23.03.2014 Views

X - FGG-KM

X - FGG-KM

X - FGG-KM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JCSS Workshop on Reliability Based Code Calibration<br />

Zurich, March 2002<br />

Reliability-Based Code<br />

Calibration for Earthquake-<br />

Resistant Design<br />

Christiana Dymiotis<br />

Department of Civil & Offshore Engineering


Presentation overview<br />

Basic EC8 requirements and limit states<br />

Uncertainties in structural behaviour<br />

Code calibration at member level<br />

Structural vulnerability and seismic risk (SLS<br />

and ULS considerations)<br />

Calibration of behaviour factors<br />

Conclusions


Eurocode 8 (EC8) design<br />

No collapse requirement: the structure must be able to<br />

withstand the design seismic action without partial or total<br />

collapse so that structural integrity and a residual loadbearing<br />

capacity are retained following the earthquake.<br />

Damage limitation requirement: the structure must be able<br />

to withstand a seismic action that has a shorter return<br />

period than the design seismic action (i.e. higher<br />

probability of occurrence), so that the damage sustained<br />

does not impose any limitations on structural usage.


Eurocode 8 (EC8) design<br />

3 limit states<br />

• Serviceability limit state (SLS): no structural damage<br />

due earthquakes of low intensity.<br />

• Ulitmate limit state (ULS): only light and repairable<br />

damage due to earthquakes of moderate intensity.<br />

• Collapse limit state: no collapse due to earthquakes of<br />

high intensity.<br />

Capacity design approach<br />

• energy dissipation through large, inelastic deformations<br />

• strong column - weak beam design


Uncertainty at different levels<br />

Material<br />

behaviour<br />

f cc<br />

σ<br />

Section<br />

behaviour<br />

µ ϕ<br />

ν<br />

ε cu<br />

ε<br />

Structural<br />

behaviour<br />

h<br />

Member<br />

behaviour<br />

Μ<br />

∆x i<br />

/h i<br />

θ<br />

STRUCTURAL RELIABILITY


Investigated structural systems<br />

10×3m<br />

6m<br />

4m<br />

6m<br />

Bare frame<br />

(EC8-designed,<br />

DC“M”, A d =0.25g)<br />

Fully infilled<br />

frame<br />

“Pilotis” frame<br />

(soft ground storey)


Investigated cross-sections<br />

sections<br />

6Ø8<br />

162<br />

9Ø16<br />

6Ø8<br />

114<br />

8Ø12<br />

B250×850<br />

850 762<br />

Ø5/110<br />

250<br />

700 614<br />

Ø4/85<br />

200<br />

B200×700<br />

12Ø20<br />

Ø10/110<br />

8Ø16<br />

Ø6/80<br />

500<br />

398<br />

300<br />

212<br />

C500×500<br />

500<br />

300<br />

C300×300


Random variables<br />

Variable Mean COV (%) Distribution<br />

f c 28MPa 18 Normal<br />

X m,εcu 1.0 39 Normal<br />

f y 440MPa 6 Normal<br />

f u 506MPa 6 Normal<br />

ε su 0.09 9 Normal<br />

ULS: δ cr 6.6% 31 Lognormal<br />

(+ 2 additional lognormal variables for infilled frames)


