span Bridge Criteria per<br />

Section 2.3.9 and 3.4.1<br />

Wings/Headwall: Precast (free-standing) CIP (free-standing)<br />

Free Board: N/A 2’-0” @ Overtop<br />

Minimum Fill: 2’-0” 2’-0”<br />

Backfill Material:<br />

Granular for Arch, and<br />

precast wings per manufacture<br />

requirements<br />

Granular for Arch **<br />

BR020b materials for the<br />

CIP wings<br />

Barrier: *TL-4 fully resolved *TL-4 fully resolved<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 47<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

4. Rise measured from top <strong>of</strong> cast-in-place footing to the bottom <strong>of</strong> the bridge’s top slab<br />

shall, in excess <strong>of</strong> 16 ft. will not be permitted.<br />

5. A minimum cover <strong>of</strong> 2 ft., measured from the pavement surface at the roadway edge,<br />

will be provided. Provide distribution slab. See Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert<br />

Details (Standard BR031) for additional criteria.<br />

6. The bottom <strong>of</strong> the foundation footings shall be a minimum <strong>of</strong> 4 ft. below streambed<br />

thalweg elevation unless field conditions dictate otherwise.<br />

7. Streambed slab, cut-<strong>of</strong>f wall or other suitable means is required unless streambed is<br />

non-erodible bedrock.<br />

Design Responsibilities:<br />

1. Foundation and bridge sizing consideration will follow all span structure requirements<br />

including design high water and free board clearances. Show the maximum potential<br />

scour on the geology sheet.<br />

2. For stream crossings, hydraulics and waterway opening requirements should be<br />

handled similar to other bridge projects with bridge hydraulics evaluated as<br />

appropriate for the spans involved. Stream Stability analysis shall be performed per<br />

Section 2.3.9. Include a completed Hydraulic Assessment Checklist (HAC) for each<br />

proposed site. The HAC can be downloaded at: http://kart.ksdot.org<br />

3. Foundation borings are required for all projects. The soils and foundations design<br />

including precast portions (i.e. slope stability, settlement, spread footings, piling,<br />

etc....) will be performed and sealed by a Licensed Pr<strong>of</strong>essional Engineer. Suppliers <strong>of</strong><br />

three-sided precast concrete bridges should be contacted for precast loads, reactions,<br />

etc. to be utilized in the foundation designs.<br />

4. The actual design and rating <strong>of</strong> the Precast Arch Culverts is the responsibility <strong>of</strong> the<br />

supplier. Shop plans for the Arch Culvert sections along with formal structural<br />

calculations will be submitted to the State Bridge Office for approval. Shop plans shall<br />

be certified by the supplier as being designed and load rated in accordance with<br />

current AASHTO LRFD Specifications. The supplier should also indicate additional<br />

backfilling requirements beyond those found in the KDOT Specifications. Show the<br />

limits <strong>of</strong> those backfilling requirements.<br />

5. Precast wings and headwall are not allowed for stream crossings. CIP end section<br />

requirements will follow BR031. See Figure <strong>3.12</strong>.8.1-1 Precast Box Culvert Details<br />

for additional criteria.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 48<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Plan Processing Procedures:<br />

1. Arch spans with be consistent with current procedures for all bridge projects. Field<br />

Check plans, geotechnical and geological investigations will be required for all<br />

projects utilizing Precast Arch Culverts.<br />

2. Final plans for the Arch Culverts should:<br />

a. identify the size (span x rise) <strong>of</strong> the bridge,<br />

b. identify the length <strong>of</strong> the bridge,<br />

c. indicate the skew angle <strong>of</strong> the bridge (in 1 degree increments),<br />

d. include the detailed design <strong>of</strong> all foundation units (whether cast-in-place or<br />

precast) and other cast-in-place or precast portions (such as headwalls, wingwalls,<br />

toe walls, etc....) and<br />

e. include the pay item, Arch Culvert (span x rise) (Precast), Lin. Ft.<br />

Details:<br />

The connection <strong>of</strong> the exterior to first interior arch segment as shown in Figure <strong>3.12</strong>.8.2-<br />

1 Precast Arch Details helps distribute horizontal earth and vehicular impact loads<br />

imparted to the headwall. The joint seal system consists <strong>of</strong> butyl rope placed in the joint,<br />

with the adjacent areas <strong>of</strong> the joint primed. A water-pro<strong>of</strong> rubber seal is then bonded<br />

over the joint per KDOT’s specifications.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 49<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.8.2-1 Precast Arch Details<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 50<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.8.2-2 Closure Pour<br />

Protection:<br />

For arch structures which are assembled from two separate halves and require a closure pour at<br />

the crown <strong>of</strong> the structure, it shall be detailed and constructed as shown in Figure <strong>3.12</strong>.8.2-2 Closure<br />

Pour, a butyl rope will be placed in the beveled joint where the two arch halves meet and<br />

where the individual arch sections abut at the sides. A longitudinal section at the crown will be<br />

protected by coating the cured closure pour concrete with a primer recommend by the manufacturer<br />

and covered by an rubber adhered to the primer. The closure pour concrete shall be Gr. 4.0<br />

(AE) Air maintained placed and consolidated according to KDOT Specifications.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 51<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.9 Miscellaneous<br />

<strong>3.12</strong>.9.1 Guardrail<br />

Unless there is a sidewalk on the bridge, it is desirable that bridge rails on ‘At Grade’ and ‘Low-<br />

Fill’ Boxes be limited to installations in excess <strong>of</strong> 50 ft. total span. Where guardrail is required, it<br />

preferably shall be continuous over culverts less than 50 ft. total span. For installations that<br />

require a bridge rail, a Corral rail will be used, unless determined otherwise at field check. The<br />

minimum length <strong>of</strong> boxes for guardrail installation will be as shown in Figure <strong>3.12</strong>.9.1-1 Minimum<br />

Box Length With Guardrail. The designer will consider corral rail for fill heights up to 1’-<br />

0”. Corral rail should be use when warranted by traffic count, height <strong>of</strong> drop into the structure, or<br />

route classification. When guardrail is used, consult Road Design for guidance.<br />

<strong>3.12</strong>.9.1.1 Sidewalks, Fence, Slab Rest<br />

In certain conditions urban environments may require non-standard RCB details. Appendix E<br />

Miscellaneous Example Details has example details successfully used in the past. These details<br />

incorporated approach slabs and slab rests mounted to the structure, sidewalks, bridge railing and<br />

pedestrian fencing. Guardrail mounting details and criteria can be found at Figure <strong>3.12</strong>.9.1-1 Minimum<br />

Box Length With Guardrail.<br />

<strong>3.12</strong>.9.2 Vehicle Grate<br />

At locations where a vehicular grate over the culvert opening may be needed, refer to FHWA publication<br />

“Safety Treatment <strong>of</strong> Roadside Cross-Drainage <strong>Structures</strong>”<br />

