21.03.2014 Views

g-factor of a bound electron

g-factor of a bound electron

g-factor of a bound electron

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong><br />

Ion Stroescu<br />

University <strong>of</strong> Heidelberg<br />

January 11, 2008<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 1 / 32


Outline<br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 2 / 32


Outline<br />

History and motivation<br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 3 / 32


History and motivation<br />

The Nobel Prize in Physics 1965<br />

The Nobel Prize was awarded to Richard P. Feynman (USA), Julian<br />

Schwinger (USA) and Sin-Itiro Tomonaga (Japan).<br />

“for their fundamental work in quantum electrodynamics, with<br />

deep-ploughing consequences for the physics <strong>of</strong> elementary particles”<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 4 / 32


History and motivation<br />

Quantum electrodynamics<br />

Electron is characterised by mass m and charge e<br />

Both m and e have no theoretical prediction<br />

Excellent describtion <strong>of</strong> the magnetic moment µ by QED, the most<br />

successful theory in physics<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 5 / 32


History and motivation<br />

Quantum electrodynamics<br />

Electron is characterised by mass m and charge e<br />

Both m and e have no theoretical prediction<br />

Excellent describtion <strong>of</strong> the magnetic moment µ by QED, the most<br />

successful theory in physics<br />

Richard P. Feynman, 1983<br />

“The theory <strong>of</strong> quantum electrodynamics is, I would say, the jewel <strong>of</strong><br />

physics - our proudest possession.”<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 5 / 32


Outline<br />

Theory <strong>of</strong> the free <strong>electron</strong><br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 6 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

The magnetic moment <strong>of</strong> the <strong>electron</strong><br />

An electrical current I creates a<br />

magnetic dipole field with the<br />

moment µ<br />

The angular momentum is given<br />

by L = mrv<br />

This results into the relation<br />

⃗µ = − e<br />

2m ⃗ L<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 7 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

Definition <strong>of</strong> the magneton<br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

The magnetic moment can be expressed in terms <strong>of</strong> the magneton.<br />

⃗µ = − e<br />

2m ⃗ ⃗L<br />

L = −µ M<br />

<br />

, µ M = e<br />

2m<br />

Two common definitions are Bohr magneton and nuclear magneton.<br />

µ B = e<br />

2m e<br />

= 0.579 × 10 −4 eV T<br />

µ N = e<br />

2m p<br />

= 3.152 × 10 −8 eV T<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 8 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

The anomalous moment <strong>of</strong> the <strong>electron</strong><br />

The g-<strong>factor</strong> <strong>of</strong> a charged particle is defined as<br />

⃗µ = −g e<br />

2m ⃗ S<br />

A particle with pure angular momentum ⃗L has g = 1<br />

If the theory takes into account the spin <strong>of</strong> the <strong>electron</strong>, g = 2 results<br />

directly from Dirac’s equation<br />

QED vacuum fluctuations and polarization slightly increase this value<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 9 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

Larmor and cyclotron frequency<br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

The Zeeman splitting <strong>of</strong> the <strong>electron</strong> ground state in a magnetic field<br />

⃗B = B · ⃗e z is given by<br />

∆E 1s = −⃗µ · ⃗B<br />

This is proportional to the Larmor precession frequency <strong>of</strong> the <strong>electron</strong><br />

∆E 1s = ω L<br />

The magnetic field is characterised by the cyclotron frequency<br />

ω c = e m B<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 10 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

How to measure the anomalous moment<br />

Larmor frequency<br />

ω L = g e<br />

2m B<br />

Cyclotron frequency<br />

ω c = e m B<br />

Comparing these two frequencies enables the measurement <strong>of</strong><br />

g = 2 · ωL<br />

ω c<br />

The special configuration needed for this experiment is realised by the<br />

Penning trap<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 11 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

Principle <strong>of</strong> the Penning trap<br />

The Penning trap is a<br />

hyperbolic trap<br />

Confinement in axial<br />

direction by electrostatic<br />

field<br />

Confinement in radial<br />

direction by strong<br />

magnetic field<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 12 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