Uncertainty in member capacity<br />

N<br />

Nc<br />

Strength<br />

response<br />

µ ϕ<br />

µ ϕ,1<br />

Ductility<br />

response<br />

Nb<br />

Nt<br />

M0<br />

Mb<br />

M<br />

µ ϕ,2<br />

ν 1 ν 2<br />

ν<br />

Fibre model approach - unit mean ratio of experimental to analytical<br />

values, COV≈7%<br />

Enhancement in strength and ductility due to confinement considered<br />

Ductility estimated based on various criteria for estimation of ε cu


Response Surface Method<br />

Identification of random variables<br />

Simple expressions for estimation of strength and ductility<br />

parameters (based on 2 nd order regression models)<br />

Very good agreement with fibre model values for sections<br />

not considered in derivation<br />

e.g. for column curvature ductility,<br />

ν=N/N ult =0.2<br />

( )<br />

2<br />

+ 0.02 fˆ<br />

− 0.06 fˆ<br />

0.01fˆ<br />

µ ϕ µ X +<br />

= ϕ<br />

m 1 c y c<br />

RSM<br />

15<br />

10<br />

5<br />

where X m =model uncertainty factor<br />

µ ϕ =fibre model prediction corresponding<br />

to mean values<br />

0<br />

0 5 10 15<br />

Fibre Model


Column flexural strength<br />

N (MN)<br />

4<br />

ε<br />

=<br />

3 ε<br />

2<br />

300×300mm Column<br />

cu<br />

sy<br />

⎛ d − x<br />

⎜<br />

⎝ xu<br />

y<br />

⎞<br />

⎟<br />

⎠<br />

12<br />

9<br />

6<br />

500×500mm Column<br />

EC2<br />

Fibre model -<br />

characteristic values<br />

Fibre model -<br />

mean values<br />

µ ϕ<br />

⎟<br />

⎠<br />

⎞<br />

1<br />

µ 0 ε cu ⎛ 0.60 − 0.50ν<br />

= ⎜<br />

ϕ ε ⎝ 1. 35 ν<br />

-1<br />

0 0.06 0.12 0.18<br />

sy<br />

3<br />

0<br />

-3<br />

M (MNm)<br />

0 0.2 0.4 0.6 0.8<br />

EC2 models lead to conservative strength estimates<br />

Higher safety margins above balance point


Shear strength<br />

Overall member shear capacity: V R3 =V c +V w<br />

Assessment: V c =V c1 +V c2<br />

• RSM function for V c2 , empirical functions for V c1 , V w<br />

Design: V c =V R1 (EC2)<br />

Simulated / Code values<br />

V R3, 0.05 / V R3, k V R3, 0.5 / V R3, m<br />

C300×300 1.74 1.97<br />

C500×500 1.55 1.82


Column curvature ductility<br />

Exact EC8 equation:<br />

ε ⎛ d − x ⎞<br />

cu y<br />

µ ϕ =<br />

⎜<br />

⎟<br />

ε sy ⎝ xu<br />

⎠<br />

µ ε cu ⎛ 0.60 − 0.50ν<br />

⎞<br />

= ⎜<br />

⎟ ϕ ε ⎝ 1. 35 ν ⎠<br />

Approximate EC8<br />

equation:<br />

sy<br />

300×300mm Column 500×500mm Column<br />

frequency<br />

30<br />

20<br />

N/N ult =0.1 30<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0 15 30 45 0 15 30 45<br />

30<br />

N/N ult =0.2 30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0 15 30 45 0 15 30 45<br />

µ ϕ<br />

µ ϕ<br />

Distributions corresponding to buckling or 0.85fc<br />

15<br />

Distributions 10 corresponding to buckling or 0.5fcc<br />

5<br />

Exact EC8 equation, characteristic material properties<br />

0<br />

1 2 3<br />

Approximate EC8 equation, characteristic material properties


Column curvature ductility<br />

Exact EC8 equation:<br />

ε ⎛ d − x ⎞<br />

cu y<br />

µ ϕ =<br />

⎜<br />

⎟<br />

ε sy ⎝ xu<br />

⎠<br />

µ ε cu ⎛ 0.60 − 0.50ν<br />

⎞<br />

= ⎜<br />

⎟ ϕ ε ⎝ 1. 35 ν ⎠<br />

Approximate EC8<br />

equation:<br />

sy<br />

300×300mm Column 500×500mm Column<br />

frequency<br />

30<br />

20<br />

N/N ult =0.1 30<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0 15 30 45 0 15 30 45<br />

30<br />

N/N ult =0.2 30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0 15 30 45 0 15 30 45<br />

