30.10.2012 Views

Solid Oxide Fuel Cells for Undersea Naval Applications

Solid Oxide Fuel Cells for Undersea Naval Applications

Solid Oxide Fuel Cells for Undersea Naval Applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solid</strong> <strong>Oxide</strong> <strong>Fuel</strong> <strong>Cells</strong> <strong>for</strong><br />

<strong>Undersea</strong> <strong>Naval</strong> <strong>Applications</strong><br />

10 th Electrochemical Power Sources R&D Symposium<br />

August 20-23, 2007<br />

A. Alan Burke, Ph.D.<br />

Louis G. Carreiro, Ph.D.<br />

<strong>Naval</strong> <strong>Undersea</strong> Warfare Center (NUWC),<br />

Division Newport


SOFC Construction<br />

Ceramic electrolyte (yttria-stabilized zirconia,<br />

YSZ) sandwiched between two electrodes<br />

The electrolyte’s function:<br />

(1) acts as a diffusion barrier between<br />

the fuel and oxidizer and<br />

(2) serves as an ionic conductor <strong>for</strong> the<br />

transport of oxide ions from the cathode<br />

to the anode.<br />

The anode is a cermet of metallic nickel<br />

and YSZ, while the cathode is a p-type<br />

semiconductor such as La 0.7 Sr 0.3 MnO 3 .<br />

Cathode<br />

Electrolyte<br />

Anode<br />

The interconnect is a necessary component of<br />

the stack. It must have high electrical conductivity<br />

while being inert in oxidizing and reducing<br />

environments. It provides electrical connection and<br />

gas flow channel separation between cells.<br />

Operation below 750°C allows the use of stainless<br />

steel interconnects, which are cost effective.<br />

<strong>Fuel</strong><br />

Channel<br />

Cathode:<br />

O 2 + 2e - → 2O 2-<br />

Anode:<br />

Bipolar Plate<br />

Interconnect<br />

H 2 + O 2- → H 2 O + 2e -<br />

CO + O 2- → CO 2 + 2e -<br />

Oxidant


Voltage vs. Efficiency Plots<br />

R.W. Sidwell, W.G. Coors / Journal of Power Sources<br />

143 (2005) 166-172<br />

Operation at lower current<br />

density allows <strong>for</strong> higher<br />

voltage and higher efficiency,<br />

but stack size must be larger<br />

to reach desired power level.<br />

(Operation at lower stack<br />

power density can result in a<br />

higher system energy density<br />

and efficiency.)


