13.03.2014 Views

Nuclear Astrophysics @ Notre Dame

Nuclear Astrophysics @ Notre Dame

Nuclear Astrophysics @ Notre Dame

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nuclear</strong> <strong>Astrophysics</strong> at <strong>Notre</strong> <strong>Dame</strong><br />

Michael Wiescher<br />

University of <strong>Notre</strong> <strong>Dame</strong><br />

Questions in <strong>Nuclear</strong> <strong>Astrophysics</strong><br />

Experimental Facilities at <strong>Notre</strong> <strong>Dame</strong><br />

Experiments for CNO hydrogen burning<br />

Experiments for stellar helium burning<br />

New techniques for p-process experiments


Goals in experimental<br />

<strong>Nuclear</strong> <strong>Astrophysics</strong><br />

Identify nuclear probes (branching, bottleneck or waiting points)<br />

for determining site specific stellar conditions<br />

stellar evolution processes (H-, He-, C- ... burning)<br />

s-process<br />

(AGB & RGB stars)<br />

rp-process<br />

(novae and XRBs)<br />

Determine global nuclear characteristics (masses, decay<br />

properties, ...) to identify reaction path, determine & probe site<br />

p-process (type I or type II SN ...?)<br />

r-process (type II SN, neutron star mergers, jets ...?)<br />

ν-process (type II SN ....?)


Current challenges<br />

and future facilities<br />

nucleosynthesis in stellar evolution<br />

experiments at low energies ⇒ LENA, LUNA, NSL, UoW …<br />

DUSEL<br />

nucleosynthesis with neutrons<br />

experiments with high n-flux ⇒ FZKarlsruhe, LANSCE<br />

n-ToF, ORELA, SNS<br />

nucleosynthesis in stellar explosion<br />

experiments far of stability ⇒ ANL, HRIBF, ISAC, LLN,<br />

NSCL, RIKEN, REX,<br />

FAIR-GSI, RIA …


Participants in the experimental program in<br />

<strong>Nuclear</strong> <strong>Astrophysics</strong> @ <strong>Notre</strong> <strong>Dame</strong><br />

Research Personnel<br />

Manoel Couder<br />

Joachim Görres<br />

Wolfgang Rapp<br />

Ed Stech<br />

Wan Peng Tan<br />

Michael Wiescher<br />

11 Graduate Students<br />

➱<br />

➱<br />

➱<br />

➱<br />

Mary Beard<br />

Aaron Couture<br />

Jason Daly<br />

Michael Lamey<br />

Paul Le Blanc<br />

Hye-Young Lee<br />

Shawn O’Brien<br />

Annalia Palumbo<br />

Elisabeth Strandberg<br />

Barbara Truett<br />

Claudio Ugalde<br />

4 Undergraduate Students<br />

Nicholas Battafarano<br />

Christoph Bär<br />

James Marquez-Miller<br />

Edward Simpson


Experimental Facilities<br />

Low energy studies at local JN/KN accelerators<br />

Both accelerators have been installed and tested and are<br />

being operated by undergraduate and graduate students.<br />

The accelerators are used for low energy nuclear astrophysics<br />

measurements with focus on stellar hydrogen and helium burning.


Experimental Facilities<br />

Experiments at the FN tandem accelerator and the TwinSol facility<br />

Transfer, scattering, and reaction studies on nuclear astrophysics related topics<br />

p-process measurements in SN-II shock-front environments<br />

Reaction and structure studies for hot CNO and rp-process


Stellar Hydrogen Burning in Massive Stars<br />

Break-Out from the cold CNO cycles<br />

∆E G = 30 -120 keV<br />

Small leakage out of CNO cycle could lead to slow<br />

CNO fuel depletion in massive main sequence stars!