(FHWA/TX-82/37 + 280-1).<br />

<strong>3.12</strong>.9.3 Entrance Bevel<br />

A 45 bevel shall be provided on the s<strong>of</strong>fit <strong>of</strong> the top slab at all upstream entrances to enhance the<br />

flow at high stages. The bevel shall be sized as shown below. (Reference: “HEC-13,” d =<br />

0.042H).<br />

Rise<br />

Bevel<br />

Less than 8.0 ft.<br />

4 inches<br />

8.0 ft. to 12.0 ft. 6 inches<br />

Greater than 12.0 ft. to 16.0 ft. 8 inches<br />

Greater than 16.0 ft. to 20.0 ft. 10 inches<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 52<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.9.4 Hubguard<br />

The “hubguard” is a detail at the top slab at the end <strong>of</strong> the RCB to retain a minimum depth <strong>of</strong> fill<br />

to establish vegetation and prevent embankment erosion. In some instances, the hubguard retains<br />

the roadway surfacing and shoulder. The minimum height <strong>of</strong> the hubguard shall be 5 in. above the<br />

culvert.<br />

The hubguard height “h” and width “t” varies depending on the box span length. See sketch<br />

below.<br />

For spans < 16 ft.; h = 1.50 ft., t = 0.75 ft.<br />

For spans > 16 ft.; h = 1.67 ft., t = 1.25 ft.<br />

The exception to the above criteria is when the value (S + 5 in.) exceeds 1.5 ft. (for spans less than<br />

16 ft.) or 1.67 ft. (for spans greater than or equal to 16 ft.). In this case, “h” will equal (S + 5 in.)<br />

up to a maximum <strong>of</strong> 1.75 ft. (for spans less than 16 ft.) or 1.92 ft. (for spans greater than or equal<br />

to 16 ft.). This may occur on culverts under high fills. For “h” greater than 1.75 ft. (or 11.92 ft.),<br />

the standard wingwall details may need to be modified to accommodate the increased hubguard<br />

height. However, this should be an infrequent occurrence.<br />

<strong>3.12</strong>.9.5 Strike Line<br />

For ease <strong>of</strong> construction, points outside the strike line will be constructed level with the flow line<br />

elevation at the strike line. This would include the top <strong>of</strong> the footing for the wingwalls and for<br />

floor slabs <strong>of</strong> skewed boxes outside the strike line.<br />

<strong>3.12</strong>.9.6 Weep Holes<br />

Weep holes are constructed to reduce water pressure behind the wingwalls. Unless a Soils Report<br />

or other evidence indicates there is groundwater problems, weep holes are not required in the barrel.<br />

See Figure <strong>3.12</strong>.7.2-2 Typical Backfill and Toe Dimensions and Figure <strong>3.12</strong>.9.6-1 RCB Auxiliary<br />

Details (Std BR020b) for drainage details and weep holes.<br />

<strong>3.12</strong>.9.7 Seal Course<br />

The seal course is an unreinforced concrete placement to aid in dewatering a site. It will not be<br />

used unless required by the field Engineer or specified on the plans.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 53<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

<strong>3.12</strong>.9.8 Scour Apron<br />

An “apron” or “floating apron” is a slab on grade reinforced with welded wire mesh. The apron<br />

will include an erosion toe (at the free end) in addition to the wall toe and trenched to the same<br />

depth. The apron will not be structurally tied to the wall. The purpose <strong>of</strong> the apron is to reduce<br />

erosion at the exit end <strong>of</strong> the culvert. It will be used only when specified on the plans or required<br />

by the Engineer.<br />

<strong>3.12</strong>.9.9 Soil Saver<br />

A soil saver is a wall constructed across the stream bed at the end <strong>of</strong> the wings <strong>of</strong> the upstream<br />

entrance to the culvert. It provides a vertical drop in the stream bed. The soil saver functions as a<br />

grade control structure to aid in controlling erosion in the upstream drainage basin.<br />

In addition, the soil saver acts as a “Drop Inlet”. It allows a culvert that would otherwise be constructed<br />

on a steep slope, operating under inlet control with high exit velocities (> 15 ft./sec.); to<br />

be constructed on a flatter slope, operating under outlet control with reduced velocities.<br />

Current environmental concerns will limit the use <strong>of</strong> soil savers as they are considered impediments<br />

to upstream migration <strong>of</strong> aquatic life. Check with KDOT’s Environmental Section prior to<br />

using soil savers. The details for soil savers can be found on Road Design Standard Drawing<br />

RD520.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 54<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9.1-1 Minimum Box Length With Guardrail<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 55<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9.6-1 RCB Auxiliary Details (Std BR020b)<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 56<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9-3 Typical Culvert Extensions (Std RD080)<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 57<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9-4 Bridge Excavation (Std BR100)<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - 58<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure <strong>3.12</strong>.9-5 Alignment & Details for Guardrail Protection on Low Fill Culverts<br />

(Std RD617c)<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - 59<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Appendix A <strong>Kansas</strong> Automated RCB System<br />

The <strong>Kansas</strong> automated RCB system generates plans for site specific reinforced box culverts based<br />

on fill depth.<br />

For reinforced concrete boxes from 3 ft. spans up to and including 20 ft. spans (single, double and<br />

triple cells), the system generates quantities and completed detail sheets.<br />

Plan Sheets Required:<br />

1) One sheet is required for barrel details (including RCB extensions).<br />

2) One sheet is required for wingwall details. Two sheets are needed if a straight and<br />

flared wing are used on a single box.<br />

3) One “RCB Auxiliary Detail” sheet is required per set <strong>of</strong> RCB plans.<br />

Request Form: to://kart.ksdot.org/<br />

Users external to KDOT can request box details by filling out a “RCB Details Request Form” (A<br />

blank copy is included following this section) and returning it to the appropriate KDOT Unit<br />

(Bureau <strong>of</strong> Design or Bureau <strong>of</strong> Local Projects). This form is now electronic and can be submitted<br />

online by placing the e-mail address <strong>of</strong> the contact person on the form.<br />

Quantity calculations and detail generation are completely automated for all boxes. This includes<br />

barrel and wing details. The system creates completed detail sheets in an Microstation graphics<br />

file and a computer report with pertinent data.<br />

Available Standards:<br />

The reinforced box culverts shown in the chart on the following page are available for use.<br />

These boxes are designed for fill heights ranging from 0 ft. through 50 ft. The following options<br />

are available:<br />

1) Pinned Boxes (RCB) or Rigid Frame Boxes (RFB).<br />

2) 0, 30, or 45 degree skews<br />

3) Flared wingwalls are available for all box heights. Straight wingwalls are available for<br />

box heights 10 ft. and less. (All wingwalls less than or equal to 23 ft. in length are<br />

attached to the exterior wall <strong>of</strong> box). On skewed boxes, if the long wing is detached<br />

from the wall <strong>of</strong> the box, the short wing is also detached even though it may be less<br />

than 23 ft. in length.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Chart showing available box sizes with maximum fill depths<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Chart showing available wing sizes and skews<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Pinned vs. Fixed: (See Section <strong>3.12</strong>.6.4 Practical Considerations for Structure Type)<br />

