NEUTRON STAR COOLING

NEUTRON STAR COOLING NEUTRON STAR COOLING

13.03.2014 Views

NEUTRON STAR COOLING D.G. Yakovlev, O.Y. Gnedin*, M.E. Gusakov, A.D. Kaminker, K.P. Levenfish, A.Y. Potekhin Ioffe Physical Technical Institute, St.-Petersburg, Russia *Space Telescope Science Institute, Baltimore, USA Introduction Theory Theory versus observations Conclusions and the end MSU, September, 2004,

<strong>NEUTRON</strong> <strong>STAR</strong> <strong>COOLING</strong><br />

D.G. Yakovlev, O.Y. Gnedin*, M.E. Gusakov, A.D. Kaminker,<br />

K.P. Levenfish, A.Y. Potekhin<br />

Ioffe Physical Technical Institute, St.-Petersburg, Russia<br />

*Space Telescope Science Institute, Baltimore, USA<br />

Introduction<br />

Theory<br />

Theory versus observations<br />

Conclusions and the end<br />

MSU, September, 2004,


Chandra<br />

image of<br />

the Vela<br />

pulsar<br />

wind nebula<br />

NASA/PSU<br />

Pavlov et al


Basic concepts of the cooling theory<br />

Thermal balance:<br />

dT<br />

C( T ) = −Lν<br />

( T ) − Lγ<br />

( Ts<br />

)<br />

dt<br />

Photon luminosity:<br />

Heat blanketing<br />

envelope:<br />

Heat content:<br />

2 4<br />

L = γ<br />

4πσR<br />

Ts<br />

T = s<br />

Ts<br />

(T )<br />

48 2<br />

U T<br />

~ 10 T<br />

9<br />

ergs<br />

Neutrino emission: slow and/or fast?<br />

Main cooling regulators:<br />

1. EOS<br />

2. Neutrino emission<br />

3. Superfluidity<br />

4. Magnetic fields<br />

5. Light elements on the surface


HISTORY<br />

Old<br />

Stabler 1960<br />

Chiu 1964<br />

Morton 1964<br />

Chiu & Salpeter 1964<br />

Bahcall & Wolf 1965<br />

Tsuruta & Cameron 1966<br />

New<br />

Lattimer, Pethick, Prakash &<br />

Haensel 1991<br />

Page & Applegate 1992<br />

Schaab, Voskresensky,Sedrakian,<br />

Weber & Weigel 1997<br />

Page 1998


Direct Urca (Durca) process<br />

Lattimer, Pethick, Prakash, Haensel (1991)<br />

n → p + e + ,<br />

ν e p + e → n +<br />

n → n +ν + ν<br />

e<br />

Q = ∫ w<br />

→<br />

ε f (1 − f )(1 − f dΓ<br />

e<br />

ν<br />

2<br />

i f ν n p e)<br />

e<br />

p<br />

e<br />

Q<br />

=<br />

457π<br />

G<br />

10080<br />

2<br />

(1 + 3g<br />

2<br />

A<br />

)<br />

m m<br />

∗ ∗<br />

n p<br />

10 3<br />

h<br />

c<br />

m<br />

∗<br />

e<br />

T<br />

6<br />

Θ<br />

npe<br />

n<br />

ν e<br />

Q<br />

~ 3<br />

Threshold:<br />

27 6<br />

−3<br />

−1<br />

× 10 T9<br />

erg cm s<br />

p +<br />

ρ > ~<br />

2ρ<br />

Fn<br />

≤ pFp<br />

pFe<br />

0<br />

Similar processes with muons : produce ν<br />

Similar processes with hyperons, e.g.:<br />

L ν<br />

µ<br />

n → Λ<br />

46<br />

~ 10<br />

T<br />

6<br />

9<br />

erg<br />

s<br />

−1<br />

in the inner cores<br />

of massive stars


Inner cores of massive neutron stars:<br />

Nucleons,<br />

hyperons<br />

Pion<br />

condensates<br />

Kaon<br />

condensates<br />

n →<br />

p + e + ν<br />

p + e → n + ν<br />

n~<br />

→ ~ p + e + ν<br />

e<br />

~ p + e → n~<br />

+ ν<br />

q~<br />

→ q~<br />

+ e + ν<br />

e<br />

q~<br />

+ e → q~<br />

+ ν<br />

e<br />

e<br />

e<br />

e<br />

27 6 erg<br />

Q ~ 3 × 10 T9<br />

3<br />

cm s<br />

24 − 26 6 erg<br />

Q ~ 10 T9<br />

3<br />

cm s<br />

23 − 24 6 erg<br />

Q ~ 10 T9<br />

3<br />

cm s<br />

L<br />

L<br />

L<br />

ν<br />

ν<br />

ν<br />

~ 10<br />

~ 10<br />

~ 10<br />

46<br />

T<br />

42 − 44<br />

41−<br />

42<br />

6<br />

9<br />

T<br />

T<br />

6<br />

9<br />

6<br />

9<br />

erg<br />

s<br />

erg<br />

s<br />

erg<br />

s<br />

Quark<br />

matter<br />

d → u + e + ν<br />

u + e → d + ν<br />

e<br />

e<br />

23 − 24 6 erg<br />

Q ~ 10 T9<br />

3<br />

cm<br />

s<br />

L<br />

ν<br />

~ 10<br />

41−42<br />

T<br />

6<br />

9<br />

erg<br />

s<br />

Everywhere in neutron star cores<br />

Modified<br />

Urca (Murca)<br />

n + N → p + e + N<br />