Motion <strong>of</strong> the particle<br />

Axial motion: oscillation in<br />

electrostatic potential with<br />

ω z = √ qV 0 /md 2<br />

Radial motion in an electrostatic<br />

field has two solutions<br />

Magnetron motion: ⃗E × ⃗B drift,<br />

ω −<br />

Cyclotron motion: ω +<br />

Invariance theorem<br />

( q<br />

) 2<br />

ωc 2 = ω+ 2 + ωz 2 + ω− 2 =<br />

m B<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 13 / 32


Theory <strong>of</strong> the free <strong>electron</strong><br />

QED contributions<br />

Self-energy and polarisation<br />

In addition to Dirac’s theory,<br />

there are QED effects which<br />

change the energy <strong>of</strong> the ground<br />

state<br />

(a) self-energy<br />

(b) vacuum polarisation<br />

This affects the anomalous moment <strong>of</strong> the <strong>electron</strong><br />

g e /2 = 1 + C 2 (α/π) + C 4 (α/π) 2 + C 6 (α/π) 3 + C 8 (α/π) 4 + ...<br />

First order Schwinger term C 2 = 1/2<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 14 / 32


Outline<br />

Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 15 / 32


Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

The anomalous moment <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

Larmor frequency <strong>of</strong> the <strong>bound</strong><br />

<strong>electron</strong><br />

ω L = g<br />

e B<br />

2m e<br />

Ion cyclotron frequency<br />

ω c =<br />

Q<br />

m ion<br />

B<br />

Anomalous moment<br />

g = 2 · ωL m e Q<br />

ω c m ion e<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 16 / 32


Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

QED contributions for the <strong>bound</strong> state<br />

Bound-state QED <strong>of</strong> the <strong>electron</strong> g-<strong>factor</strong><br />

g <strong>bound</strong> (Z α)2 α(Z α)2<br />

= 1 − + + ...<br />

g free 3 4π<br />

Corrections come from Dirac<br />

theory and <strong>bound</strong>-state QED<br />

High Z prohibit the use <strong>of</strong><br />

perturbation theory, since<br />

Z α ≈ 1<br />

QED corrections ∆E ∼ Z 4 /n 3<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 17 / 32


Outline<br />

Experiment<br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 18 / 32


Experiment<br />

Results and precision<br />

GSI experimental setup<br />

Electron beam produces<br />

hydrogen-like C 5+ ions via<br />

collisional ionisation<br />

All charged particles are then<br />

removed except for a single C 5+<br />

ion<br />

The Penning trap is located in<br />

the center <strong>of</strong> the copper cylinder<br />

Cryopumping reduces pressure<br />

below 10 −16 mbar<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 19 / 32


Experiment<br />

Results and precision<br />

Double-trap measuring technique<br />

Resonant excitation at 104 GHz<br />

<strong>of</strong> transition between the two<br />

spin states in the precision trap<br />

(4 Telsa homogeneous magnetic<br />

field)<br />

Measurement <strong>of</strong> spin-flip<br />

transitions in the analysis trap<br />

(inhomogeneous magnetic field)<br />

Amplitudes <strong>of</strong> the three motions<br />

are reduced below 50<br />

micrometer by cooling to a<br />

temperature T = 4 K<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 20 / 32


Experiment<br />

Continuous Stern-Gerlach effect<br />

Results and precision<br />

Electron with spin up and antiparallel magnetic moment is driven<br />

toward weaker fields and the axial frequency is increased<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 21 / 32


Experiment<br />

Quantum jump spectroscopy<br />

Results and precision<br />

A microwave field is used to induce the spin-flips<br />

The spin-flip transitions (quantum jumps) are observed as small<br />

discrete changes <strong>of</strong> the axial frequency <strong>of</strong> the stored ion<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 22 / 32


Experiment<br />

Results and precision<br />

Measurement <strong>of</strong> the Larmor precession frequency<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 23 / 32


Experiment<br />

Results and precision<br />

g-<strong>factor</strong> <strong>of</strong> a free <strong>electron</strong><br />

Electron: g = 2 × 1.001 159 652 188 4 (43)<br />

Positron: g = 2 × 1.001 159 652 187 9 (43)<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 24 / 32


Experiment<br />

g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong><br />

Results and precision<br />

g = 1.998 721 354 4 Dirac theory <strong>of</strong> <strong>bound</strong> <strong>electron</strong><br />

+0.000 000 000 4 nuclear volume effect<br />

+0.000 000 087 6 nuclear recoil effect<br />

+0.002 323 663 7 (9) first order QED correction<br />

- 0.000 003 516 2 (2) second order QED correction<br />

2.001 041 589 9 (9) theoretical value<br />

2.001 041 596 4 (10) (44)GSI measurement on C 5+<br />

T. Beier et al, Phys. Rev. Lett. 88, 011603 (2002)<br />

V. Shabaev et al, Phys. Rev. Lett. 88, 091801 (2002)<br />

V. Yerokhin et al, Phys. Rev. Lett. 89, 143001 (2002)<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 25 / 32


Experiment<br />

Deducing the <strong>electron</strong>’s mass<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

m e<br />

= g ω c e<br />

m ion 2 ω L Q<br />

<strong>electron</strong>’s mass m e /u proton/<strong>electron</strong> mass ratio<br />

