21.03.2014 Views

16-bit Serial DAC

16-bit Serial DAC

16-bit Serial DAC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

19-1572; Rev 0; 12/99<br />

Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

General Description<br />

The MAX5541 serial-input, voltage-output, <strong>16</strong>-<strong>bit</strong><br />

monotonic digital-to-analog converter (<strong>DAC</strong>) operates<br />

from a single +5V supply. The <strong>DAC</strong> output is<br />

unbuffered, resulting in low 0.3mA supply current and<br />

low 1LSB offset error. The <strong>DAC</strong> output range is 0V to<br />

V REF . The <strong>DAC</strong> latch accepts a <strong>16</strong>-<strong>bit</strong> serial word. A<br />

power-on reset circuit clears the <strong>DAC</strong> output to 0V<br />

(unipolar mode) when power is initially applied.<br />

The 10MHz 3-wire serial interface is SPI/QSPI/<br />

MICROWIRE compatible and interfaces directly with<br />

optocouplers for applications requiring isolation. The<br />

MAX5541 is available in an 8-pin SO package.<br />

Features<br />

♦ Full <strong>16</strong>-Bit Performance Without Adjustments<br />

♦ +5V Single-Supply Operation<br />

♦ Low Power: 1.5mW<br />

♦ 1µs Settling Time<br />

♦ Unbuffered Voltage Output Directly Drives 60kΩ<br />

Loads<br />

♦ SPI/QSPI/MICROWIRE-Compatible <strong>Serial</strong> Interface<br />

♦ Power-On Reset Circuit Clears <strong>DAC</strong> Output to 0V<br />

(unipolar mode)<br />

♦ Schmitt Trigger Inputs for Direct Optocoupler<br />

Interface<br />

MAX5541<br />

Applications<br />

High-Resolution Offset and Gain Adjustment<br />

Industrial Process Control<br />

Automated Test Equipment<br />

Data Acquisition Systems<br />

PART<br />

MAX5541CSA<br />

MAX5541ESA<br />

Ordering Information<br />

TEMP. RANGE PIN-PACKAGE<br />

0°C to +70°C 8 SO<br />

-40°C to +85°C 8 SO<br />

Pin Configuration<br />

Functional Diagram<br />

TOP VIEW<br />

V DD<br />

OUT<br />

1<br />

8<br />

V DD<br />

REF<br />

MAX5541<br />

<strong>16</strong>-BIT <strong>DAC</strong><br />

OUT<br />

AGND<br />

REF<br />

CS<br />

2<br />

3<br />

4<br />

MAX5541<br />

7<br />

6<br />

5<br />

DGND<br />

DIN<br />

SCLK<br />

CS<br />

DIN<br />

SCLK<br />

CONTROL<br />

LOGIC<br />

<strong>16</strong>-BIT DATA LATCH<br />

SERIAL INPUT REGISTER<br />

AGND<br />

SO<br />

DGND<br />

SPI and QSPI are trademarks of Motorola, Inc.<br />

MICROWIRE is a trademark of National Semiconductor Corp.<br />

________________________________________________________________ Maxim Integrated Products 1<br />

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.<br />

For small orders, phone 1-800-835-8769.


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

MAX5541<br />

ABSOLUTE MAXIMUM RATINGS<br />

V DD to DGND............................................................-0.3V to +6V<br />

CS, SCLK, DIN to DGND..........................................-0.3V to +6V<br />

REF to AGND, DGND..................................-0.3V to (V DD +0.3V)<br />

AGND to DGND.....................................................-0.3V to +0.3V<br />

OUT to AGND, DGND.................................. ............-0.3V to V DD<br />

Maximum Current into Any Pin............................................50mA<br />

Continuous Power Dissipation (T A = +70°C)<br />

8-Pin SO (derate 5.88mW/°C above +70°C)................471mW<br />

Operating Temperature Ranges<br />

MAX5541CSA .....................................................0°C to +70°C<br />

MAX5541ESA ..................................................-40°C to +85°C<br />

Junction Temperature......................................................+150°C<br />

Storage Temperature Range .............................-65°C to +150°C<br />

Lead Temperature (soldering, 10sec) ............................ +300°C<br />

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional<br />

operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to<br />

absolute maximum rating conditions for extended periods may affect device reliability.<br />

ELECTRICAL CHARACTERISTICS<br />

(V DD = +5V ±5%, V REF = +2.5V, V AGND = V DGND = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)<br />