Measurement of 19 F(p,γ) 20 Ne<br />

Handicapped by pile up from strong<br />

19F(p,αγ) background at 6.125 MeV<br />

Single γ spectrum of<br />

the 669 keV resonance<br />

in 19 F(p,γ) 20 Ne


Experimental Sep-Up


Optimized detector design<br />

669 keV<br />

486 keV


Yield Curve for 19 F(p,αγ) and 19 F(p,γ)<br />

3-4 orders of magnitude<br />

difference in resonance yield


19<br />

F(p,γ) 20 Ne excitation curve &<br />

extrapolation to stellar energies<br />

Breit Wigner fit to resonances<br />

and direct capture is based on<br />

previous ωγ strength estimates


S-factor curve<br />

S(E)= σ(E)·E·e 2πη<br />

S 19 F(p,α)<br />

≈1500 MeV-barns<br />

∆E G = 30 -120 keV


Leakage from cold CNO cycles<br />

mass fraction X i<br />

time [s]<br />

time [s]<br />

Losses towards Ne-Na mass range are negligible<br />

Over the entire period of stellar hydrogen burning


Low energy study would provide answer for<br />

T-dependent n-flux for weak s-process<br />

Challenges in He-burning<br />

12<br />

C(α,γ) 16 O – a challenge since 40 years<br />

But also reactions like 18 O(α,γ) 22 Ne and<br />

e.g. 22 Ne(α,γ) 26 Mg, 22 Ne(α,n) 25 Mg<br />

Lack of low energy resonances!<br />

The lowest observed<br />

resonance is at<br />

E R ≈830keV, but<br />

more levels known<br />

…<br />

alpha cluster states


Neutron sources in stellar He burning<br />

Stellar He-burning, n-sources<br />

13<br />

C(α,n) 17 O, 13 C(α,α) 13 C<br />

Is presently being analyzed<br />

14<br />

N (α,γ) 18 F and 18 O (α,γ) 22 Ne<br />

have been completed<br />

Remaining question:<br />

22<br />

Ne(α,γ) 26 Mg<br />

22<br />

Ne(α,n) 25 Mg<br />

New attempt using<br />

the Rhinoceros gas<br />

target combined with<br />

improved detectors.


Questions in 22 Ne+α<br />

Strong low energy resonances<br />

in 22 Ne(α,n) but also strong low<br />

energy resonances in 22 Ne(α,γ)<br />

10.615 MeV<br />

22<br />

Ne+α<br />

11.093 MeV<br />

25<br />

Mg+n<br />

26<br />

Mg<br />

High 22 Ne(α,n) rate causes<br />

rapid conversion of 22 Ne to<br />

26<br />

Mg - 26 Mg(α,n) as n-source?


n-capture measurements at n-ToF<br />

Lead spallation target at CERN ps-booster<br />

ring white n-source with ~150 m flight path<br />

25<br />

Mg(n,γ) time of flight<br />

spectrum of n-unbound<br />

states in 26 Mg<br />

Several n-unbound states below the lowest resonance level<br />

in 22 Ne+α observed, more direct measurements are needed!


Future developments<br />

St. George Separator - STrong Gradient Electromagnetic Online Recoil<br />

separator for capture Gamma ray Experiments<br />

Background Reduction<br />

Inverse kinematics<br />

DUSEL underground<br />

Present accelerators<br />

need replacement<br />

with 6 MV Singletron<br />

Stable beam Accelerator for <strong>Nuclear</strong> <strong>Astrophysics</strong> (St. Ana)