RCB Details Request Forms (4 pages)<br />

KDOT’s automated RCB request forms are available through the KDOT Authentication Resource<br />

Tracking (KART) http://kart.ksdot.org/<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 4<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

CLARIFICATION OF COMMON MISUNDERSTANDINGS<br />

FIGURES<br />

Figure 1<br />

Figure 2<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 5<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Figure 3<br />

Figure 4<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 6<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Quantity calculations:<br />

1. Air entrained concrete quantities include the top slab, the hubguards and on skewed extensions, the top edge beam abutting the old<br />

hubguard (See Std. RD080 & RD510 SI). On rigid frame (fixed) boxes, the walls and fillets above the optional construction joint shown<br />

on the details are also air entrained concrete. Epoxy coated resteel includes all "S", "K" and "G" bars.<br />

2. Extensions: The s<strong>of</strong>tware asks for the "Length <strong>of</strong> Existing Bottom Slab Beyond Outside Edge <strong>of</strong> Hubguard." This existing slab serves<br />

as part <strong>of</strong> the floor for the new extension. (See KDOT Standard Number RD080 & RD510 SI) Concrete corresponding to the volume<br />

(Normal width <strong>of</strong> box * Dimension A * Slab Thickness) <strong>of</strong> the existing slab is subtracted from the floor concrete quantities. This is the<br />

only adjustment to the box concrete quantities, even though the existing flared wings and footings would decrease the concrete needed.<br />

The program also adjusts (decreases) the number <strong>of</strong> F1, F2 and F3 bars and shortens the F4 bars. The length <strong>of</strong> the vertical wall bars (W1<br />

and W2) over the extension are not adjusted and may need to be shortened in the field.<br />

3. Hubguard concrete quantities are included in the box concrete. "G" bars are included in the box steel quantities.<br />

SPAN HUBGUARD WIDTH HUBGUARD HEIGHT<br />

< 16 feet (4.875 m) 9" (230 mm) 1'-6" (455 mm) - (slab thickness)<br />

> 16 feet (4.875 m) 1'-3" (380 mm) 1'-8" (510 mm) - (slab thickness)<br />

For all spans, hubguard height must be > 5" (125 mm).<br />

4. Box Length - On new boxes this dimension is used to calculate quantities. On extensions it is added to the details as information only. Box<br />

length is the total length <strong>of</strong> the box once construction is complete.<br />

Roadway - The Roadway is added to the details as information only. It is not used in any quantity calculations. The Roadway dimension is the<br />

total roadway once construction is complete.<br />

Extension Lengths - On extensions, this value is used to calculate quantities rather than the box length.<br />

Miscellaneous:<br />

1. Extensions - Match the existing box type (fixed or pinned).<br />

Submit your completed "KDOT STANDARD RCB/RFB DETAIL REQUEST FORM" to:<br />

(County and City Projects)<br />

<strong>Kansas</strong> Dept. <strong>of</strong> <strong>Transportation</strong><br />

Bureau <strong>of</strong> Local Projects<br />

Attn: Ed Thorsel<br />

Dwight D. Eisenhower State Office Building<br />

700 SW Harrison Street<br />

Topeka, KS 66603-3754<br />

(State and Federal Projects)<br />

<strong>Kansas</strong> Dept. <strong>of</strong> <strong>Transportation</strong><br />

Bureau <strong>of</strong> Design<br />

State Bridge Office<br />

Dwight D. Eisenhower State Office Building<br />

700 SW Harrison Street<br />

Topeka, KS 66603-3754<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 7<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Sample Output: Automated Reinforced Concrete Box System (4 pages<br />

KKK KKKK DDDDDDDDD OOOOOOO TTTTTTTTTTT<br />

KKK KKKK DDDDDDDDDD OOOOOOOOO TTTTTTTTTTT<br />

KKK KKKK DDD DDD OOO OOO TTT<br />

KKK KKKK DDD DDD OOO OOO TTT<br />

KKKKKKK DDD DDD OOO OOO TTT<br />

KKKKK DDD DDD OOO OOO TTT<br />

KKKK DDD DDD OOO OOO TTT<br />

KKKKK DDD DDD OOO OOO TTT<br />

KKKKKKK DDD DDD OOO OOO TTT<br />

KKK KKKK DDD DDD OOO OOO TTT<br />

KKK KKKK DDDDDDDDDD OOOOOOOOO TTT<br />

KKK KKKK DDDDDDDDD OOOOOOO TTT<br />

AUTOMATED REINFORCED CONCRETE BOX SYSTEM<br />

SEE SPECIAL ASSIGNMENTS, BRIDGE DESIGN<br />

IF PROBLEMS ARE ENCOUNTERED<br />

Version 7.1.6<br />

1/10/12 Double 16 ft x 14 ft Fixed Box PAGE NO. 1<br />

Project Number:111-2 K-BNCH-04<br />

Final Data Input to RCB S<strong>of</strong>tware<br />

PROJECT NO. 111-2 K-BNCH-04 FALSEWORK INSPECTION REQ'D No<br />

BRIDGE NUMBER 22.22 FLOOR ELEV. BELOW FLOWLINE NO<br />

STATION 1+000 FLOOR ELEV. LT. 105.34<br />

COUNTY Anderson Co. FLOOR ELEV. RT. 104.22<br />

ROUTE 111 CROWN GRADE 130.22<br />

SERIAL NO. 99 FILL DEPTH 5<br />

CELLS 2 EPOXY & AIR Yes<br />

SKEW 45 LEFT WING Flared<br />

SKEW DIRECTION Left RIGHT WING Flared<br />

ROTATION 0 APRON Yes<br />

CELL SPAN 16 SOIL SAVER No<br />

CELL HEIGHT 14 DESIGN TYPE Fixed<br />

LENGTH LEFT 71.25 LEFT EXTENSION 0<br />

LENGTH RIGHT 76.25 RIGHT EXTENSION 0<br />

ROADWAY LEFT 70 DOWNSTREAM SIDE 2<br />

ROADWAY RIGHT 75 FLR. SLAB EXT. 0<br />

Design fill is adjusted to 5 ft.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 8<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