Resolution<br />

PARAMETER<br />

Gain-Error Tempco<br />

<strong>DAC</strong> Output Resistance<br />

Power-Supply Rejection<br />

REFERENCE INPUT<br />

Reference Input Range<br />

Reference Input Resistance<br />

(Note 4)<br />

N<br />

R OUT<br />

PSR<br />

V REF<br />

R REF<br />

T A = +25°C<br />

T A = T MIN to T MAX<br />

T A = T MIN to T MAX<br />

T A = +25°C<br />

T A = T MIN to T MAX<br />

(Note 2)<br />

4.75V ≤ V DD ≤ 5.25V<br />

(Note 3)<br />

CONDITIONS<br />

Integral Nonlinearity INL V DD = 5V<br />

±4 ±<strong>16</strong><br />

Zero-Code Offset Error<br />

Zero-Code Tempco<br />

Gain Error (Note 1)<br />

SYMBOL<br />

STATIC PERFORMANCE—ANALOG SECTION (R L = ∞)<br />

Differential Nonlinearity<br />

Output Settling Time<br />

DNL<br />

ZSE<br />

ZS TC<br />

Guaranteed monotonic<br />

DYNAMIC PERFORMANCE—ANALOG SECTION (R L = ∞)<br />

Voltage-Output Slew Rate<br />

SR<br />

MIN TYP MAX<br />

<strong>16</strong><br />

2.0 3.0<br />

11.5<br />

±0.5 ±1.0<br />

±0.05<br />

±0.1<br />

6.25<br />

±1<br />

±2<br />

±5<br />

±10<br />

±1.0<br />

UNITS<br />

Bits<br />

LSB<br />

LSB<br />

ppm/°C<br />

LSB<br />

ppm/°C<br />

kΩ<br />

LSB<br />

C L = 10pF (Note 5) 25 V/µs<br />

To ± 1 /2LSB of FS, C L = 10pF 1 µs<br />

Bits<br />

V<br />

kΩ<br />

2 _______________________________________________________________________________________


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

ELECTRICAL CHARACTERISTICS (continued)<br />

(V DD = +5V ±5%, V REF = +2.5V, V AGND = V DGND = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)<br />

PARAMETER<br />

<strong>DAC</strong> Glitch Impulse<br />

SYMBOL<br />

CONDITIONS<br />

Major-carry transition<br />

Digital Feedthrough<br />

Code = 0000 hex, CS = V DD ,<br />

SCLK = V DIN = 0 to V DD levels<br />

DYNAMIC PERFORMANCE—REFERENCE SECTION<br />

Reference -3dB Bandwidth BW Code = FFFF hex<br />

Reference Feedthrough<br />

Code = 0000 hex, V REF = 1Vp-p at 100kHz<br />

Signal-to-Noise Ratio<br />

SNR<br />

Reference Input Capacitance C IN<br />

Code = 0000 hex<br />

Code = FFFF hex<br />

STATIC PERFORMANCE—DIGITAL INPUTS<br />

Input High Voltage<br />

V IH<br />

Input Low Voltage<br />

V IL<br />

Input Current<br />

I IN V IN = 0<br />

Input Capacitance<br />

C IN (Note 6)<br />

Hysteresis Voltage<br />

V H<br />

POWER SUPPLY<br />

Positive Supply Range<br />

V DD<br />

Positive Supply Current<br />

I DD<br />

Power Dissipation<br />

PD<br />

MIN TYP MAX<br />

10<br />

2.4<br />

10<br />

1<br />

1<br />

92<br />

75<br />

120<br />

0.40<br />

0.8<br />

±1<br />

10<br />

4.75 5.25<br />

0.3 1.1<br />

1.5<br />

UNITS<br />

nVs<br />

nVs<br />

MHz<br />

mVp-p<br />

dB<br />

pF<br />

V<br />

V<br />

µA<br />

pF<br />

V<br />

V<br />

mA<br />

mW<br />

MAX5541<br />

TIMING CHARACTERISTICS<br />

(V DD = +5V ±5%, V REF = +2.5V, V AGND = V DGND = 0, CMOS inputs, T A = T MIN to T MAX , unless otherwise noted.)<br />