p + e + N → n + N<br />

+ ν<br />

+ ν<br />

e<br />

e<br />

20 − 22 8 erg<br />

Q ~ 10 T9<br />

3<br />

cm<br />

s<br />

L<br />

ν<br />

38<br />

~ 10<br />

−40<br />

T<br />

8<br />

9<br />

erg<br />

s<br />

Bremsstrahlung<br />

N<br />

+ N → N + N +ν +ν<br />

18 − 20 8 erg<br />

Q ~ 10 T9<br />

3<br />

cm<br />

s<br />

L<br />

ν<br />

36<br />

~ 10<br />

−38<br />

T<br />

8<br />

9<br />

erg<br />

s<br />

ν e, ν µ<br />

, ν τ


Effects of superfluidity<br />

Cooper pairing at T


Welcome to the Urca World<br />

1. Gamow and Shoenberg: Casino da Urca in Rio de Janeiro<br />

Neutrino theory of stellar collapse, Phys. Rev. 59, 539, 1941:<br />

Unrecordable cooling agent<br />

2. Kseniya Levenfish: St.-Petersburg<br />

Direct Urca -- Durca<br />

Modified Urca -- Murca


OBSERVATIONS AND BASIC <strong>COOLING</strong> CURVE<br />

Nonsuperfluid star<br />

Murca neutrino emission:<br />

slow cooling<br />

Relaxation<br />

Neutrino cooliing<br />

stage<br />

Photon<br />

stage<br />

Yakovlev & Pethick 2004


NONSUPERFLUID <strong>STAR</strong>S: MURCA VERSUS DURCA<br />

Yakovlev & Pethick 2004


Neutron stars with proton superfluidity in the cores


Neutron stars with proton and mild neutron superfluidities in the cores<br />

Harmful<br />

mild<br />

neutron<br />

pairing


SUPERFLUID NUCLEON <strong>STAR</strong>S WITHOUT DURCA<br />

Gusakov, Kaminker, Yakovlev, Gnedin 2004<br />

Page, Lattimer, Prakash, Steiner 2004 –<br />

minimal cooling model<br />

EOS: Douchin & Haensel 2001<br />

Useful mild neutron<br />

pairing


TESTING <strong>COOLING</strong> MODELS WITHOUT DURCA<br />

Gusakov, Kaminker, Yakovlev, Gnedin 2004


SUPERFLUID <strong>NEUTRON</strong> <strong>STAR</strong>S WITHOUT DURCA<br />

BUT WITH ACCRETED ENVELOPES<br />

Kaminker, Gusakov, Yakovlev, Gnedin 2004


SIMILAR<br />

THEORY<br />

OF SXRTs<br />

Cooper pairing of<br />

neutrons<br />

Nucleon Durca<br />

pi-condensate<br />

K-condensate


THEORY<br />

versus<br />

OSERVA-<br />

TIONS<br />

Cooper pairing of<br />

neutrons<br />

pi-condensate<br />

Nucleon<br />

Nucleon<br />

Durca<br />

Durca<br />

K-condensate


Theory of thermal<br />

states of SXRTs<br />

Yakovlev, Levenfish<br />

& Haensel, 2003


THEORY<br />

VERSUS<br />

OBSERVATIONS


LEFT BEHIND<br />

Sophisticated EOSs and models: strange stars, color superconductivity,<br />

localized protons, etc<br />

Cooling of young stars (thermal relaxation stage, t1 Myr; reheating mechanisms) – Alpar et al. 1987,<br />

Shibazaki & Lamb 1989<br />

Cooling of neutron stars with magnetic fields and accreted envelopes – thermal<br />

evolution combined with the evolution of magnetic field and burning of<br />

light elements in the surface layers<br />

Symmetry of cooling behavior with respect to exchanging proton and neutron<br />

superfluidities – Kaminker et al. 2004<br />

The effects of crustal superfluidity<br />

Cooling of accreting neutron stars – e.g., in soft X-ray transients with deep<br />

crustal heating of accreted matter – Haensel & Zdunik 1990, Brown et al. 1998


CONCLUSIONS<br />

There are several very different cooling scenarios. All require enhanced neutrino<br />

cooling and can explain the observations.<br />

All scenarios predict the acceleration of cooling with increasing neutron-star<br />

mass – mass ordering<br />

The cooling of middle-aged stars is strongly regulated by EOS and superfluidity<br />

There should be no mild superfluidity in outer neutron star cores<br />

New observations of the coldest and hottest neutron stars are most important<br />

Other observational evidences (cold isolated neutron stars; transiently accreting<br />

neutron stars, measurements of masses and radii, spectral lines, etc) would<br />

be helpful<br />

New theoretical results (EOS, superfluidity, etc) are welcome


THE END

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!