CODATA 1998 0.000 548 579 911 0 (12) 1836.152 667 5 (39)<br />

g-<strong>factor</strong> (C 5+ ) 0.000 548 579 909 2 (4) 1836.152 673 1 (10)<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 26 / 32


Outline<br />

Outlook: New experiments and future facilities<br />

1 History and motivation<br />

2 Theory <strong>of</strong> the free <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the free <strong>electron</strong><br />

Penning trap and particle motion<br />

QED contributions<br />

3 Theory <strong>of</strong> the <strong>bound</strong> <strong>electron</strong><br />

g-<strong>factor</strong> <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> in hydrogen-like ion<br />

QED contributions for the <strong>bound</strong> state<br />

4 Experiment<br />

Results and precision<br />

Mass <strong>of</strong> the <strong>electron</strong><br />

5 Outlook: New experiments and future facilities<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 27 / 32


Outlook: New experiments and future facilities<br />

Overview <strong>of</strong> the HITRAP facility at GSI<br />

Experiments with highly charged ions<br />

at low energies:<br />

g-<strong>factor</strong> measurements (tests <strong>of</strong><br />

QED)<br />

Hyperfine structure in<br />

hydrogen-like ions<br />

Fundamental constants m e and<br />

α<br />

Fundamental symmetries CPT<br />

and parity<br />

Laser and X-ray spectroscopy<br />

with cold HCI<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 28 / 32


Outlook: New experiments and future facilities<br />

g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> for U 91+ at HITRAP<br />

U 73+ coming from SIS is<br />

stripped to U 91+ before the<br />

injection into ESR<br />

10 5 ions/pulse every 10 s<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 29 / 32


Outlook: New experiments and future facilities<br />

Facility for Antiproton and Ion Research<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 30 / 32


Conclusion<br />

Conclusion<br />

The g-<strong>factor</strong> is defined as ⃗µ = −g e<br />

2m ⃗ S<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 31 / 32


Conclusion<br />

Conclusion<br />

The g-<strong>factor</strong> is defined as ⃗µ = −g e<br />

2m ⃗ S<br />

Zeeman splitting in a magnetic field is ∆E 1s = −⃗µ · ⃗B = ω L<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 31 / 32


Conclusion<br />

Conclusion<br />

The g-<strong>factor</strong> is defined as ⃗µ = −g e<br />

2m ⃗ S<br />

Zeeman splitting in a magnetic field is ∆E 1s = −⃗µ · ⃗B = ω L<br />

The cyclotron frequency is given by ω c = e m B<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 31 / 32


Conclusion<br />

Conclusion<br />

The g-<strong>factor</strong> is defined as ⃗µ = −g e<br />

2m ⃗ S<br />

Zeeman splitting in a magnetic field is ∆E 1s = −⃗µ · ⃗B = ω L<br />

The cyclotron frequency is given by ω c = e m B<br />

Measurement <strong>of</strong> the g-<strong>factor</strong><br />

g = 2 · ωL<br />

ω c<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 31 / 32


Conclusion<br />

Conclusion<br />

The g-<strong>factor</strong> is defined as ⃗µ = −g e<br />

2m ⃗ S<br />

Zeeman splitting in a magnetic field is ∆E 1s = −⃗µ · ⃗B = ω L<br />

The cyclotron frequency is given by ω c = e m B<br />

Measurement <strong>of</strong> the g-<strong>factor</strong><br />

g = 2 · ωL<br />

ω c<br />

The anomalous moment <strong>of</strong> the <strong>bound</strong> <strong>electron</strong> is given by<br />

g = 2 · ωL m e Q<br />

ω c m ion e<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 31 / 32


References<br />

References<br />

J. Verdú, S. Djekić, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, T.<br />

Beier, H.-J. Kluge, and W. Quint,<br />

Phys. Rev. Lett. 92, 093002 (2004).<br />

N. Hermanspahn, H. Häffner, H.-J. Kluge, W. Quint, S. Stahl, J.<br />

Verdú, and G. Werth,<br />

Phys. Rev. Lett. 84, 427 (2000).<br />

H. Dehmelt,<br />

Proc. Natl. Acad. Sci. USA 83, 2291-2294 (1986).<br />

Ion Stroescu (Uni Heidelberg) g-<strong>factor</strong> <strong>of</strong> a <strong>bound</strong> <strong>electron</strong> January 11, 2008 32 / 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!