PARAMETER<br />

SYMBOL<br />

CONDITIONS<br />

MIN TYP MAX<br />

UNITS<br />

SCLK Frequency<br />

f CLK<br />

10<br />

MHz<br />

SCLK Pulse Width High<br />

t CH<br />

45<br />

ns<br />

SCLK Pulse Width Low<br />

t CL<br />

45<br />

ns<br />

CS Low to SCLK High Setup<br />

t CSS0<br />

45<br />

ns<br />

CS High to SCLK High Setup<br />

t CSS1<br />

45<br />

ns<br />

SCLK High to CS Low Hold<br />

t CSH0<br />

(Note 6)<br />

30<br />

ns<br />

SCLK High to CS High Hold<br />

t CSH1<br />

45<br />

ns<br />

DIN to SCLK High Setup<br />

t DS<br />

40<br />

ns<br />

DIN to SCLK High Hold<br />

t DH<br />

0<br />

ns<br />

V DD High to CS Low<br />

(power-up delay)<br />

20<br />

µs<br />

Note 1: Gain Error tested at V REF = +2.0V, +2.5V, and +3.0V.<br />

Note 2: R OUT tolerance is typically ±20%.<br />

Note 3: Min/Max ranges guaranteed by gain-error test. Operation outside min/max limits will result in degraded performance.<br />

Note 4: Reference input resistance is code dependent, minimum at 8555 hex.<br />

Note 5: Slew-rate value is measured from 0% to 63%.<br />

Note 6: Guaranteed by design. Not production tested.<br />

_______________________________________________________________________________________ 3


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

MAX5541<br />

(V DD = +5V, V REF = +2.5V, T A = +25°C, unless otherwise noted.)<br />

SUPPLY CURRENT (mA)<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

SUPPLY CURRENT<br />

vs. TEMPERATURE<br />

0.20<br />

-40 -20 0 20 40 60 80 100<br />

TEMPERATURE (°C)<br />

MAX5541-01<br />

SUPPLY CURRENT (mA)<br />

0.35<br />

0.34<br />

0.33<br />

0.32<br />

0.31<br />

0.30<br />

0.29<br />

SUPPLY CURRENT<br />

vs. REFERENCE VOLTAGE<br />

0.28<br />

0 1 2 3 4 5 6<br />

REFERENCE VOLTAGE (V)<br />

Typical Operating Characteristics<br />

MAX5541-02<br />

ZERO-CODE OFFSET ERROR (LSB)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

ZERO-CODE OFFSET ERROR<br />

vs. TEMPERATURE<br />

-0.8<br />

-1.0<br />

-60 -20 20 60 100 140<br />

TEMPERATURE (°C)<br />

MAX5541-03<br />

1.0<br />

0.8<br />

INTEGRAL NONLINEARITY<br />

vs. TEMPERATURE<br />

MAX5541-04<br />

1.0<br />

0.8<br />

DIFFERENTIAL NONLINEARITY<br />

vs. TEMPERATURE<br />

MAX5541-05<br />

1.0<br />

0.8<br />

GAIN ERROR<br />

vs. TEMPERATURE<br />

MAX5541-06<br />

0.6<br />

0.6<br />

0.6<br />

INL (LSB)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-INL<br />

+INL<br />

DNL (LSB)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-DNL<br />

+DNL<br />

GAIN ERROR (LSB)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-0.8<br />

-0.8<br />

-1.0<br />

-60 -20 20 60 100 140<br />

-1.0<br />

-60 -20 20 60 100 140<br />

-1.0<br />

-60 -20 20 60 100 140<br />

TEMPERATURE (°C)<br />

TEMPERATURE (°C)<br />

TEMPERATURE (°C)<br />

INL (LSB)<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0<br />

-0.25<br />

-0.50<br />

-0.75<br />

INTEGRAL NONLINEARITY<br />

vs. CODE<br />

MAX5541-07<br />

DNL (LSB)<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0<br />

-0.25<br />

-0.50<br />

-0.75<br />

DIFFERENTIAL NONLINEARITY<br />

vs. CODE<br />

MAX5541-08<br />

REFERENCE CURRENT (µA)<br />

200<br />

<strong>16</strong>0<br />

120<br />

80<br />

40<br />

REFERENCE CURRENT<br />

vs. CODE<br />

MAX5541-09<br />

-1.00<br />

0 10k 20k 30k 40k 50k 60k 70k<br />

-1.00<br />

0 10k 20k 30k 40k 50k 60k 70k<br />

0<br />

0 10k 20k 30k 40k 50k 60k 70k<br />

<strong>DAC</strong> CODE<br />

<strong>DAC</strong> CODE<br />

<strong>DAC</strong> CODE<br />

4 _______________________________________________________________________________________


