13.03.2014 Views

PYCNONUCLEAR REACTIONS in dense stellar matter

PYCNONUCLEAR REACTIONS in dense stellar matter

PYCNONUCLEAR REACTIONS in dense stellar matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PYCNONUCLEAR</strong> <strong>REACTIONS</strong><br />

<strong>in</strong> <strong>dense</strong> <strong>stellar</strong> <strong>matter</strong><br />

D.G. Yakovlev<br />

Ioffe Physical Technical Institute, St.-Petersburg, Russia<br />

Ma<strong>in</strong> collaborators:<br />

L. Gasques – JINA, Notre Dame<br />

P. Haensel – CAMK, Warsaw<br />

K.P. Levenfish – Ioffe Institute<br />

M. Wiescher – JINA, Notre Dame<br />

Talk outl<strong>in</strong>e:<br />

• Thermonuclear reactions<br />

• Pycnonuclear reactions<br />

• From thermo to pycno<br />

• Applications<br />

Notre Dame, JINA, August 21, 2007


THERMONUCLEAR <strong>REACTIONS</strong><br />

Z<br />

1<br />

+ Z2<br />

→ Zc<br />

→<br />

...<br />

Reaction rate:<br />

n1n2<br />

R =<br />

1+<br />

δ<br />

12<br />

vσ<br />

reactions<br />

cm<br />

3<br />

s<br />

Z 1 Z 2<br />

∞<br />

∫<br />

0<br />

dv<br />

v<br />

3<br />

e<br />

−E / T<br />

σ<br />

( E)<br />

S(<br />

E)<br />

P(<br />

E)<br />

σ −η<br />

E<br />

( E) = , P(<br />

E)<br />

= exp( )<br />

a<br />

2 Z1Z<br />

η ( E)<br />

= 2 dr<br />

p(<br />

r)<br />

π<br />

h<br />

∫ =<br />

hv<br />

b<br />

2<br />

e<br />

2


2E<br />

pk<br />

S(<br />

E<br />

pk<br />

)<br />

vσ = 4<br />

exp -τ<br />

3M<br />

T<br />

τ =<br />

3<br />

E pk<br />

T<br />

2<br />

⎛ 27π<br />

MZ<br />

=<br />

⎜<br />

⎝ 2Th<br />

2<br />

1<br />

2<br />

Z<br />

2<br />

2<br />

e<br />

4<br />

⎞<br />

⎟<br />

⎠<br />

1/3<br />

( )<br />

>> 1<br />

Reaction rate R depends ma<strong>in</strong>ly on T<br />

History<br />

1938<br />

Test<br />

Example<br />

ρ =<br />

10 9<br />

g cm -3<br />

,<br />

G. Gamow, H. Bethe, C. Critchfield, E. Salpeter,<br />

C. Von Weizsacker, A. Cameron, W. Fowler, G. Rivers<br />

Stellar evolution<br />

Carbon burn<strong>in</strong>g:<br />

12 12 24<br />

C + C ⇒<br />

*<br />

Mg ⇒ ...<br />

t = n / i<br />

R<br />

T=10 9 K t~ 1 m<strong>in</strong><br />

= burn<strong>in</strong>g time<br />

Nobel Prize, 1967<br />

T=10 8 K t~10 36 yr No burn<strong>in</strong>g at low T!


Coulomb lattice of nuclei, T=0<br />

Zero-po<strong>in</strong>t vibrations,<br />

ω ~ ω =<br />

p<br />

2<br />

4πZ<br />

e<br />

m<br />

WKB tunnel<strong>in</strong>g:<br />

<strong>PYCNONUCLEAR</strong> <strong>REACTIONS</strong><br />

2<br />

h ω,<br />

r ~<br />

S(<br />

E)<br />

P(<br />

E)<br />

σ −η<br />

E<br />

n<br />

( E) = , P(<br />

E)<br />

= exp( )<br />

i<br />

E<br />

~<br />

0<br />

En<br />

= hω<br />

⎛<br />

⎜n+<br />

⎝<br />

h<br />

mω<br />

=ion plasma frequency<br />

1<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

d<br />

η<br />

a<br />

2<br />

⎛ d ⎞<br />

=<br />

h<br />

∫ ⎜ ⎟<br />

⎝ r<br />

b<br />

0 ⎠<br />

( E) dr<br />

p(<br />

r)<br />

= α⎜<br />

⎟ ∝<br />

1/ 6<br />

α ~ 1 =<br />

?<br />

2<br />

1<br />

ρ<br />

The reaction rate exponentially<br />

<strong>in</strong>creases with grow<strong>in</strong>g density!