µ ϕ<br />

µ ϕ<br />

15<br />

10<br />

5<br />

Distributions corresponding to buckling or 0.85fc<br />

Distributions corresponding to buckling or 0.5fcc<br />

Exact EC8 equation, mean material properties<br />

0<br />

1 2 3<br />

Approximate EC8 equation, mean material properties


Column curvature ductility<br />

Distributions<br />

corresponding to 0.85fc<br />

Distributions<br />

corresponding to 0.5fcc<br />

ν d ν µ m µ k,0.05 P(µ≤9) µ m µ k,0.05 P(µ≤9)<br />

C300×300 0.107 0.0465 15.12 5.71 0.14 24.86 8.97 0.05<br />

C500×500 0.526 0.215 9.21 3.67 0.48 13.77 5.65 0.17


Methodology for probabilistic assessment<br />

START<br />

Uncertainty<br />

modelling<br />

Optimum<br />

sample size<br />

Simulation<br />

of r.v.’s<br />

Seismic<br />

modelling<br />

Structural<br />

analysis<br />

Convolution of<br />

vulnerability<br />

with seismic<br />

hazard<br />

NO<br />

More<br />

scenarios?<br />

Comparison<br />

with other<br />

scenarios<br />

Mean<br />

vulnerability<br />

Structural<br />

vulnerability<br />

YES<br />

YES<br />

More return<br />

periods?<br />

More<br />

variables?<br />

YES<br />

Simulation<br />

of r. v.’s<br />

NO<br />

NO<br />

SEISMIC<br />

RELIABILITY


Structural analysis<br />

Inelastic time-history dynamic analysis using<br />

DRAIN-2000<br />

Lumped plasticity approach<br />

Either moderately or fully cracked sections<br />

assumed<br />

Member capacity estimated using derived<br />

response surface functions<br />

Beam failures accounted for during analysis


Modelling of uncertainty in seismic input<br />

Natural accelerograms<br />

chosen to cover a wide<br />

range of seismic<br />

parameters.<br />

Seven input motions<br />

initially considered<br />

Three carefully chosen<br />

motions adequate for ULS<br />

vulnerability<br />

mean P f (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2 3 4 5 6 7<br />

A′/A d<br />

All 7 Records<br />

5 Records<br />

3 Records


Structural vulnerability - SLS<br />

3 SLS criteria considered significant differences in<br />

vulnerability predictions<br />

X m,εcu<br />

not critical<br />

mean P f (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2<br />

A′/A d<br />

SLS criteria:<br />

θ>θ y<br />

θ>2θ y<br />

δ max >0.5%


Structural vulnerability - ULS<br />

Several spatial scenarios considered<br />

Failure due to one of two criteria:<br />

• large interstorey drift<br />

• first column failure<br />

Pf (%)<br />

100<br />

I<br />

d<br />

( θ p<br />

)<br />

( θ )<br />

( VR2<br />

)<br />

( V )<br />

( VR3<br />

)<br />

( V )<br />

⎪⎧<br />

⎪⎫<br />

req req req<br />

, el = max⎨<br />

, , ⎬ ≤1.0<br />

⎪⎩ p avail R2<br />

avail R3<br />

avail ⎪⎭<br />

Scenario A<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Scenario B<br />

Scenario C<br />

Scenario D<br />

Scenario E<br />

0 2 4 6 A'/A d


ULS comparisons with infilled frames<br />

mean P f (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 1 2 3 4 5 6<br />

A'/A d<br />

⎝<br />

S a<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

ful. inf.<br />

pilotis<br />

bare<br />

AEGL<br />

ELC<br />

KALW<br />

LPRL<br />

SFERT<br />

0 1 2 3 T(s)<br />

Bare Fully infilled Pilotis<br />

mean P f (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 1 2 3 4 5 6<br />

A'/A d<br />

⎝<br />

S a<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

ful. inf.<br />

pilotis<br />

bare<br />

NORL<br />

0 1 2 3 T(s)


Seismic risk<br />

Unconditional probability of failure in t d years,<br />

P<br />

f<br />

∞<br />

∫<br />

− ∞<br />

= f ( A′<br />

) F ( A′<br />

) d A′<br />

S<br />

R<br />

where F R (A’) and F S (A’) are given by the structural<br />

vulnerability and seismic hazard curves, respectively.<br />

P(PGA>A)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Structural<br />

lifetimes:<br />

5.2 years<br />

20 years<br />

50 years<br />

200 years<br />

350 years<br />

500 years<br />

0 0.2 0.4 0.6<br />

A(g)


Seismic risk<br />

Results for bare frame:<br />

12<br />

P f (%)<br />

9<br />

6<br />

3<br />

ULS<br />

SLS: θ>θ y<br />

SLS: θ>2θ y<br />

SLS: δ max >0.5%<br />

0<br />

0 100 200 300 400 500<br />

t d (years)


Reliability indices<br />

SLS<br />

θ>θ y θ>2θ y δ max >0.5% ULS<br />

Structural lifetime (years) 5.2 5.2 5.2 50<br />

Earthquake return period (years) 50 50 50 475<br />

Bare frame<br />

Fully infilled frame<br />

Pilotis frame<br />

P f 0.1139 0.0716 0.0069 0.0082<br />

β 1.21 1.46 2.46 2.40<br />

P f 0.0936 0.0281 0.0110 0.0222<br />

β 1.32 1.91 2.29 2.01<br />

P f 0.1175 0.0362 0.0163 0.0278<br />

β 1.19 1.80 2.14 1.91<br />

β EC1 2.45 2.45 2.45 3.80<br />

β US - - 1.5-1.8 1.55-1.75


Behaviour (q) factors<br />

T1<br />

S a<br />

m 1 m n<br />

k n , ξ<br />

Elastic acceleration spectrum<br />

Inelastic design spectrum<br />

(= Elastic modified by q)<br />

S d<br />

T s<br />

u1(t)<br />

Tn<br />

un(t)<br />

T<br />

..<br />

x(t)<br />

k 1 , ξ<br />

………………<br />

..<br />

x(t)


Probabilistic evaluation of EC8 q-factorq<br />

Actual q-factor q<br />

developed,<br />

q=q d (A /A d )<br />

(A cr /A<br />

P(q≤q d |failure) evaluated<br />

from statistics of maximum<br />

accelerations sustained by<br />

structures that fail<br />

P(q≤q d )= P(q≤q d |failure) P f<br />

=0.75×0.0082<br />

0.0082<br />

≈0.6%<br />

P(q|fail.)<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

q d =3.75<br />

0 4 8 12<br />

q


Conclusions<br />

At member level:<br />

Eurocode provisions give conservative estimates of strength parameters,<br />

with higher safety margins at regions where brittle failure is expected.<br />

EC8 equations with characteristic material properties do not lead to<br />

adequately conservative estimates of curvature ductility.<br />

At structure level:<br />

Uncertainty in seismic input, member capacity and failure criteria ia taken<br />

into account.<br />

Better definition of target performance criteria required, especially for<br />

the SLS.<br />

Acceptable ULS safety margins have been observed for EC8 frames,<br />

whereas SLS safety margins vary significantly, depending on the<br />

adopted failure criterion.<br />

The design behaviour (q) factor has been found to be exceeded in only<br />

0.6% of the entire population of simulated frames.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!