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

Typical Operating Characteristics (continued)<br />

(V DD = +5V, V REF = +2.5V, T A = +25°C, unless otherwise noted.)<br />

FULL-SCALE STEP RESPONSE<br />

(f SCLK = 10MHz)<br />

MAX5541-10<br />

FULL-SCALE STEP RESPONSE<br />

(f SCLK = 20MHz)<br />

MAX5541-11<br />

MAX5541<br />

OUT<br />

500mV/div<br />

OUT<br />

500mV/div<br />

C L = 13pF, R L = ∞<br />

1µs/div<br />

C L = 13pF, R L = ∞<br />

400ns/div<br />

MAJOR-CARRY OUTPUT GLITCH<br />

DIGITAL FEEDTHROUGH<br />

MAX5541-12<br />

MAX5541-13<br />

CS<br />

5V/div<br />

SCLK<br />

5V/div<br />

OUT<br />

AC-COUPLED<br />

100mV/div<br />

OUT<br />

AC-COUPLED<br />

50mV/div<br />

2µs/div<br />

CODE = 0000 hex<br />

2µs/div<br />

______________________________________________________________Pin Description<br />

PIN<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

NAME<br />

OUT<br />

AGND<br />

REF<br />

CS<br />

SCLK<br />

DIN<br />

DGND<br />

V DD<br />

FUNCTION<br />

<strong>DAC</strong> Output Voltage<br />

Analog Ground<br />

Voltage Reference Input. Connect to external +2.5V reference.<br />

Chip-Select Input<br />

<strong>Serial</strong>-Clock Input. Duty cycle must be between 40% and 60%.<br />

<strong>Serial</strong>-Data Input<br />

Digital Ground<br />

+5V Supply Voltage<br />

_______________________________________________________________________________________ 5


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

MAX5541<br />

Detailed Description<br />

The MAX5541 voltage-output, <strong>16</strong>-<strong>bit</strong> digital-to-analog<br />

converter (<strong>DAC</strong>) offers <strong>16</strong>-<strong>bit</strong> monotonicity with less<br />

than 1LSB differential linearity error. <strong>Serial</strong>-data transfer<br />

minimizes the number of package pins required.<br />

The MAX5541 is composed of two matched <strong>DAC</strong> sections,<br />

with a 12-<strong>bit</strong> inverted R-2R <strong>DAC</strong> forming the 12<br />

LSBs and the 4 MSBs derived from 15 identically<br />

matched resistors. This architecture allows the lowest<br />

glitch energy to be transferred to the <strong>DAC</strong> output on<br />

major-carry transitions. It also decreases the <strong>DAC</strong> output<br />

impedance by a factor of eight compared to a standard<br />

R-2R ladder, allowing unbuffered operation in<br />

medium-load applications. Figure 1 is the Timing<br />

Diagram.<br />

Digital Interface<br />

The MAX5541 digital interface is a standard 3-wire connection<br />

compatible with SPI/QSPI/MICROWIRE interfaces.<br />

The chip-select input (CS) frames the serial data<br />

loading at the data input pin (DIN). Immediately following<br />

CS’s high-to-low transition, the data is shifted<br />

synchronously and latched into the input register on the<br />

rising edge of the serial-clock input (SCLK). After <strong>16</strong><br />

data <strong>bit</strong>s have been loaded into the serial input register,<br />