0<br />

0 0.2 0.4 0.6 0.8 1<br />

TIME (s)<br />

p-process<br />

TEMPERATURE (T 9<br />

)<br />

High γ-flux in the O/Ne zone<br />

of pre-supernova star<br />

3<br />

2.5<br />

2<br />

1.5<br />

6<br />

1 0 0.2 0.4 0.6 0.8 1<br />

DENSITY (10 5 ×g/cm 2 )<br />

5<br />

4<br />

3<br />

2<br />

1


X SEED<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -9<br />

10 -10<br />

10 -11<br />

10 -12<br />

Conversion of the initial<br />

s-process abundance<br />

La (57)<br />

Ba (56)<br />

distribution to<br />

Cs (55)<br />

Xe (54)<br />

I (53)<br />

p-nuclei<br />

Te (52)<br />

Sb (51)<br />

Sn (50)<br />

In (49)<br />

Cd (48)<br />

50 75 100 125 150 175 200<br />

MASS NUMBER<br />

/F 0<br />

Pm (61)<br />

Nd (60)<br />

Pr (59)<br />

Ce (58)<br />

48 50 52 54 56 58 60 62 64 66 68<br />

10<br />

1<br />

0.1<br />

Dy (66)<br />

Tb (65)<br />

Gd (64)<br />

Eu (63)<br />

Sm (62)<br />

Se<br />

Kr<br />

Sr<br />

Mo<br />

83<br />

80 82<br />

79<br />

76 78<br />

75<br />

70 72 74<br />

Pd Cd In<br />

Ru<br />

Sn<br />

Sn<br />

Xe<br />

Te<br />

0.01<br />

60 80 100 120 140 160 180 200<br />

MASS NUMBER<br />

Ba<br />

Ce<br />

La<br />

Sm<br />

Gd<br />

98<br />

97<br />

94 96<br />

93<br />

92<br />

91<br />

86 88 90<br />

85<br />

84<br />

Dy<br />

Hf<br />

Yb Os<br />

Ta<br />

Er<br />

W<br />

Pt<br />

Hg<br />

Light p-Nuclei


The (γ,α) photodisintegration<br />

110<br />

Sn(γ,α) 106 Cd<br />

110<br />

Sn(γ,n) 109 Sn<br />

110<br />

Sn(γ,p) 109 In<br />

Rh (45)<br />

Ru (44)<br />

Tc (43)<br />

Mo (42)<br />

Nb (41)<br />

Zr (40)<br />

Y (39)<br />

Feeding of 92,94 Mo<br />

and 96,98 Ru?<br />

Sn (50)<br />

In (49)<br />

Cd (48)<br />

Ag (47)<br />

Pd (46)<br />

Sn (50)<br />

In (49)<br />

Cd (48)<br />

Ag (47)<br />

Pd (46)<br />

Rh (45)<br />

Ru (44)<br />

Tc (43)<br />

Mo (42)<br />

Nb (41)<br />

Zr (40)<br />

Y (39)<br />

75<br />

70 72 74<br />

69<br />

66 68<br />

65<br />

62 64<br />

61<br />

60<br />

59<br />

58<br />

57<br />

Increase of α threshold<br />

near Z,N=50 changes<br />

p-process flow pattern<br />

65<br />

67 69 71 73<br />

75


Measurement by Activation Technique<br />

106<br />

Cd(α,γ) 110 Sn; Q=1.258 MeV<br />

106<br />

Cd(α,n) 109 Sn; Q= - 10.144 MeV<br />

106<br />

Cd(α,p) 109 In; Q= -5.512 MeV<br />

E α = 8 -14 MeV


Two Ge-clover<br />

detector array<br />

Counting Facility


Excitation curves in comparison with<br />

Hauser Feshbach model predictions<br />

106<br />

Cd(α,γ) 110 Sn<br />

106<br />

Cd(α,n) 109 Sn<br />

106<br />

Cd(α,p) 109 In<br />

Considerable deviations between different<br />

HF models and observed cross sections.<br />

Future activities: p-process simulations defined key reactions<br />

Coulomb break-up on RIB p-nuclei<br />

(α,γ) on p-nuclei … AMS method


p-process simulations<br />

Variation of rates<br />

within factor 3<br />

Lu (71)<br />

Yb (70)<br />

Tm (69)<br />

Er (68)<br />

Ho (67)<br />

Dy (66)<br />

Tb (65)<br />

Gd (64)<br />

Eu (63)<br />

Sm (62)<br />

Ir (77)<br />

Os (76)<br />

Re (75)<br />

W (74)<br />

Ta (73)<br />

Hf (72)<br />

68 70 72 74 76 78 80 82 84 86 88 90 92<br />

Bi (83)<br />

Pb (82)<br />

Tl (81)<br />

Hg (80)<br />

Au (79)<br />

Pt (78)<br />

122 124<br />

121<br />

118 120<br />

117<br />

114 116<br />

113<br />

110 112<br />

109<br />

108<br />

107<br />

104 106<br />

103<br />

100 102<br />

99<br />

98<br />

97<br />

94 96<br />

127<br />

126<br />

125<br />

Impact of changes in (γ,α) rates<br />

mainly visible in upper mass range<br />

activation technique not possible


AMS technique<br />

Low-energy<br />

analysing<br />

magnet<br />

Tandem accelerator<br />

Stripper<br />

High-energy<br />

analysing<br />

magnet<br />

Negative ion source<br />

Electrostatic analyser<br />

Accelerator mass spectrometry<br />

∆<br />

E E<br />

If reaction products have no or<br />

only weak characteristic decay<br />

activity, AMS methods can be<br />

applied to separate (radioactive<br />

reaction products: examples:<br />

156<br />

Dy(α,γ) 160 Er or<br />

190<br />

Pt (α,γ) 160 Hg et al.


additional projects<br />

Spectroscopy of threshold levels with TwinSol 15 O (α,γ) 19 Ne<br />

Alpha cluster states in He-burning and αp-process<br />

neutron sources in SN shock-front<br />

Heavy ion fusion studies at sub-Coulomb energies 12 C+ 12 C<br />

Collaboration: ND, York (UK), Edinburgh (UK), ININ (Mexico)<br />

s-process branching points<br />

n-ToF collaboration<br />

Development of recoil separator St. George (JINA)<br />

Development of AMS for p-process (Collon)


Summary<br />

<strong>Nuclear</strong> <strong>Astrophysics</strong> projects at ND are focused on<br />

nucleosynthesis processes near stability:<br />

Stellar hydrogen burning in CNO and NeNa range<br />

Stellar helium burning (neutron sources)<br />

Novae, hot CNO cycles and αp-process<br />

p-process nucleosynthesis<br />

s-process nucleosynthesis (n-ToF)<br />

rp-process nucleosynthesis (LLN, NSCL)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!