14.03.2014 Views

Design Analysis of an Electric Induction Furnace for ... - AU Journal

Design Analysis of an Electric Induction Furnace for ... - AU Journal

Design Analysis of an Electric Induction Furnace for ... - AU Journal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AU</strong> J.T. 9(2): 83-88 (Oct. 2005)<br />

casting. Since this furnace is <strong>of</strong> small capacity,<br />

a m<strong>an</strong>ually operated tilting mech<strong>an</strong>ism is<br />

adopted. The furnace is hinged on at the spout<br />

edge with a shaft <strong>an</strong>d bearings. At one side to<br />

the bearing is pinion <strong>an</strong>d gear system to give a<br />

gear reduction, so that when the h<strong>an</strong>dle is<br />

turned clockwise, the furnace is tilted to<br />

achieve a maximum <strong>an</strong>gle <strong>of</strong> 90 degrees <strong>for</strong><br />

complete pouring <strong>of</strong> the molten metal.<br />

Geometrical parameters<br />

<strong>Design</strong> <strong>Analysis</strong><br />

The <strong>an</strong>alysis is based on a 10kg capacity.<br />

The shape <strong>of</strong> the crucible is cylindrical. The<br />

internal diameter <strong>of</strong> the crucible <strong>an</strong>d the height<br />

<strong>of</strong> melt is determined by the furnace capacity<br />

(melt volume), with considerations that the<br />

ratio:<br />

H<br />

m<br />

= ( 1.6 − 2.0)........................... 1<br />

Dc<br />

where H m = height <strong>of</strong> molten metal, m;<br />

D c = diameter <strong>of</strong> crucible, m;<br />

Volume <strong>of</strong> metal charge is given by:<br />

2<br />

πd<br />

m<br />

H<br />

m<br />

Vm<br />

= ............................ 2<br />

4<br />

where d m = diameter <strong>of</strong> molten metal = D c .<br />

The thickness <strong>of</strong> the refractory lining<br />

(Voskoboinikov, et al. 1985), <strong>of</strong> the crucible in<br />

the middle <strong>of</strong> the crucible c<strong>an</strong> determine from<br />

the relation<br />

B r<br />

= 0.084<br />

T ........................................ 3<br />

where T = furnace capacity in tonnes.<br />

The internal diameter <strong>of</strong> the inductor c<strong>an</strong><br />

be calculated from the equation:<br />

D<br />

in<br />

= Dc<br />

+ 2(<br />

Br<br />

+ Bins<br />

) ...........................4<br />

where BBr = thickness <strong>of</strong> refractory lining, m;<br />

B ins = thickness <strong>of</strong> insulation layer.<br />

(B ins is such that 5 ≤ B ins ≤ 6 [mm]).<br />

Height <strong>of</strong> inductor coil is given by:<br />

H<br />

in<br />

= ( 1.1 −1.2)<br />

H<br />

m<br />

..................................5<br />

The height <strong>of</strong> furnace from bottom <strong>of</strong> the bath<br />

to the pouring spout is:<br />

H<br />

f<br />

= H<br />

m<br />

+ hs<br />

+ bt<br />

..................................6<br />

where, h s = height <strong>of</strong> slag <strong>for</strong>med, m;<br />

b t = thickness <strong>of</strong> bottom refractory<br />

lining, (b t = 25.5mm <strong>for</strong> 10kg capacity).<br />

The slag height is calculated thus:<br />

4V<br />

s<br />

hs<br />

= ..............................................7<br />

2<br />

πdm<br />

where, V s = volume <strong>of</strong> slag in one heat, taken<br />

as 8% <strong>of</strong> total charge, m 3 .<br />

Height <strong>of</strong> inductor holding poles:<br />

H p<br />

= H in<br />

+ 2T<br />

f<br />

.....................................8<br />

where, T f = fl<strong>an</strong>ge thickness, taken as 3mm.<br />

Heat Energy <strong>an</strong>d <strong>Electric</strong>al Parameters<br />

The required theoretical heat energy<br />

(Ilori 1991), consumed during the first period<br />

<strong>of</strong> melt is given by:<br />

Q = Q + Q + Q + Q − Q ............9<br />

th<br />

m<br />

sh<br />

where, Q m = amount <strong>of</strong> heat energy to<br />

melt 10kg <strong>of</strong> charge material, J;<br />

Q sh = amount <strong>of</strong> heat energy to<br />

superheat the melt to temperature<br />

<strong>of</strong> superheat, J;<br />

Q s = heat required to melt slag<br />

<strong>for</strong>ming materials, J;<br />

Q en = energy required <strong>for</strong><br />

endothermic process, J;<br />

Q ex = amount <strong>of</strong> heat energy<br />

liberated to the surroundings as a result<br />

<strong>of</strong> exothermic reactions, J.<br />

Theoretically Q en = Q ex .<br />

Where<br />

Q<br />

th<br />

= Qm<br />

+ Qsh<br />

+ Qs<br />

........................... 10<br />

<strong>an</strong>d,<br />

Q = MC θ − θ ) + L ......................11<br />

m<br />

(<br />

1 0 pt<br />

where, M = mass <strong>of</strong> charge, kg;<br />

C = specific heat capacity <strong>of</strong> charge<br />

material, (<strong>for</strong> aluminum, C = 1100J/kg K);<br />

L pt = amount <strong>of</strong> heat to accomplish phase<br />

tr<strong>an</strong>s<strong>for</strong>mation, (<strong>for</strong> pure aluminum L pt = 0, no<br />

phase tr<strong>an</strong>s<strong>for</strong>mation);<br />

θ 1 = melting temperature <strong>of</strong> charge, (<strong>for</strong><br />

aluminum θ 1 = 660°C);<br />

θ 0 = ambient temperature, 25°C;<br />

s<br />

en<br />

ex<br />

85

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!