it transfers its contents to the <strong>DAC</strong> latch on CS’s<br />

low-to-high transition (Figure 2). Note that if CS does<br />

not remain low during the entire <strong>16</strong> SCLK cycles, data<br />

will be corrupted. In this case, reload the <strong>DAC</strong> latch<br />

with a new <strong>16</strong>-<strong>bit</strong> word.<br />

External Reference<br />

The MAX5541 operates with external voltage references<br />

from 2V to 3V. The reference voltage determines<br />

the <strong>DAC</strong>’s full-scale output voltage.<br />

Power-On Reset<br />

The MAX5541 has a power-on reset circuit to set the<br />

<strong>DAC</strong>’s output to 0V in unipolar mode when V DD is first<br />

applied. This ensures that unwanted <strong>DAC</strong> output voltages<br />

will not occur immediately following a system<br />

power-up, such as after power loss. In bipolar mode,<br />

the <strong>DAC</strong> output is set to -V REF .<br />

CS<br />

t CSH1<br />

t CSS1<br />

t CSHO<br />

t CSSO<br />

t CH<br />

t CL<br />

SCLK<br />

;;;;;;;;;<br />

t DS<br />

t DH<br />

DIN D15 D14 D0<br />

Figure 1. Timing Diagram<br />

CS<br />

SCLK<br />

<strong>DAC</strong><br />

UPDATED<br />

; ; ;;<br />

DIN<br />

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0<br />

MSB<br />

Figure 2. 3-Wire Interface Timing Diagram<br />

LSB<br />

6 _______________________________________________________________________________________


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

Applications Information<br />

Reference and Analog Ground Inputs<br />

The MAX5541 operates with external voltage references<br />

from 2V to 3V, and maintains <strong>16</strong>-<strong>bit</strong> performance with<br />

proper reference selection and application. Ideally, the<br />

reference’s temperature coefficient should be less than<br />

0.4ppm/°C to maintain <strong>16</strong>-<strong>bit</strong> accuracy to within 1LSB<br />

over the commercial (0°C to +70°C) temperature range.<br />

Since this converter is designed as an inverted R-2R<br />

voltage-mode <strong>DAC</strong>, the input resistance seen by the<br />

voltage reference is code dependent. The worst-case<br />

input-resistance variation is from 11.5kΩ (at code 8555<br />

hex) to 200kΩ (at code 0000 hex). The maximum<br />

change in load current for a 2.5V reference is 2.5V/<br />

11.5kΩ = 217µA; therefore, the required load regulation<br />

is 7ppm/mA for a maximum error of 0.1LSB. This implies<br />

a reference output impedance of 60kΩ) without degradation of INL or DNL; only<br />

the gain error is increased by externally loading the<br />

<strong>DAC</strong> output.<br />

External Output Buffer Amplifier<br />

In unipolar mode, the output amplifier is used in a voltage-follower<br />

connection. The <strong>DAC</strong>’s output resistance<br />

is constant and is independent of input code; however,<br />

the output amplifier’s input impedance should still be as<br />

high as possible to minimize gain errors. The <strong>DAC</strong>’s<br />

output capacitance is also independent of input code,<br />

thus simplifying stability requirements on the external<br />

amplifier.<br />

In single-supply applications, precision amplifiers with<br />

input common-mode ranges including AGND are available;<br />

however, their output swings do not normally<br />

include the negative rail (AGND) without significant performance<br />

degradation. A single-supply op amp, such<br />

as the MAX495, is suitable if the application does not<br />

use codes near zero.<br />

Since the LSBs for a <strong>16</strong>-<strong>bit</strong> <strong>DAC</strong> are extremely small<br />

(38.15µV for V REF = 2.5V), pay close attention to the<br />

external amplifier’s input specification. The input offset<br />

voltage can degrade the zero-scale error and might<br />

require an output offset trim to maintain full accuracy if<br />

the offset voltage is greater than 1/2LSB. Similarly, the<br />

input bias current multiplied by the <strong>DAC</strong> output resistance<br />