1/10/12 Double 16 ft x 14 ft Fixed Box PAGE NO. 2<br />

Project Number:111-2 K-BNCH-04<br />

LIST OF BARS FOR BOX<br />

NEW BOX<br />

MARK SIZE SPACING NUMBER LENGTH<br />

in<br />

ft<br />

ft<br />

ft<br />

F1 5 6.0 226 34.167<br />

F2 6 6.0 572 8.916<br />

F3 7 6.0 226 12.000<br />

F4 4 0.0 160 37.917<br />

S1 6 6.0 226 34.167<br />

S2 6 6.0 570 8.416<br />

S3 7 6.0 226 14.500<br />

S4 4 0.0 80 37.917<br />

S5 4 0.0 72 37.917<br />

K1 6 6.00 256 18.250<br />

>>> K1 Bar INFO. INCREMENT 6.00 in SHORT 2.500 ft LONG 34.000<br />

K2 7 6.00 228 20.000<br />

>>> K2 Bar INFO. INCREMENT 6.00 in SHORT 6.000 ft LONG 34.000<br />

W1 5 12.0 298 15.417<br />

W2 6 12.0 296 15.417<br />

W3 4 0.0 204 37.917<br />

W4 5 12.0 296 15.417<br />

G1 8 0.0 4 48.333<br />

G2 10 0.0 4 48.333<br />

S2 HORIZONTAL LEG = 5.083 ft<br />

S2 VERTICAL LEG = 3.333 ft<br />

F2 VERTICAL LEG = 4.333 ft<br />

F2 HORIZONTAL LEG = 4.583 ft<br />

NUMBER OF F2 AND S2 BARS ON ONE END OF SKEWED BOX<br />

F2 BARS = 60 S2 BARS = 59<br />

CONCRETE MEMBER THICKNESSES<br />

SLAB<br />

= 10.500 in<br />

FLOOR = 11.000 in Note: Clearance<br />

EXTERIOR WALL = 10.000 in<br />

top slab = 2.0 in<br />

INTERIOR WALL = 10.000 in<br />

HUBGUARD + TOP SLAB = 1.667 ft<br />

TOP OF HUBGUARD TO TOP OF WINGS = 5.0 in<br />

LENGTH OF HUBGUARD<br />

= 48.790 ft<br />

LENGTH OF TRIANGULAR SECTION = 34.500 ft<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 9<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

1/10/12 Double 16 ft x 14 ft Fixed Box PAGE NO. 3<br />

Project Number:111-2 K-BNCH-04<br />

FLARED WING COMPUTED BAR DATA<br />

MARK NUMBER LENGTH<br />

(ft)<br />

C2 1 48.500<br />

D2 31 6.750<br />

E2 4 41.500<br />

FLARED WING GEOMETRY VALUES<br />

'W' Apron Width = 38.558 ft<br />

'K' Tip to Tip = 98.827 ft<br />

FLARED WING COMPUTED BAR DATA<br />

MARK NUMBER LENGTH<br />

(ft)<br />

C2 1 48.500<br />

D2 31 6.750<br />

E2 4 41.500<br />

FLARED WING GEOMETRY VALUES<br />

'W' Apron Width = 38.558 ft<br />

'K' Tip to Tip = 98.827 ft<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 10<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

1/10/12 Double 16 ft x 14 ft Fixed Box PAGE NO. 4<br />

Project Number:111-2 K-BNCH-04<br />

RCB QUANTITIES SUMMARY<br />

GRADE 4.0 CONCRETE (TOTAL) (yd^3) 561.384<br />

BOX 362.849<br />

LEFT WING 85.760<br />

RIGHT WING 85.760<br />

APRON 27.015<br />

GRADE 4.0(AE) CONCRETE (TOTAL) (yd^3) 207.793<br />

( TOP SLAB OF BOX)<br />

FOUNDATION STABILIZATION (TOTAL) (yd^3) 164.661<br />

BOX 106.843<br />

LEFT WING 16.542<br />

RIGHT WING 16.542<br />

APRON 24.735<br />

SOIL SAVER 0.000<br />

PLAIN REINFORCING STEEL (TOTAL) (lb) 20611.640<br />

BOX 0.000<br />

LEFT WING 8931.756<br />

LEFT WING (WELDED WIRE FABRIC) 621.201<br />

RIGHT WING 8931.756<br />

RIGHT WING (WELDED WIRE FABRIC) 621.201<br />

APRON (WELDED WIRE FABRIC) 1505.723<br />

EPOXY COATED REINFORCING STL (TOTAL)(lb) 93920.020<br />

(BOX)<br />

GRANULAR BACKFILL (TOTAL) (yd^3) 758.000<br />

LEFT WING 379.000<br />

RIGHT WING 379.000<br />

FILTER FACBRIC (TOTAL)(SUBSIDIARY)(yd^2) 656.000<br />

LEFT WING 328.000<br />

RIGHT WING 328.000<br />

BR BCK PRT SYS (TOTAL)(SUBSIDIARY)(yd^2) 583.856<br />

BOX 583.856<br />

COST OF BOX (Conc, Reinf, Gran Back, and Fnd Stbl)<br />

COST OF CONCRETE = $<br />

COST OF FND STBL = $<br />

COST OF RESTEEL = $<br />

COST OF GRAN BK = $<br />

329.00 / yd^3<br />

41.51 / yd^3<br />

0.71 / lb<br />

46.00 / yd^3<br />

TOTAL COST = $ 376079.80<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 11<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Typical RCB Details (2 sheets)<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - A - 12<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - A - 13<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Appendix B Wingwall Moment & Reaction Coefficients<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - B - 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - B - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - B - 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Appendix C LRFD RCB Mathcadd Loads<br />

1 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

LRFD Box Culvert Design Guidelines<br />

Copyright © 2007 <strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong> All rights reserved.<br />

Input<br />

RCB or RFB (use p for RCB and f for RFB) ....................................... Type "f"<br />

Cell Span measure for inside face <strong>of</strong> walls, (ft) .................................. Span 20ft<br />

Culvert Height measured from the top <strong>of</strong> floor to bottom <strong>of</strong> slab. (ft) ..... Height 8ft<br />

Fill Height from the top <strong>of</strong> pavement to top <strong>of</strong> slab,(ft) ......................... H 3ft<br />

Number <strong>of</strong> Cell in Structure ............................................................. Cell 2<br />

Unit weight <strong>of</strong> soil, (pcf) ..................................................................... γ soil 125<br />

lbf<br />

ft 3<br />

Coefficient <strong>of</strong> earth pressure................................................. k o 0.50<br />

Backfill Type (1.0 soil , 1.15 granular) ............................................ Fill 1.0<br />

Fillet Size ................................................................................... Fillet 16in<br />

Database<br />

box_type num_cel span height fill<br />

f 2 20 8 3<br />

f1_size f1_spabar f2_size f2_spabar f3_size<br />

6 5.5 6 6 8<br />

k o<br />

Return Box Geometry From Database<br />

Interior wall thickness,(in)...............................................................<br />

Exterior wall thickness, (in) ...........................................................<br />

Top slab thickness,(in) ..................................................................<br />

Wall int <br />

Wall ext <br />

Slab top <br />

8in<br />

9in<br />

12.5in<br />

Bottom slab thickness, (in) ............................................................ Slab bot 13.5in<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

