12.03.2014 Views

High Energy Astrophysics - Jodrell Bank Centre for Astrophysics

High Energy Astrophysics - Jodrell Bank Centre for Astrophysics

High Energy Astrophysics - Jodrell Bank Centre for Astrophysics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong> <strong>Energy</strong> <strong>Astrophysics</strong><br />

Radiation Processes 1/4<br />

Giampaolo Pisano<br />

<strong>Jodrell</strong> <strong>Bank</strong> <strong>Centre</strong> <strong>for</strong> <strong>Astrophysics</strong> - University of Manchester<br />

giampaolo.pisano@manchester.ac.uk - http://www.jb.man.ac.uk/~gp/<br />

February 2012


Radiation Processes<br />

- There are many radiation processes in <strong>Astrophysics</strong>:<br />

- Bremsstrahlung (free-free emission)<br />

- Compton Scattering<br />

- Synchrotron emission<br />

- Absorption processes<br />

- Self-absorption<br />

- Pair production<br />

- Ionisation Losses<br />

- Cherenkov radiation<br />

- Nuclear interactions<br />

Not discussed in this course


Thermal and non-thermal processes<br />

- Thermal processes<br />

- Black-body radiation<br />

- Thermal Bremsstrahlung<br />

- Non-thermal processes<br />

- Non-thermal Bremsstrahlung<br />

- Inverse Compton scattering<br />

- Synchrotron radiation<br />

Continuum radiation from particles with<br />

energy spectrum not Maxwellian


Radiation Processes<br />

- Thermal and non-thermal processes<br />

- Radiation from accelerated charged particles<br />

- Bremsstrahlung (Free-free emission)<br />

- Compton Scattering<br />

- Synchrotron emission<br />

- Absorption processes<br />

- Competing processes<br />

References:<br />

- Rybicki & Lightman - Chapter 1<br />

- Rosswog, Bruggen - Par. 3.7<br />

- Longair - Vol 1, Chapter 3


Radiation from accelerated charged particles 1/6<br />

J.J. Thomson’s treatment : radiation origin in terms of electric field lines<br />

Electric field<br />

lines<br />

(the standard complex derivation uses retarded potentials)<br />

1) Stationary q in inertial frame at t=0<br />

2) Small acceleration to ∆v in ∆t :<br />

const v<br />

3) After t, consider sphere radius r=ct :<br />

q<br />

∆v<br />

c∆t<br />

- Outside sphere:<br />

field lines do not yet know that<br />

charge has moved radial to O<br />

- Inside sphere:<br />

field lines radial in reference<br />

frame of moving charge<br />

∆v


Radiation from accelerated charged particles 2/6<br />

E r Radial component<br />

(Coulomb’s law)<br />

E r<br />

E ϑ Tangential component<br />

E ϑ<br />

ϑ<br />

∆v<br />

Emitted<br />

at t=0<br />

Emitted<br />

after ∆t<br />

r=ct<br />

c∆t<br />

Longair<br />

Par 3.3.2<br />

Watch very nice animation at:<br />

http://www.ligo.caltech.edu/~tdcreigh/Radiation/<br />

Eϑ ∆v<br />

t sinϑ<br />

=<br />

E c∆t<br />

r<br />

→<br />

⎛ ∆v<br />

⎞⎛<br />

t ⎞<br />

Eϑ = Er<br />

⎜ ⎟⎜<br />

⎟sinϑ<br />

⎝ ∆t<br />

⎠⎝<br />

c ⎠


Radiation from accelerated charged particles 3/6<br />

E r Radial component<br />

(Coulomb’s law)<br />

E r<br />

E ϑ<br />

E ϑ Tangential component<br />

( t=r/c )<br />

ϑ<br />

⎛ ∆v<br />

⎞⎛ t ⎞<br />

Eϑ = Er<br />

⎜ ⎟⎜<br />

⎟sinϑ<br />

=<br />

⎝ ∆<br />

t<br />

⎠⎝<br />

c<br />

⎠<br />

q<br />

4πε<br />

r<br />

&& r<br />

r<br />

2<br />

2<br />

0 c<br />

sinϑ<br />

∆v<br />

Null E ϑ<br />

&& p sinϑ<br />

4πε<br />

c r<br />

Eϑ<br />

=<br />

2<br />

0<br />

-Tangential<br />

electric field<br />

p =<br />

qr<br />

- Dipole moment<br />

r=ct<br />

Max E ϑ<br />

c∆t<br />

Note: E ϑ α sinϑ /r<br />

Pulse of radiation that propagates at c<br />

<strong>Energy</strong> loss from accelerated charged particle


Radiation from accelerated charged particles 4/6<br />

- The energy flux of the e.m. radiation pulse through dA in dt at distance r<br />