(typically 6.25kΩ) contributes to the zero-scale<br />

error. Temperature effects also must be taken into consideration.<br />

Over the commercial temperature range, the<br />

offset voltage temperature coefficient (referenced to<br />

+25°C) must be less than 0.42µV/°C to add less than<br />

1/2LSB of zero-scale error. The external amplifier’s<br />

input resistance forms a resistive divider with the <strong>DAC</strong><br />

output resistance, which results in a gain error. To contribute<br />

less than 1/2LSB of gain error, the input resistance<br />

typically must be greater than:<br />

1 ⎡ 1 ⎤<br />

6.25kΩ<br />

/ ⎢ ⎥ 205MΩ<br />

2 14<br />

⎣⎢<br />

2 ⎦⎥ =<br />

The settling time is affected by the buffer input capacitance,<br />

the <strong>DAC</strong>’s output capacitance, and PC board<br />

capacitance. The typical <strong>DAC</strong> output voltage settling<br />

time is 1µs for a full-scale step. Settling time can be significantly<br />

less for smaller step changes. Assuming a<br />

single time-constant exponential settling response, a<br />

full-scale step takes 12 time constants to settle to within<br />

1/2LSB of the final output voltage. The time constant is<br />

equal to the <strong>DAC</strong> output resistance multiplied by the<br />

total output capacitance. The <strong>DAC</strong> output capacitance<br />

is typically 10pF. Any additional output capacitance will<br />

increase the settling time.<br />

MAX5541<br />

_______________________________________________________________________________________ 7


Low-Cost, +5V, <strong>Serial</strong>-Input,<br />

Voltage-Output, <strong>16</strong>-Bit <strong>DAC</strong><br />

MAX5541<br />

The external buffer amplifier’s gain-bandwidth product<br />

is important because it increases the settling time by<br />

adding another time constant to the output response.<br />

The effective time constant of two cascaded systems,<br />

each with a single time-constant response, is approximately<br />

the root square sum of the two time constants.<br />

The <strong>DAC</strong> output’s time constant is 1µs / 12 = 83ns,<br />

ignoring the effect of additional capacitance. If the time<br />

constant of an external amplifier with 1MHz bandwidth<br />

is 1 / 2π (1MHz) = 159ns, then the effective time constant<br />

of the combined system is:<br />

( ) + ( )<br />

⎡ 2 2⎤<br />

⎢ 96ns 159ns ⎥ 186ns<br />

⎣<br />

⎢<br />

⎦<br />

⎥ =<br />

This suggests that the settling time to within 1/2LSB of<br />

the final output voltage, including the external buffer<br />

amplifier, will be approximately 12 • 180ns = 2.15µs.<br />

Digital Inputs and Interface Logic<br />

The digital interface for the <strong>16</strong>-<strong>bit</strong> <strong>DAC</strong> is based on a 3-<br />

wire standard that is SPI/QSPI/MICROWIRE compatible.<br />

The three digital inputs (CS, DIN, and SCLK) load<br />

the digital input data serially into the <strong>DAC</strong>.<br />

All of the digital inputs include Schmitt-trigger buffers to<br />

accept slow-transition interfaces. This means that optocouplers<br />

can interface directly to the MAX5541 without<br />

additional external logic. The digital inputs are TTL/<br />

CMOS-logic compatible.<br />

Unipolar Configuration<br />

Figure 3 shows the MAX5541 configured for unipolar<br />

operation with an external op amp. The op amp is set for<br />

unity gain, and Table 1 shows the codes for this circuit.<br />

Table 1. Unipolar Code Table<br />

<strong>DAC</strong> LATCH CONTENTS<br />

MSB<br />

LSB<br />

1111 1111 1111 1111<br />

1000 0000 0000 0000<br />

0000 0000 0000 0001<br />

0000 0000 0000 0000<br />

V REF • (65,535 / 65,536)<br />

V REF • (32,768 / 65,536) = 1/ 2 V REF<br />

V REF • (1 / 65,536)<br />

0V<br />

ANALOG OUTPUT, V OUT<br />

Power-Supply Bypassing and<br />

Ground Management<br />

For optimum system performance, use PC boards with<br />

separate analog and digital ground planes. Wire-wrap<br />

boards are not recommended. Connect the two ground<br />

planes together at the low-impedance power-supply<br />

source. Connect DGND and AGND together at the IC.<br />

The best ground connection can be achieved by connecting<br />

the <strong>DAC</strong>’s DGND and AGND pins together and<br />

connecting that point to the system analog ground<br />

plane. If the <strong>DAC</strong>’s DGND is connected to the system<br />

digital ground, digital noise may get through to the<br />

<strong>DAC</strong>’s analog portion.<br />

Bypass V DD with a 0.1µF ceramic capacitor connected<br />

between V DD and AGND. Mount it with short leads<br />

close to the device. Ferrite beads can also be used to<br />

further isolate the analog and digital power supplies.<br />

TRANSISTOR COUNT: 2209<br />

SUBSTRATE CONNECTED TO DGND<br />

Chip Information<br />

+5V<br />

+2.5V<br />

10µF<br />

0.1µF<br />

0.1µF<br />

MC68XXXX<br />

V DD<br />

REF<br />

(REFS)<br />

PCS0<br />

MOSI<br />

SCLK<br />

CS<br />

DIN<br />

SCLK<br />

MAX5541<br />

OUT<br />

MAX495<br />

EXTERNAL OP AMP<br />

UNIPOLAR<br />

OUT<br />

DGND<br />

AGND_<br />

Figure 3. Typical Operating Circuit<br />

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are<br />

implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.<br />

8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600<br />

© 1999 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!