DENSITY DEPENDENCE OF CARBON BURNING RATES<br />

t burn<br />

~10 75 yrs<br />

t burn<br />

~0.1 s


Gamow and Wildhack


Later History<br />

Zeldovich (1957)<br />

Cameron (1959) – “pycnos”<br />

Kirzhnits (1960)<br />

Kopyshev (1964)<br />

Wolf (1965)<br />

Van Horn (1966)<br />

Salpeter & Van Horn (1969)<br />

Schramm & Koon<strong>in</strong> (1990)


PHYSICAL CONDITIONS<br />

Z<br />

1<br />

+ Z2<br />

→ Zc<br />

→<br />

...<br />

Γ =<br />

T<br />

T<br />

L<br />

p<br />

=<br />

2<br />

Z e<br />

aT<br />

2<br />

2<br />

Z e<br />

a<br />

p<br />

2<br />

= hω<br />

,<br />

⎛ 3 ⎞<br />

, a =<br />

⎜<br />

4πn<br />

⎟<br />

⎝ i ⎠<br />

⇒ Γ = 1;<br />

ω<br />

p<br />

=<br />

T<br />

m<br />

1/3<br />

2<br />

4πZ<br />

e<br />

m<br />

⇒ Γ = 175<br />

i<br />

2<br />

.<br />

n<br />

i


PHYSICAL STATES OF IONS<br />

T<br />

Gas<br />

2 2<br />

Z e<br />

>> a<br />

Γ > 1<br />


FIVE REGIMES OF BURNING IN DENSE MATTER<br />

1 2<br />

Thermonuclear<br />

Classical<br />

Strong<br />

screen<strong>in</strong>g<br />

3<br />

Intermediate<br />

Pycnonuclear<br />

T-enhanced<br />

4 5<br />

T=0


GENERAL OUTLOOK for Carbon Burn<strong>in</strong>g


Applications of pycnonuclear burn<strong>in</strong>g<br />

White dwarfs and neutron stars (particularly, accret<strong>in</strong>g)<br />

Mass density, g cm -3<br />

H<br />

10 6<br />

10 9<br />

10 10<br />

10 12<br />

10 13<br />

He<br />

ASHES<br />

BURN!<br />

C<br />

WDs as SN Ia<br />

NSs: X-ray bursters<br />

NSs: superbursts<br />

Accret<strong>in</strong>g neutron<br />

stars – soft X-ray<br />

transients


CARBON IGNITION CURVE IN WHITE DWARFS<br />

Talk by<br />

David Chamulak


Soft X-ray X<br />

transients<br />

• Active states: L X<br />

= 10 36 -10 39 erg/s<br />

weeks – months – years; X-ray bursts<br />

• Quiescent states: L X = 10 30 –10 34 ergs/s<br />

years - decades<br />

• SXRTs belong to LMXRBs<br />

Donor star: ma<strong>in</strong>-sequence or<br />

subgiant, M ≤ M SUN<br />

• P ORB : a few hours – a few days<br />

• ‹M› ≈ 10 -11 –10 -9 M SUN /yr<br />

.<br />

Brown, Bildsten & Rutledge (1998):<br />

Aql X-1 T S ~ 10 6 K


Accreted Crust<br />

Reactions:<br />

1. Beta captures<br />

2. Neutron emission<br />

and absorption<br />

3. Pycnonuclear<br />

reactions


Accreted crust: Start<strong>in</strong>g from 56 Fe (Haensel & Zdunik 1990)


SUMMARY<br />

• Cold <strong>dense</strong> <strong>matter</strong> undergoes pycnonuclear burn<strong>in</strong>g<br />

• Pycnonuclear burn<strong>in</strong>g is not efficient <strong>in</strong> ord<strong>in</strong>ary stars but can be<br />

important <strong>in</strong> cores of white dwarfs and envelopes of neutron stars<br />

• Applications of pycnonuclear burn<strong>in</strong>g <strong>in</strong>clude:<br />

(a) explosions of white dwarfs as Ia type supernovae<br />

(b) deep crustal heat<strong>in</strong>g of transiently accret<strong>in</strong>g neutron stars<br />

(c) superbursts of accret<strong>in</strong>g neutron stars<br />

• The theory of pycnonuclear burn<strong>in</strong>g is not perfect;<br />

new theories, implementations, observations and theoretical<br />

<strong>in</strong>terpretation are ahead

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!