is given by the Poynting vector:<br />

2<br />

2<br />

⎛ dE ⎞<br />

E<br />

− ⎜ ⎟ = S = E × H ϑ ⎛ && p sinϑ<br />

⎞ && p sin ϑ<br />

= cε<br />

0<br />

=<br />

2<br />

2 3 2<br />

⎝ dAdt ⎠<br />

⎜<br />

rad<br />

4<br />

⎟<br />

Z0<br />

⎝ πε<br />

0c<br />

r ⎠ 16π<br />

ε<br />

0c<br />

r<br />

2<br />

2<br />

⎛<br />

⎜being<br />

⎝<br />

Z<br />

0<br />

=<br />

µ<br />

0<br />

ε<br />

0<br />

, c =<br />

1 ⎞<br />

⎟<br />

ε<br />

0µ<br />

0 ⎠<br />

=<br />

<strong>Energy</strong> loss rate α sin 2 ϑ<br />

- The energy loss rate per solid angle dΩ and time dt at distance r is:<br />

−<br />

⎛<br />

⎜<br />

⎝<br />

dE<br />

dtd<br />

⎞<br />

⎟<br />

Ω ⎠<br />

rad<br />

⎛<br />

= −⎜<br />

⎝<br />

dE<br />

dAdt<br />

⎞<br />

⎟<br />

⎠<br />

rad<br />

r<br />

2<br />

=<br />

Sr<br />

2<br />

=<br />

&& p<br />

2<br />

sin<br />

0<br />

2<br />

2<br />

16π<br />

ε c<br />

ϑ<br />

3<br />

⎛<br />

dA<br />

⎜being dΩ<br />

=<br />

2<br />

⎝<br />

r<br />

⎟<br />

⎠<br />

⎞<br />

⎛ dE ⎞<br />

− ⎜ ⎟<br />

⎝ dtdΩ<br />

⎠<br />

rad<br />

=<br />

&& p<br />

2<br />

sin<br />

0<br />

2<br />

2<br />

16π<br />

ε c<br />

ϑ<br />

3<br />

- <strong>Energy</strong> loss per unit<br />

time and solid angle


Radiation from accelerated charged particles 5/6<br />

- Integrating over the solid angle:<br />

⎛<br />

− ⎜<br />

⎝<br />

dE<br />

dt<br />

⎞<br />

⎟<br />

⎠<br />

rad<br />

= −<br />

∫<br />

⎛ dE ⎞<br />

⎜ ⎟<br />

⎝ dtdΩ<br />

⎠<br />

rad<br />

dΩ<br />

2<br />

2<br />

&& p sin ϑ<br />

= ∫ dΩ<br />

2 3<br />

16π<br />

ε c<br />

0<br />

2<br />

&& p<br />

2<br />

= ∫ sin ϑdΩ<br />

2 3<br />

16π<br />

ε c<br />

0<br />

⎛<br />

⎜but<br />

⎝<br />

8<br />

∫ sin ϑdΩ =<br />

3<br />

2 π<br />

⎞<br />

⎟<br />

⎠<br />

⎛ dE<br />

− ⎜<br />

⎝ dt<br />

⎞<br />

⎟<br />

⎠<br />

rad<br />

=<br />

q<br />

2<br />

&& r<br />

2<br />

=<br />

&& p<br />

3<br />

3<br />

6πε<br />

0c<br />

6πε<br />

0c<br />

2<br />

- Larmor’s Formula<br />

p = qr<br />

- Dipole<br />

moment<br />

- Power emitted by a non-relativistic accelerated charge<br />

- Proportional to the square of acceleration and charge<br />

- Valid <strong>for</strong> any <strong>for</strong>m of acceleration<br />

- ‘Proper’ acceleration: loss rate measured in particle rest frame


Radiation from accelerated charged particles 6/6<br />

Radiation intensity distribution<br />

Polarisation orientation<br />

−<br />

dE<br />

dtdΩ<br />

=<br />

&& p<br />

2<br />

sin<br />

0<br />

2<br />

2<br />

16π<br />

ε c<br />

ϑ<br />

3<br />

&& p sinϑ<br />

4πε<br />

c r<br />

Eϑ<br />

=<br />

2<br />

0<br />

I α sin 2 ϑ<br />

ϑ<br />

E α sinϑ<br />

- Intensity dipolar distribution:<br />

- Null along acceleration vector<br />

- Max at right angles<br />

- Radiation polarised with electric<br />

field lying along acceleration<br />

vector as projected on the sphere


Radiation Processes<br />

- Thermal and non-thermal processes<br />

- Radiation from accelerated charged particles<br />

- Bremsstrahlung (Free-free emission)<br />

- Compton Scattering<br />

- Synchrotron emission<br />