Proposed System Design<br />

with Anode Recycle<br />

Pre-<br />

Re<strong>for</strong>mer<br />

<strong>Fuel</strong><br />

Water<br />

Heat to<br />

Re<strong>for</strong>mer<br />

CO2<br />

Adsorber<br />

Adsorber<br />

Cooler<br />

Recycle<br />

Stream<br />

Re<strong>for</strong>mate<br />

Stream<br />

ANODE<br />

Hot<br />

Exhaust<br />

SOFC<br />

Condenser<br />

CATHODE<br />

Cooled<br />

Exhaust<br />

Water<br />

Recovery<br />

Oxygen<br />

Cathode<br />

Cooler


Autonomous <strong>Undersea</strong> Vehicles


Conceptual 21” Diameter<br />

Mission Reconfigurable UUV<br />

Propulsion Section: Trust Vectored Pumpjet, Control Surfaces, Recovery and<br />

Handling System, Future Integrated Motor Propulsor<br />

Ballast and Trim Section: Pump, Valves,<br />

Aft Tank<br />

Electronics and Control Section: Power<br />

Distribution, Vehicle Computer, Navigation<br />

System, Communications System,<br />

Payload/Vehicle Integration Computer<br />

Nose Section: FLS, Acoustic<br />

Communications System<br />

� 20.95 Inch OD, 240 Inches Long<br />

� Weight = About 2800 lbs<br />

� Speed = 3 to 8 knots<br />

� Sortie Reliability Ps = 0.953<br />

� Sortie Duration = up to 40 Hours<br />

� Sortie Reach = 75 - 120 NM<br />

� Full Impulse Launch Capable<br />

Energy Section: -- Lithium<br />

Battery, AgZn Battery,<br />

Future <strong>Fuel</strong> Cell<br />

Mission Payload Section: 5 Cubic<br />

Feet with Standard Interfaces<br />

Forward Auxiliary Section: SATCOM & GPS<br />

Antennas, Antenna Mast, Anchor, Forward<br />

Ballast Tank


Force Net<br />

�� ISR<br />

�� Oceanography<br />

�� Communication<br />

Navigation Network<br />

Nodes (CN3)<br />

HWV<br />

~21”<br />

Large<br />

>36”<br />

Class<br />

Diameter<br />

Man Portable<br />

3-9”<br />

LWV<br />

~12.75”<br />

UUVMP SeaPower21<br />

Sub-Pillar Capabilities<br />

Sea Shield<br />

�� Littoral Sea Control<br />

• ASW<br />

• MCM<br />

�� HLD - AT/FP<br />

Inspect/ID<br />

Displacement<br />

(lbs)<br />


Torpedo & UUV Power<br />

& Energy Needs<br />

Specific energy, Wh/kg<br />

UUV, Long Term Goal<br />

Torpedo, Long Term<br />

Goal<br />

* David Linden<br />

Handbook of<br />

Batteries, 2nd<br />

ed, 1995<br />

Commercial Sector and Conventional Energy sources will not meet<br />

the Navy Torpedo and UUV Future Requirements


Broad <strong>Fuel</strong> Comparisons<br />

Energy Content (LHV)<br />

� <strong>Fuel</strong> Flashpoint, ºC MP, ºC MJ/L MJ/kg<br />

� Methanol 12 -98 15-18 19-22<br />

� Ethanol 13 -114 18 23<br />

� Gasoline -7.2 -58 (aviation) 31-34 42-46<br />

� Diesel 40-50 -20 to 5 (cloud) ~36-40 42-47<br />

� Liquid H 2 (no tank) -252 (BP) 8 121<br />

� LNG (no tank) -164(BP) 21 51<br />

� 2015 H 2 Storage Goal (9wt% systems basis) 10-15 10<br />

� Glycerin 176 ~ 17 22 18


<strong>Fuel</strong><br />

Type<br />

Diesel<br />

Appropriate <strong>Fuel</strong> Selection<br />

FT-diesel<br />

(S-8)<br />

JP-8<br />

Biodiesel<br />

Sulfur?<br />

Aromatics?<br />

< 5 ppm<br />

< 1%<br />

~ 500 ppm<br />

~ 20%<br />

~ 10 ppm<br />

~ none<br />

10-500ppm<br />

10-25%<br />

Flash &<br />

Cloud Pt.<br />

40 - 50 C<br />

-47 C<br />

> 38 C<br />

-47 C<br />

> 130 C<br />

~ 0 C<br />

40 - 50 C<br />

-20 - 5 C<br />

Others: Dodecane, JP-10 are > $25/gallon**<br />

Cost<br />

$/gal<br />

20-<br />

30?<br />

~3<br />

3-5<br />

(sub)<br />

~3<br />

Energy<br />

Density,<br />

MJ/L<br />

~37<br />

34<br />

33<br />

35-40<br />

Shelf life<br />

8 yrs *<br />

1 yr<br />

6 months<br />

2 yrs<br />

Max<br />

* FT Diesel specs from www.rentechinc.com &<br />

www.syntroleum.com, Energy & <strong>Fuel</strong>s 1991,5, 2- 21<br />

** Missile <strong>Fuel</strong> Prices FY07


OSD Sponsored SBIR<br />

� OSD07-ES5<br />

� Focuses on mobile synthetic fuel plant<br />

� 50-500 barrels per day<br />

� Lightweight, ~ 3 tons per barrel-day of output<br />

� This would be suitable plat<strong>for</strong>m <strong>for</strong> remote or<br />

shipboard fuel generation <strong>for</strong> Navy UUVs &<br />

portable generators<br />

� Safety is the major issue—high pressure<br />

reactors must be able to flash & vent


<strong>Fuel</strong> Processing (Re<strong>for</strong>mers)<br />

Catalytic Partial Oxidation (CPOX )<br />

CmHn + m/2 O2 n/2 H2 + mCO + heat<br />

• Exothermic reaction - no additional heating required <strong>for</strong> heating inlet<br />