2 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

3.11.5.5 Equivalent-Fluid Method <strong>of</strong> Estimating<br />

Rankine Lateral Earth Pressures<br />

The equivalent-fluid method may be used where Rankine earth pressure theory is<br />

applicable. The equivalent-fluid method shall only be used where<br />

the backfill is free-draining. If this criterion cannot be satisfied, the provisions <strong>of</strong> Articles<br />

3.11.3, 3.11.5.1 and 3.11.5.3 shall be used to determine horizontal earth<br />

pressure.<br />

If the backfill qualifies as free-draining (i.e., granular material with < 5 percent passing a<br />

No. 200 sieve), water is prevented from creating hydrostatic pressure.<br />

12.11.2.4 Distribution <strong>of</strong> Concentrated Loads in Skewed Box Culverts<br />

Wheel distribution specified in Article 12.11.2.3 need not be corrected for<br />

skew effects.<br />

The span length is not adjusted for skew, it is center-center <strong>of</strong> the walls perpendicular<br />

to the walls<br />

B c CellSpan<br />

Wall int ( Cell 1)<br />

2Wall ext z H Height Slab top Slab bot<br />

z' <br />

01<br />

ft<br />

z<br />

Dead Loads<br />

Loads<br />

self weight:<br />

The top slab weight is applied to the top <strong>of</strong> the box. The wall weight and the top slab weight<br />

are applied to the bottom slab in an upward uniform pressure. The bottom slab weight load is<br />

directly applied to the resisting soil.<br />

earth vertical<br />

The design fill is measured from the top <strong>of</strong> the top slab to the top <strong>of</strong> the pavement. A soil<br />

structure interaction factor is applied. Article 12.11.2.2.1<br />

F' e 1.0 0.20<br />

H Equation 12.11.2.2.1-2<br />

B c<br />

F e F' e if F' e 1.15<br />

1.15 otherwise<br />

F e shall not exceed 1.15 for installations with compacted fill along the sides <strong>of</strong> the<br />

box section, or 1.40 for installations with uncompacted fill along the sides <strong>of</strong><br />

the box section.<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - C - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

3 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

embankment construction:<br />

W e F e γ soil B c H<br />

Equation 12.11.2.2.1-1<br />

Loading per one foot strip<br />

W e <br />

EV ft<br />

EV 0.4<br />

kip<br />

B<br />

c<br />

ft<br />

earth horizontial:<br />

p EH ( z' ) k o γ soil z'<br />

ft<br />

Equation 3.11.5.1-1<br />

p EH ( H) 0.2<br />

kip<br />

ft<br />

p EH ( z) 0.8<br />

kip<br />

EH top p EH ( H)<br />

ft EH bot p EH () z<br />

Live Loads (Article 12.11.2.1)<br />

Article 3.6.1.3 Application <strong>of</strong> Design Vehicular Live Loads<br />

3.6.1.3.3 Design Loads for Decks, Deck Systems, and the Top Slabs <strong>of</strong> Box<br />

Culverts<br />

For top slabs <strong>of</strong> box culverts <strong>of</strong> all spans and for all other cases, including<br />

slab-type bridges where the span does not exceed 15.0 ft., only the axle<br />

loads <strong>of</strong> the design truck or design tandem.<br />

Article 3.6.1.2.6 Distribution for Wheels Through Earth Fill<br />

Live load shall be considered as specified in Article 3.6.1.3. Distribution <strong>of</strong> wheel loads<br />

and concentrated loads for culverts<br />

Multiple presence Factor Article 3.6.1.1.2, Distribution <strong>of</strong> wheel loads and concentrated<br />

loads for culverts with less than 2.0 ft.<strong>of</strong> fill shall be taken as specified in Article<br />

4.6.2.10. For traffic traveling parallel to the span, box culverts shall be designed for a<br />

single loaded lane with the single lane multiple presence factor applied to the load.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

4 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Article 4.6.2.10.2 Case 1: Traffic Travels Parallel to Span<br />

When traffic travels primarily parallel to the span, culverts shall be analyzed for a single loaded lane<br />

with the single lane multiple presence factor.<br />

Multiple Presence Factor..... (Article C12.11.2.1).................................... MPF 1.2<br />

The axle load shall be distributed to the top slab for determining moment,<br />

thrust, and shear as follows:<br />

Perpendicular to Span (width)<br />

E flow <br />

96 1.44<br />

Span <br />

<br />

<br />

ft in<br />

Equation 4.6.2.10.2-1 E flow <br />

E = equivalent distribution width perpendicular to span (in.)<br />

S = clear span (ft.)<br />

10.4 ft<br />

Distribution for Wheels Through Earth Fill (contact area factor) ................. LLDF 1.00<br />

Tire contact area (10 in x 20 in) parallel to span...................................... L t 10in<br />

Parallel to the Span (length):<br />

E span L t LLDFH<br />

Equation 4.6.2.10.2-2 E span 3.8ft<br />

E span = equivalent distribution length parallel to span / axle (in.)<br />

LT = length <strong>of</strong> tire contact area parallel to span, as specified in Article 3.6.1.2.5 (in.)<br />

LLDF = factor for distribution <strong>of</strong> live load with depth <strong>of</strong> fill, 1.15 or 1.00, as specified in Article 3.6.1.2.6<br />

H = depth <strong>of</strong> fill from top <strong>of</strong> culvert to top <strong>of</strong> pavement (in.)<br />

Loading patch E x E span<br />

Article 3.6.1.2.6<br />

32kip<br />

Truck MPF<br />

E <br />

E flow E ft<br />

Truck E 0.963<br />

kip<br />

span<br />

ft<br />

<br />

50kip<br />

Tandem MPF<br />

E <br />

E flow E ft<br />

Tandem E 1.505<br />

kip<br />

span<br />

ft<br />

In lieu <strong>of</strong> a more precise analysis, or the use <strong>of</strong> other acceptable approximate methods <strong>of</strong><br />

load distribution permitted in Section 12, where the depth <strong>of</strong> fill is 2.0 ft. or greater,<br />

wheel loads may be considered to be uniformly distributed over a rectangular area with<br />

sides equal to the dimension <strong>of</strong> the tire contact area, as specified in Article 3.6.1.2.5, and<br />

increased by either 1.15 times the depth <strong>of</strong> the fill in select granular backfill, or the depth<br />

<strong>of</strong> the fill in all other cases. The provisions <strong>of</strong> Articles 3.6.1.1.2 and 3.6.1.3 shall apply.<br />

Where such areas from several wheels overlap, the total load shall be uniformly distributed<br />

over the area<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - C - 4<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

5 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Distribution <strong>of</strong> Load to Top Slab<br />