- Absorption processes<br />

- Competing processes<br />

References:<br />

- Longair - Vol 1 - Chapter 3<br />

- Bradt - Chapter 5


- What is Bremsstrahlung emission ?<br />

Bremsstrahlung radiation 1/2<br />

An accelerated charged particle<br />

emits e.m. radiation<br />

e -<br />

γ<br />

Acceleration of e - in the<br />

electrostatic field of a nucleus<br />

Nucleus: +Ze<br />

Bremsstrahlung:<br />

Radiation emitted in the encounter between an e - and a nucleus<br />

(it means ‘braking radiation’)<br />

- Also called Free-free emission because the radiation corresponds<br />

to transitions between unbound states in nucleus field


Bremsstrahlung in <strong>Astrophysics</strong><br />

Whenever there is hot ionised gas in the Universe it emits<br />

Free-Free radiation or Bremsstrahlung<br />

Examples:<br />

Radio emission:<br />

- HII regions: compact regions of ionised hydrogen at T~10 4 K<br />

X-ray emission:<br />

- Binary X-ray sources at T~10 7 K<br />

Diffuse X-ray emission:<br />

- Hot intergalactic gas in cluster of galaxies at T~10 8 K


Bremsstrahlung radiation 2/2<br />

- We are going to study three different cases:<br />

- Single electron<br />

- Thermal Bremsstrahlung<br />

- Relativistic Bremsstrahlung (mention)<br />

References:<br />

- Longair - Vol 1 - Chapter 3<br />

- Bradt - Chapter 5


Single electron Bremsstrahlung 1/7<br />

- Radiation associated with the acceleration of a single electron<br />

in the electrostatic field of ions and nuclei<br />

- Under most circumstances the accurate treatment requires QED,<br />

only in the low frequency limit a classical description is appropriate<br />

Classical derivation steps<br />

- To compute the spectrum of the emitted radiation the starting point<br />

is the Larmor’s <strong>for</strong>mula:<br />

⎛ dE<br />

− ⎜<br />

⎝ dt<br />

⎞<br />

⎟<br />

⎠<br />

rad<br />

=<br />

q<br />

2<br />

&& r<br />

0<br />

2<br />

6πε<br />

c<br />

3<br />

We need to calculate the electron acceleration in its reference frame


Single electron Bremsstrahlung 2/7<br />

- The acceleration of the electron during its collision with a nucleus<br />

depends on the charge +Ze and the collision parameter b :<br />

γ<br />

e -<br />

a<br />

b<br />

+Ze<br />

- In the derivation it is necessary to consider the:<br />

- Nucleus field experienced by the relativistic moving electron<br />

- Resolve the acceleration in components parallel and perpendicular to v<br />

- Fourier Trans<strong>for</strong>m the acceleration: a(t) a(ω)<br />

- Investigate how the loss rate is trans<strong>for</strong>med between reference systems


Single electron Bremsstrahlung 3/7<br />

- Electric and magnetic fields from a uni<strong>for</strong>mly moving relativistic charge q<br />

b<br />

E<br />

y<br />

B<br />

vt<br />

z<br />

v<br />

q<br />

x<br />

E<br />

E y<br />

E x<br />

Parallel<br />

Component (x)<br />

Perpendicular<br />

Component (y)<br />

t<br />

Rybicki<br />

Lightman<br />

Par 4.6<br />

- Time dependence of the fields from a particle of uni<strong>for</strong>m relativistic velocity<br />

- Note: the acceleration on a test particle is parallel to the total electric field