• Fast kinetics - re<strong>for</strong>mer starts and achieves operating temperature quickly<br />

• Air-dependent operation; further studies needed to consider pure O 2 feed<br />

Steam Re<strong>for</strong>ming<br />

C mH n + mH 2O + heat (m+n/2) H 2 + mCO<br />

• Endothermic reaction - requires heat <strong>for</strong> reaction and evaporation of<br />

fuel/water feed<br />

- Heat is supplied from fuel cell exhaust gases and CO 2 scrubber<br />

- Steam can be recycled from SOFC product gases<br />

• More hydrogen produced per mole of fuel<br />

• Air-independent operation


Delphi Inc.<br />

<strong>Solid</strong> <strong>Oxide</strong> <strong>Fuel</strong> Cell Stack<br />

SOFC Stack Testing<br />

and System Design<br />

Versa Power Systems (VPS)<br />

<strong>Solid</strong> <strong>Oxide</strong> <strong>Fuel</strong> Cell Stack


Furnace<br />

SOFC<br />

Stack<br />

Re<strong>for</strong>mer<br />

Furnace<br />

SOFC Test Stand<br />

Compression<br />

System<br />

Furnace<br />

Controller<br />

1 kW Load<br />

Bank<br />

Gas Handler<br />

Humidifier


Efficiency, %;<br />

Utilization, %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

VPS Stack Per<strong>for</strong>mance Using<br />

Dodecane with S/C = 3.63<br />

Dodecane Feed = 0.779 mL/min<br />

Water Feed = 2.68 mL/min<br />

Cathode Gas: 6 L/min O 2<br />

efficiency<br />

utilization<br />

Power<br />

0 100 200 300 400 500<br />

Current Density, mA/cm 2<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Power, W<br />

20 Liters<br />

would provide<br />

~ 100 kW-hrs<br />

However...<br />

Single Pass<br />

needs water<br />

separation<br />

& steam<br />

generation


V, V<br />

Modeling SOFC Cell<br />

Per<strong>for</strong>mance<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

IV & Pd curves <strong>for</strong> 6-cell VPS Stack single cell average<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

i, A/cm2<br />

Model was first adjusted to fit the published standard operating<br />

curves <strong>for</strong> the VPS cell, and then the projected per<strong>for</strong>mance was<br />

modeled <strong>for</strong> operation under expected under high utilization of<br />

re<strong>for</strong>mate and pure oxygen feed streams seen in the UUV. A slight<br />

voltage boost from higher operating pressure is also modeled.<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Pd, W/cm2<br />

V,std<br />

Vmodel<br />

1 atm, V<br />

3 atm, V<br />

P,std<br />

Pmodel<br />

1 atm,Pd<br />

3 atm, P


Stack Voltage, V;<br />

Efficiency, %<br />

Modeling Projected SOFC<br />

Stack Per<strong>for</strong>mance<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

T = 725º C, P = 3 atm<br />

Inlet Gases:<br />

V, P curves, from model<br />

0 10 20 30 40 50<br />

Stack Current, A<br />

Anode: 54% H 2 , 24% H 2 O, 9% CO 2 , 13% CO at total flow of 50 SLPM<br />

Cathode: Pure oxygen dead ended, readily available (no mass transfer limitations)<br />

V<br />

Eff<br />

P<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Stack Power, W


Average Cell Voltage, V<br />

SOFC Stack Pe<strong>for</strong>mance Under<br />

Simulated UUV Operating<br />

Conditions (1 atm, 725º C)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Current Density, A/cm2<br />