Truck & Tandem<br />

Dist. <strong>of</strong> LL in the RCB width direction (flow)<br />

Dist W 20in<br />

LLDFH<br />

6ft<br />

Dist W 10.7 ft<br />

Dist. <strong>of</strong> LL in the RCB length direction (span)<br />

Truck Distr L_TR 10in<br />

LLDFH<br />

Distr L_TR 3.8 ft<br />

Tandem Distr L_T 10in<br />

4ft<br />

LLDFH<br />

Distr L_T 7.8 ft<br />

Loading patch Dist W x Dist L_TR or Dist L_T<br />

(Single HS 32 kip axle or 50 kip Double Tandem )<br />

32kip<br />

Truck MPF<br />

fill <br />

<br />

Dist W Distr ft<br />

Truck fill 0.939<br />

kip<br />

<br />

L_TR<br />

ft<br />

50kip<br />

Tandem MPF<br />

fill <br />

<br />

Dist W Distr ft<br />

Tandem fill 0.718<br />

kip<br />

<br />

L_T<br />

ft<br />

For single-span culverts, the effects <strong>of</strong> live load may be neglected where the depth <strong>of</strong> fill is more<br />

than 8.0 ft. and exceeds the span length; for multiple span culverts, the effects may be neglected<br />

where the depth <strong>of</strong> fill exceeds the distance between faces <strong>of</strong> end walls.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 5<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

6 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Controlling Live Load Effect (s):<br />

LL truck 0 if H 8ft<br />

Cell = 1<br />

0 if H CellSpan<br />

Wall int ( Cell 1)<br />

<br />

<br />

<br />

1<br />

Truck E if H 2ft<br />

Truck fill if H 2ft<br />

LL truck <br />

0.939<br />

kip<br />

ft<br />

Distr truck E span if H 2ft<br />

Distr L_TR otherwise<br />

Distr truck 3.8 ft<br />

LL tandem 0 if H 8ft<br />

Cell = 1<br />

0 if H CellSpan<br />

Wall int ( Cell 1)<br />

<br />

<br />

Cell 1<br />

Tandem E if H 2ft<br />

Tandem fill if H 2ft<br />

LL tandem <br />

0.718<br />

kip<br />

ft<br />

Distr tandem E span if H 2ft<br />

Distr L_T otherwise<br />

Distr tandem 7.8 ft<br />

Fatigue uses only one truck / MPF and fixed axle <strong>of</strong> 30 ft.<br />

LL fat <br />

LL truck<br />

MPF<br />

LL fat <br />

0.8<br />

kip<br />

ft<br />

Note: RCB design does not require fatigue check<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - C - 6<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

7 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

12.11.2.3 Distribution <strong>of</strong> Concentrated Loads to<br />

Bottom Slab <strong>of</strong> Box Culvert<br />

The width <strong>of</strong> the top slab strip used for distribution <strong>of</strong> concentrated wheel loads, specified<br />

in Article 12.11.2, shall also be used for the determination <strong>of</strong> moments, shears, and thrusts<br />

in the side walls and the bottom slab.<br />

C12.11.2.3<br />

Restricting the live load distribution width for the bottom slab to the same width used for the<br />

top slab provides designs suitable for multiple loaded lanes, even though analysis is only<br />

completed for a single loaded lane (as discussed in Article C12.11.2.1).<br />

Impact Loading (Article 3.6.2.2)<br />

The live load dynamic allowance for culvert and shall be taken as:<br />

D E = the minimum depth <strong>of</strong> earth cover above the structure, (ft)<br />

IM = dynamic allowance, (%) > 0 %<br />

H<br />

All Limit States D E <br />

ft<br />

33 1.0 0.125D E 33 1.0 0.125D E<br />

IM 1 if<br />

1 1.0 Equation 3.6.2.2-1<br />

100<br />

100<br />

<br />

1.0 otherwise<br />

<br />

Fatigue Limit State<br />

IM 1.21<br />

IM fat <br />

15 1.0 0.125D E 15 1.0 0.125D E<br />

1 if<br />

100<br />

100<br />

1 1.0 Table 3.6.2.1-1<br />

1.0 otherwise<br />

<br />

<br />

IM fat 1.09<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 7<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

8 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Live Load Surcharge (LS) Article 3.11.6.4<br />

A live load surcharge shall be applied where vehicular load is expected to act on the<br />

surface <strong>of</strong> the backfill within a distance equal to one-half the wall height behind the back<br />

face <strong>of</strong> the wall. If the surcharge is for a highway, the intensity <strong>of</strong> the load shall be<br />

consistent with the provisions <strong>of</strong> Article 3.6.1.2.<br />

Modified Boussinesq for Point<br />

H 1 ( 1.0ft ) if H 1.0ft H 1 3 ft<br />

H otherwise<br />

Note: This is taken at the max. location in plan using<br />

the Tandem = 25 kip.<br />

Total heigth <strong>of</strong> the Wall (ft)....... H LL H 1 Height<br />

H LL 11 ft<br />

H LL 12<br />

H LL<br />

x 1 1 y 1 1<br />

ft<br />

ft<br />

1<br />

Depth Below the Wheel (ft)....... Z ( x 1)<br />

ft<br />

x1<br />

12<br />

Distance(s) from Wall Face (ft)............ X ( y 1) ft<br />

1y<br />

Point Load (kip)....................... Q L 25kip<br />

Dimensionless Parameters......<br />

n <br />

Z<br />

H 1<br />

m <br />

X<br />

H 1<br />

Modified Boussinesq Equation<br />

2<br />

0.28 n x 1<br />

F xy <br />

<br />

<br />

2<br />

0.16 n x1<br />

<br />

<br />

3<br />

1.77 m n 1y<br />

x 1<br />

if<br />

2 2<br />

m 1y<br />

2 n x1<br />

<br />

<br />

2<br />

m 0.4 1y<br />

3 otherwise<br />

<br />

<br />

Q L <br />

Δp LL F<br />

2<br />

H <br />

1 <br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - C - 8<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

9 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

The increase in pressure (in ksf) as a function <strong>of</strong> Depth for Point Load<br />

Z x 1<br />

0<br />

5<br />

Resultant <strong>of</strong> the Pressure Diagram (kip/ ft <strong>of</strong> wall)<br />

Δp LL.Res xy <br />

<br />

( 0ksf) if Z H x1<br />

1<br />

Δp LL xy <br />

otherwise<br />

10<br />

<br />

Δp LLx 5<br />

15<br />

0 1.510 4<br />

<br />

Equivalent Uniform Surcharge per foot <strong>of</strong> width on Exterior Wall<br />

Numerical Integration for the pressure on the wall ......<br />

w LL1 y<br />

<br />

<br />

y 1<br />

Δp LL.Res ft ft<br />

12<br />

Height<br />

Res stack X ft<br />

<br />

w ft LL <br />

kip <br />

Maximum Effect from moving the Tadem ..........<br />

0.173<br />

kip<br />

max w LL<br />

ft<br />

Reduction Due to Earth Pressure (Article 3.11.7)<br />

For culverts and bridges and their components where earth pressure may reduce effects<br />

caused by other loads and forces, such reduction shall be limited to the extent earth<br />

pressure can be expected to be permanently present. In lieu <strong>of</strong> more precise information,<br />

a 50 percent reduction may be used, but need not be combined with the minimum load<br />

factor specified in Table 3.4.1-2.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 9<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

