14.03.2014 Views

Design Analysis of an Electric Induction Furnace for ... - AU Journal

Design Analysis of an Electric Induction Furnace for ... - AU Journal

Design Analysis of an Electric Induction Furnace for ... - AU Journal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AU</strong> J.T. 9(2): 83-88 (Oct. 2005)<br />

Similarly,<br />

Qsh = MC m<br />

θ<br />

sh<br />

.................................12<br />

where, C m = average heat capacity <strong>of</strong> molten<br />

Aluminum, (= 992J/kg K);<br />

θ sh = amount <strong>of</strong> superheat temperature,<br />

taken as 40°C.<br />

<strong>an</strong>d,<br />

Q<br />

s<br />

= K<br />

sGs<br />

.......................................13<br />

where, K s = qu<strong>an</strong>tity <strong>of</strong> slag <strong>for</strong>med in (kg),<br />

taken as 8% <strong>of</strong> furnace capacity;<br />

G s = heat energy <strong>for</strong> slag = 18kJ/kg.<br />

Total heat energy induced (Hammond,<br />

1978), in charge due to eddy current is given<br />

by:<br />

3 2 2 4<br />

π f H<br />

mBmaxdm<br />

Q<br />

ec<br />

=<br />

.................. 14<br />

8ρ<br />

where, f = frequency <strong>of</strong> power supply,<br />

50Hz;<br />

B max = maximum flux density, H;<br />

ρ = resistivity <strong>of</strong> charge metal, ( <strong>for</strong><br />

aluminum, ρ = 2.83 x 10 -8 Ωm).<br />

There<strong>for</strong>e,<br />

8ρQec<br />

Bmax<br />

=<br />

....................15<br />

3 2 4<br />

π f d<br />

m<br />

H<br />

m<br />

Also<br />

Qth<br />

Qec = ........................................ 16<br />

t<br />

where, t = time in seconds to attain<br />

maximum flux.<br />

The allowable current density in the<br />

inductor is given by:<br />

I<br />

J = ............................................... 17<br />

A t<br />

(J r<strong>an</strong>ges from 20 to 40A/mm 2 ).<br />

where, I = current in inductor in amperes, A;<br />

A t = cross sectional area <strong>of</strong> conducting<br />

tube (mm 2 ), take external diameter <strong>of</strong><br />

inductor coil, d t2 = 8mm <strong>an</strong>d internal<br />

diameter <strong>of</strong> inductor coil, d t1 = 6mm.<br />

The number <strong>of</strong> turns <strong>of</strong> the inductor c<strong>an</strong><br />

be determined from:<br />

μ NI<br />

B<br />

r<br />

μ<br />

max<br />

= o<br />

.....................................<br />

L<br />

where, N = number <strong>of</strong> turns <strong>of</strong> inductor coil;<br />

I = current in coil in amperes, A;<br />

18<br />

L = H in = length <strong>of</strong> coil in metres, m;<br />

μ o = permeability <strong>of</strong> free space = 4 π x<br />

10 -7 Hm -1 ;<br />

μ r = relative permeability <strong>of</strong> charge<br />

material, (<strong>for</strong> non-magnetic material μ r = 1).<br />

There<strong>for</strong>e,<br />

Bmax<br />

L<br />

N = ........................................... 19<br />

I<br />

μ o<br />

The resist<strong>an</strong>ce <strong>of</strong> the copper coil inductor<br />

at ambient temperature is given by:<br />

ρ<br />

cl<br />

Rθ o<br />

= .......................................... 20<br />

A<br />

t<br />

where, ρ c = resistivity <strong>of</strong> copper<br />

=1.72 x 10 -8 Ωm at 25°C;<br />

l = total length <strong>of</strong> copper tube, m;<br />

= πD in N<br />

as:<br />

Resist<strong>an</strong>ce at <strong>an</strong>y temperature θ is given<br />

R<br />

θ<br />

= R<br />

1 + αθ ( θ − θ )]<br />

θ<br />

[<br />

o<br />

o o<br />

.................. 21<br />

where, αθ o = temperature coefficient <strong>of</strong> copper<br />

at 25°C;<br />

= 3.9 x 10 -3 K -1 .<br />

Coil loss due to resist<strong>an</strong>ce is:<br />

2<br />

P c<br />

= I ...........................................22<br />

R θ<br />

Heat loss through conduction (Shrets et<br />

al. 1987), from furnace walls to copper coil:<br />

πH<br />

m<br />

( θ<br />

2<br />

− θ )<br />

QL<br />

=<br />

1 1 d<br />

2 1 Din<br />

1 d3<br />

[ ln + ln + ln ]<br />

2 λzi<br />

Dc<br />

λas<br />

d<br />

2<br />

λcu<br />

Din<br />

....................................... 23<br />

where, λ = thermal conductivity, with<br />

subscripts <strong>for</strong> zircon, asbestos, <strong>an</strong>d copper<br />

respectively;<br />

λ zi = 2.093w/m K; λ as = 0.117w/ m K;<br />

<strong>an</strong>d λ cu = 380w/m K;<br />

d 2 = outer diameter <strong>of</strong> crucible = D c +<br />

2B r , m;<br />

d 3 = inductor diameter surrounding<br />

crucible + 2 thickness <strong>of</strong> coil, m;<br />

86

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!