Model, V<br />

Delphi, V<br />

Model,P<br />

Delphi, P<br />

Targeted Steady State operating point: 0.8 V/cell at 0.3 A/cm 2<br />

For a 100-cell stack, this results in 80 V at 35 Amps = 2800 W<br />

Model does not consider methane re<strong>for</strong>mation at the cell surface, localized cooling from methane<br />

re<strong>for</strong>ming could explain higher OCV & lower voltage at low current density<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Average Cell Power Density,<br />

W/cm2


Preliminary Energy Section <strong>for</strong><br />

21” UUV Plat<strong>for</strong>m<br />

Scaling:<br />

Suitable <strong>for</strong> 21” and<br />

Larger UUVs<br />

(> 1 kW systems)<br />

System Level<br />

Per<strong>for</strong>mance:<br />

350-450 W-hr/L<br />

350-450 W-hr/kg<br />

System Demo of all<br />

components except<br />

LOX expected in<br />

Winter 2007<br />

Liquid<br />

Oxygen<br />

Storage<br />

(LOX) SOFC<br />

21” UUV Plat<strong>for</strong>m<br />

1-3 kW, ~75 kW-hr<br />

Diesel<br />

<strong>Fuel</strong><br />

Storage<br />

<strong>Fuel</strong><br />

Processor &<br />

CO 2<br />

Scrubber


Steam Re<strong>for</strong>mer<br />

Provided by InnovaTek<br />

Re<strong>for</strong>mer Inlet Streams <strong>for</strong><br />

VPS test:<br />

Gas stream: 5.2 L/min H 2 ,<br />

0.27 L/min CO, 0.27 L/min<br />

CO 2 , 2.40 g/min steam<br />

Liquid stream: 0.3 g/min<br />

S-8 fuel from Syntroleum<br />

(Fischer Tropsch diesel)<br />

Re<strong>for</strong>mer Inlet Streams<br />

<strong>for</strong> Delphi Test:<br />

Gas stream: 6.93 L/min<br />

H 2 , 0.33 L/min CO,<br />

3.09 g/min steam<br />

Liquid stream: 0.45 g/min<br />

S-8 fuel from Syntroleum<br />

Re<strong>for</strong>mer Outlet Stream <strong>for</strong><br />

VPS Test:<br />

Dry Flow: 5.96 L/min (82.9%<br />

H 2 , 5.0% CO 2 , 4.5% CO,<br />

7.6% CH 4 )<br />

~2.4 mL/min water<br />

S/C ~ 2.8<br />

Re<strong>for</strong>mer Outlet Stream <strong>for</strong><br />

Delphi Test:<br />

Dry Flow: 8.7 L/min (87.4%<br />

H2, 3.4% CO2, 3.9% CO,<br />

5.3% CH4)<br />

~2.6 mL/min water<br />

S/C ~ 2.8


Anode Gas Recycle Blower<br />

Blower Attributes:<br />

• Inlet T = 600-850º C<br />

• Inlet P is atmospheric<br />

• ∆P ~ 4-10” water<br />

• 100 SLPM gas flow<br />

• Nominal composition of 46<br />

slpm H 2 O, 27 slpm CO 2 , 20 slpm<br />

H 2 , and 7 slpm CO<br />

• η > 40%<br />

• Variable speed control with<br />

turn-down ratio of 5 to 2<br />

• 0.5 L, 4.26 kg<br />

Companies Funded under<br />

DoE, Phase II SBIR contracts:<br />

1. R&D Dynamics<br />

2. Phoenix Analysis and Design<br />

Technologies<br />

**Proposed phase II prototypes match<br />

21” UUV design goals<br />

Prototype from R&D to be delivered to<br />

NUWC <strong>for</strong> testing in November 2007


Conversion, %<br />

� CaO + CO 2 → CaCO 3 + HEAT (17.8 kJ/mol)<br />

� CaCO 3 Decomposes ~ 850º C<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Carbon Dioxide Scrubber<br />