10 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Water Loads (Article 3.7)<br />

y <br />

01ft <br />

Height<br />

Designers need to consider load cases where the culvert is full <strong>of</strong> water as well as cases<br />

where the culvert is empty. A simple hydrostatic distribution is used for the water load:<br />

The vertical water force is assumed pass directly into the foundation material<br />

γ water <br />

62.4pcf<br />

p WA ( y) ( Height y) γ <br />

water ft<br />

p WA ( 0) 0.499<br />

kip<br />

ft<br />

WA p WA ( 0)<br />

p WA ( Height) 0.000<br />

kip<br />

ft<br />

Design Considerations<br />

Load Modifiers Ductility........................... 1.00<br />

Redundancy .................. 1.05<br />

Importance .................... 1.00<br />

η I 1.00<br />

η D 1.00<br />

η R 1.05<br />

12.5.4 Load Modifiers and Load Factors<br />

Load modifiers shall be applied to buried structures and tunnel liners as specified<br />

in Article 1.3, except that the load modifiers for construction loads should be<br />

taken as 1.0. For strength limit states, buried structures shall be considered<br />

non redundant under earth fill and redundant under live load and dynamic<br />

load allowance loads. Operational importance shall be determined on the basis<br />

<strong>of</strong> continued function and/or safety <strong>of</strong> the roadway.<br />

Load modifier for EV is 1.05 and 1.00 for LL + IM<br />

Wall Thickness<br />

Interior wall thickness,(in)...............................................................<br />

Exterior wall thickness, (in) ...........................................................<br />

Top slab thickness,(in) ..................................................................<br />

Wall int <br />

Wall ext <br />

Slab top <br />

8in<br />

9in<br />

12.5in<br />

Bottom slab thickness, (in) ............................................................ Slab bot 13.5in<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - C - 10<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

11 Example <strong>of</strong> LRFD Loads for RCB Design 2/24<br />

Earth Loads<br />

Loading Summary:<br />

_____________________________________________________________<br />

Vertical ...............(entire top slab)................................<br />

EV <br />

0.380<br />

kip<br />

ft<br />

Horizontal Pressure .................................... top ..........<br />

Horizontal Pressure ....................................bottom .......<br />

EH top <br />

EH bot <br />

_____________________________________________________________<br />

Live Loads<br />

Controlling Uniform Distributed LL ................................<br />

LL truck <br />

LL tandem <br />

0.188<br />

kip<br />

ft<br />

0.823<br />

kip<br />

ft<br />

0.939<br />

kip<br />

ft<br />

0.718<br />

kip<br />

ft<br />

Length <strong>of</strong> Uniform Distributed LL in the Span Direction ....<br />

Horizontal surcharge ...( uniform on Ext. Walls)..............<br />

Distr truck 3.8 ft<br />

Distr tandem 7.8 ft<br />

0.173<br />

kip<br />

max w LL<br />

ft<br />

Fatigue Loads ___________________________________________________________<br />

Uniform Distributed Fatigue Load ................................<br />

LL fat <br />

0.783<br />

kip<br />

ft<br />

Impact<br />

________________________________________________________________<br />

Dynamic Allowance for Truck and Tandem............................. IM 1.21<br />

Dynamic Allowance for Fatigue............................................ IM fat 1.09<br />

Water<br />

________________________________________________________________<br />

Hydrostatic Water Pressure at the Bottom <strong>of</strong> the Ext. Walls ...<br />

WA <br />

0.499<br />

kip<br />

ft<br />

Note: Based on using a one foot strip for design.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - C - 11<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Appendix D Doubly Reinforced and Shear Capactiy <strong>of</strong> Concrete<br />

Investigate Shear Capacity <strong>of</strong> Concrete Slab Under Earth Fill January 6, 2012<br />

Purpose: Hypothesize that shear capacity <strong>of</strong> concrete slabs under earth fill is greater than current<br />

AASHTO specifications allow.<br />

Doubly Reinforced Concrete Section With Moment and Axial Loads Less than Ultimate Strength<br />

F = 0 x<br />

M = 0 O<br />

Figure 1<br />

1<br />

N u A s f s = A' s f' s <br />

<br />

2 b k d A' <br />

s<br />

<br />

<br />

<br />

<br />

<br />

<br />

h<br />

N u d<br />

e = A' s f' s ( d d' ) <br />

2<br />

f c<br />

1<br />

2 b k d A' <br />

<br />

s<br />

f c <br />

d<br />

<br />

<br />

<br />

k d 3 <br />

Where:<br />

N u ..................................... Applied Axial Force<br />

M u ..................................... Applied Moment<br />

kd...................................... Depth to the Neutral Axis<br />

f c = E c ε c<br />

f s = E s ε s<br />

f' s = 2 E s ε' s Due to creep and nonlinearity use 2n for compression steel<br />

Input:<br />

ϕ v 0.85 f y 60ksi f’ c 4ksi V p 0kip b v 12in h 11in<br />

ϕ c 0.8 E s 29000ksi<br />

V s 0kip<br />

d v 7.92in<br />

ϕ f 0.9<br />

V c 14.57kip<br />

d e 8.5in<br />

M u 28.375kip ft V u 29.37kip N u 4.17kip<br />

h<br />

d'' d e <br />

d'' 3 in<br />

2<br />

A s 1.58in 2<br />

A' s 1.896in 2<br />

A s<br />

p <br />

b v d e<br />

d' e 2.0in<br />

p' <br />

A' s<br />

b v d e<br />

M u<br />

e d'' e 84.655 in<br />

N u<br />

e<br />

9.959 E c 33 145 1.5 <br />

d e<br />

f’ c<br />

psi<br />

psi<br />

E s<br />

n n 7.958<br />

E c<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - D- 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Guess:<br />

1<br />

j 0.84502 i <br />

d e<br />

1 j <br />

e<br />

m n p i ( 2n 1) p'<br />

The following was derived from Figure 1 for a cracked, doubly-reinforced concrete section using<br />

The equations from ACI Publication SP-3 "Reinforced Concrete Design Handbook - Working<br />