0 2 4 6 8 10 12 14<br />

Time, Minutes<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

CO2 Removal Rate, mmol/min;<br />

Mass CO2 Absorbed, g<br />

-Recently developed sorbent<br />

showed over 70% conversion<br />

of CaO in gas mixture of<br />

21% CO 2 /44% H 2 /35% steam<br />

-Sorbent shows fast kinetics<br />

and stability <strong>for</strong> repeated<br />

cycles<br />

-Ef<strong>for</strong>t in place to scale up<br />

production methods <strong>for</strong> this<br />

extruded CaO sorbent<br />

* Sorbent provided by TDA Research, Inc.<br />

Sorbent tested at NUWC


Liquid Oxygen (LOX) Storage<br />

German built U212 & U214<br />

submarines already employ<br />

Siemens fuel cell systems,<br />

which store hydrogen via<br />

metal hydrides and oxygen as<br />

LIQUID OXGYEN.<br />

Spanish S-80 goes a step<br />

further, in that it will be<br />

producing LOX on the vehicle<br />

itself. UTC providing fuel cell<br />

system <strong>for</strong> this submarine.<br />

LOX is becoming standard <strong>for</strong><br />

air-independent propulsion<br />

(AIP), and it is an area that the<br />

U.S. Navy cannot af<strong>for</strong>d to<br />

neglect.<br />

Sierra Lobo successfully<br />

demonstrated this technology in a<br />

Phase II STTR funded by ONR


Various Means to Store<br />

30 kg Oxygen<br />

Storage Method<br />

LOX System<br />

(Stainless steel design<br />

from Sierra Lobo),<br />

200 psia<br />

Compressed<br />

(3000 psia)<br />

H 2 O 2 (60 wt.%)<br />

Mass, kg<br />

30 +<br />

dewar (~ 100 kg)<br />

30 + tank (~100)<br />

107 + tank (~10)<br />

Volume, L<br />

30 + dewar (~82)<br />

97 + tank(~70)<br />

90 + tank (~10)<br />

LOX could be lighter with aluminum or composite instead of<br />

steel components, but volume unlikely to change very much.


Conclusions<br />

� Sulfur-free FT-fuels can be used in fuel cells to<br />

obtain higher efficiency, quieter operation, and<br />

lower emissions than combustion engines<br />

� There are niche areas where SOFCs already<br />

look promising; i.e. undersea vehicles<br />

� Oxidant source remains a large obstacle<br />

towards implementation in UUVs<br />

� System Demonstration planned <strong>for</strong> this fall in<br />

coordination with InnovaTek’s Phase II SBIR


Acknowledgements<br />

� Sponsors<br />

� ONR, Code 33 – Michele Anderson<br />

� DoE, Interagency Agreement – Wayne<br />

Surdoval & Heather Quedenfeld


NiCd<br />

Lead Acid<br />

NiMH<br />

AgO-Zn<br />

Sec. Li Ion<br />

Li-SOCl 2<br />

Comparison of Energy<br />

Sources <strong>for</strong> 21” UUV<br />

Type of System<br />

Li Polymer *Expected<br />

PEM (NaBH 4 +LOX)<br />

SOFC (S-8 + LOX)<br />

Specific<br />

Energy,<br />

Wh/kg<br />

30<br />

30<br />

95<br />

110<br />

150-200<br />

210<br />

~ 450<br />

300-340<br />

350-400<br />

Energy<br />

Density,<br />

Wh/L<br />

75<br />

65-95<br />

330<br />

240<br />

325<br />

330<br />

900-1000<br />

300-340<br />

400-450<br />

Max Mission<br />

at 2.5 kW, hr<br />

3<br />

3<br />

8<br />

9<br />

11<br />

18<br />

35-38<br />

22-25<br />

30-38<br />

Number of cycles<br />

1500<br />

> 300<br />

500<br />

15<br />

~2000<br />

> 600<br />

1<br />

150<br />

30 (??)<br />

Available Volume: 189 L Available Mass: 209 kg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!