Stress Method" Third Edition, 1965:<br />

i 1.093<br />

m 0.412<br />

d' e<br />

q n p i ( 2n 1) p' <br />

q 0.2<br />

d e<br />

k m 2 2q m<br />

k 0.34275<br />

1 ( 2n 1) A' s d' e d' e <br />

<br />

1<br />

<br />

6 k b v d e k d e k d e <br />

z z 0.452<br />

1 ( 2n 1) A' s d' e <br />

<br />

1<br />

<br />

2 k b <br />

v d e k d e<br />

c k d e<br />

c 2.913 in<br />

j ( 1 z k)<br />

j 0.84502<br />

Once j = guessed value, continue...<br />

Calculate the Stresses:<br />

N u e<br />

f s<br />

f s <br />

f s 28.467 ksi<br />

ε s <br />

j A s i d e<br />

E s<br />

ε s 0.00098162<br />

f s k<br />

f c <br />

<br />

n 1 k <br />

f c<br />

f c 1.865 ksi<br />

ε c <br />

E c<br />

ε c 0.0005119<br />

d' e <br />

k <br />

d <br />

e<br />

f' s 2 f s f' s<br />

1 k <br />

f' s 9.308 ksi<br />

ε' s ε' s 0.00255427<br />

E c<br />

Sum <strong>of</strong> the Forces:<br />

N u 4.17 kip<br />

1<br />

2 f c b v k d e f' s A' s f s A s 5.279 kip<br />

M u 28.375 kip ft<br />

1<br />

2 f h k d e <br />

c b v k d e f' s A' h<br />

s d' <br />

h<br />

e f s A s d e <br />

28.698 kip ft<br />

2 3<br />

2 2 <br />

Close enough. So OK.<br />

Volume III US (RLFD)<br />

Version 9/13 3 - 12 - D - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Now that the stresses and strains are calculated, try to justify higher shear capacity for this section. The section defined<br />

above fails for the applied shear load. For Article 5.8.3.4.2 let us try using the actual calculated strain to solve for shear.<br />

Article 5.8.3.4.2<br />

4.8<br />

51<br />

β <br />

β 2.765<br />

1 750 ε s s xe <br />

39<br />

<br />

in <br />

a g 0.75 s xe max<br />

12inmind e d' e d v<br />

<br />

s xe 12 in<br />

<br />

1.38<br />

<br />

a g 0.63 <br />

f’ c<br />

V .c 0.0316 β ksi b v d v V .c 16.606 kip<br />

ϕ v V .c 14.11 kip<br />

ksi<br />

θ 29deg 3500deg ε s<br />

θ 32.436 deg<br />

V u 29.37 kip<br />

V r < V u<br />

Still No Good.<br />

This helps some, but Vs still = 0 and Vr is not greater than Vu. Let us see how much shear capacity is left in the existing<br />

reinforcing in dowel action. Article 5.10.11.4.4 allows for dowl action in a compression memember.<br />

Article 5.10.11.4.4<br />

Use leftover As for Dowel Action. Concrete shear, Vc = 0 but is replaced by the 0.75*Nu term in this calculation.<br />

Notice, we used a 0.6 factor on the available area for shear that is missing in AASHTO and ACI.<br />

f y f' s f y f s <br />

A s_comp_leftover A' s <br />

f <br />

A s_tension_leftover A s <br />

y<br />

f <br />

y<br />

A s_comp_leftover 1.602 in 2<br />

A s_tension_leftover 0.83 in 2<br />

A vf A s_tension_leftover A s_comp_leftover<br />

V n 0.6 A vf f y 0.75 N u V n 90.688 kip V r ϕ v V n<br />

V r 77.08 kip<br />

V u 29.37 kip<br />

V r > V u<br />

This helps as well, but since we don't strictly fall into the category <strong>of</strong> Article 5.10.11.4.4 for an RCB, the following approach<br />

will be followed:<br />

<br />

V .s 0.6 A s_tension_leftover A s_comp_leftover f y<br />

V c 14.57 kip (Concrete shear from unrefined method)<br />

<br />

<br />

<br />

V .r ϕ v V .s V c<br />

V .r 86.81 kip<br />

V u 29.37 kip<br />

V r > V u<br />

Conclusion:<br />

Using a more refined tension strain with the above relationship may yield higher values for calculating shear<br />

capacity. AASHTO 5.10.11.4.4 allows for dowel action in a compression member at an extreme event limit<br />

state. For concrete slabs under earth fill, using the left over tension and compression A s can enhance the<br />

shear capacity in the section. The conclusion is that KDOT will design our slabs for maximum moment and<br />

check the ultimate shear capacity <strong>of</strong> the section based on the left over A s using the above method.<br />

Volume III US (LRFD)<br />

Version 9/13 3 -12 - D- 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Appendix E Miscellaneous Example Details<br />

Traffic directly on top <strong>of</strong> bridge approach slab rest. Sidewalk/Barrier/Fence Details<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 -E - 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 - E - 2<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 -E - 3<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 - E - 4<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 -E - 5<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 - E - 6<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 -E - 7<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

REFERENCES<br />

AASHTO, (2007). LRFD Bridge Design Specification, 4 th ed. American Association <strong>of</strong> State<br />

Highway and <strong>Transportation</strong> Officials, Washington, DC. LRFDUS-4<br />

AASHTO, (2010). LRFD Bridge Construction Specification, 3 th ed. American Association <strong>of</strong><br />

State Highway and <strong>Transportation</strong> Officials, Washington, DC. LRFDCONS-3<br />

AASHTO, (2011). The Manual for Bridge Evaluation, Second Edition, Washington, DC.<br />

ASTM Specifications, A615. Standard Specification for Deformed and Plain Carbon-Steel Bars<br />

for Concrete Reinforcement.<br />

ASTM Specifications, C1433. Standard Specification for Precast Reinforced Concrete<br />

Monolithic Box Sections for Culverts, Storm Drains, and Sewers.<br />

ASTM Specifications, C1577. Standard Specification for Precast Reinforced Concrete<br />

Monolithic Box Sections for Culverts, Storm Drains, and Sewers Designed According to<br />

AASHTO LRFD.<br />

FHWA, Safety Treatment <strong>of</strong> Roadside Cross-Drainage <strong>Structures</strong>, FHWA/TX-83/37+280-1)<br />

KDOT , (2007). Standard Specifications for State Road and Bridge Construction,<br />

SS204, Excavation and Backfill for <strong>Structures</strong><br />

SS735, Precast Reinforced Concrete Box<br />

SS1107, Aggregates for Aggregate Base Construction Aggregate for Backfill.<br />

Volume III US (LRFD)<br />

Version 9/13 3-12 - Ref 1<br />

Bridge Section


<strong>Kansas</strong> <strong>Department</strong> <strong>of</strong> <strong>Transportation</strong><br />

Design Manual<br />

Terzoghi, Peck.(1664). Soils Mechanics in Engineering Practice<br />

<strong>Transportation</strong> Research Board Paper No. TRB 00307759. Live Load Distribution on Concrete<br />

Box Culverts.<br />

TRR #1191. BOXCAR, (versions later than 1.95)<br />

Unified Soil Classification System in the Engineering Index properties table and the detailed<br />

soil maps <strong>of</strong> the soil Conservation Services County Soil Survey. Vol. 1-105.<br />

Volume III US (LRFD)<br />

Version 9/13 3 - 12 - Ref 2<br />

Bridge Section

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!