Single electron Bremsstrahlung 4/7<br />

- The final result, that we will not derive, is the following:<br />

- Intensity spectrum from a single collision<br />

e - - nucleus with collision parameter b:<br />

I(<br />

ω)<br />

∝<br />

2<br />

Z<br />

e<br />

2<br />

m<br />

e<br />

6<br />

2<br />

ω<br />

2<br />

γ v<br />

3<br />

⎡<br />

1 2<br />

⎛<br />

ω<br />

b<br />

⎞ 2<br />

⎛<br />

ω<br />

b ⎞⎤<br />

⎢ K0<br />

⎜ ⎟ + K ⎜ ⎟<br />

2<br />

1 ⎥<br />

⎣γ<br />

⎝ γv<br />

⎠ ⎝ γv<br />

⎠⎦<br />

ω= angular frequency<br />

K 0<br />

and K 1<br />

: modified Bessel functions<br />

of order 0 and 1<br />

Parallel Perpendicular<br />

component component


Single electron Bremsstrahlung 5/7<br />

- Plotting separately the two terms:<br />

from J.D.Jackson<br />

Classical<br />

Electrodynamics<br />

(1975)<br />

Perpendicular<br />

Parallel<br />

- Single Electron<br />

Bremsstrahlung Spectrum<br />

- Perpendicular impulse:<br />

- Greater intensity<br />

- Significant at low frequencies even in the non relativistic case (γ=1)<br />

- Parallel component:<br />

- In the relativistic case it suffers a factor 1/γ 2<br />

Perpendicular impulse dominant contribution in Bremsstrahlung


Single electron Bremsstrahlung 6/7<br />

<strong>High</strong> frequency:<br />

ω >> γv/b<br />

I(<br />

ω)<br />

∝<br />

2<br />

Z e<br />

m<br />

2<br />

e<br />

6<br />

2<br />

ω<br />

2<br />

γ v<br />

3<br />

⎡ 1<br />

⎢ 2<br />

⎣γ<br />

⎤<br />

+ 1⎥<br />

e<br />

⎦<br />

2ωb<br />

−<br />

γv<br />

Exponential cut-off at high frequencies<br />

Reasons:<br />

1) Cut-off must exist: the electron cannot radiate a photon with<br />

energy greater than its kinetic energy<br />

2) Origin cut-off depends on the duration of the collision:<br />

Major interaction<br />

within ± b<br />

b<br />

b<br />

b<br />

τ ≈<br />

2b<br />

2π<br />

πγv<br />

γv<br />

→ ωcutoff<br />

≈ = ≈<br />

γv<br />

τ b b


Single electron Bremsstrahlung 7/7<br />

2 6<br />

Z e<br />

2 2<br />

m b v<br />

Low frequency: ω >b<br />

Reason:<br />

b<br />

- In the low frequency range the momentum impulse is a delta function:<br />

Duration collision


Bremsstrahlung radiation<br />

- We are going to study three different cases:<br />

- Single electron<br />

- Thermal Bremsstrahlung<br />

- Relativistic Bremsstrahlung<br />

References:<br />

- Longair - Vol 1 - Chapter 3<br />

- Bradt - Chapter 5


Thermal Bremsstrahlung 1/6<br />

- Emission from an hot plasma cloud<br />

e -<br />

γ<br />

+Ze<br />

Single electron emission<br />

Thermal Bremsstrahlung emission<br />

The emission of photons by an hot plasma cloud is due to<br />

‘near’ collisions between electrons and ions


Thermal Bremsstrahlung 2/6<br />

- Plasma physical condition assumptions<br />

- Completely ionised plasma<br />

- Gas with sufficiently high T:<br />

Collisions energetic and frequent enough to keep gas ionised<br />

Depending on the density, to avoid recombination<br />

- Plasma in thermal equilibrium: e - and ions same average kinetic energies<br />

- Ions considered as stationary (in H plasma, e - ~40x faster than protons)<br />

- Non-relativistic speed:<br />

v


Thermal Bremsstrahlung 3/6<br />

- Free-free emission of a hot ionised gas at temperature T<br />

- The velocities of non-relativistic electrons in a ionised gas can be<br />

described by a Maxwellian distribution:<br />

N e (v)<br />

( T,m e )<br />

Maxwell<br />

distribution<br />

v<br />

N<br />

e<br />

(v) dv<br />

=<br />

4π<br />

N<br />

e<br />

⎛ me<br />

⎜<br />

⎝ 2πkT<br />

⎞<br />

⎟<br />

⎠<br />

3 2<br />

v<br />

2<br />

⎛<br />

exp<br />

⎜ −<br />

⎝<br />

mev<br />

2kT<br />

2<br />

⎟ ⎞<br />

dv<br />

⎠<br />

( N e (v): e - number density<br />

in velocity interval dv)<br />

- Notice the exponential cut-off <strong>for</strong> high velocities


Thermal Bremsstrahlung 4/6<br />

- It is necessary to integrate the single-electron <strong>for</strong>mula:<br />

I(<br />

ω)<br />

∝<br />

2<br />

Z e<br />

m<br />

2<br />

e<br />

6<br />

2<br />

ω<br />

2<br />

γ v<br />

3<br />

⎡ 1<br />

⎢ 2<br />

⎣γ<br />

K<br />

2<br />

0<br />

⎛ ωb<br />

⎜<br />

⎝ γv<br />

⎞<br />

⎟ +<br />

⎠<br />

K<br />

2<br />

1<br />

⎛ ωb<br />

⎞⎤<br />

⎜ ⎟⎥<br />

⎝ γv<br />

⎠⎦<br />

Over all the possible:<br />

γv/b<br />

- Velocities v<br />

- Impact parameters b (b max & b min )<br />

b<br />

We jump directly to the final results


Thermal Bremsstrahlung 5/6<br />

- The calculations lead to the following:<br />

2<br />

Z NNe ⎛ hω<br />

⎞<br />

I(<br />

ω,<br />

T ) ∝ exp⎜<br />

− ⎟ g(<br />

ω,<br />

T )<br />

T ⎝ kT ⎠<br />

- Plasma spectral emissivity<br />

<strong>High</strong> frequency<br />

Low frequency<br />

- N: nuclei/ionised atoms number density<br />

- g(ω,T): ‘correction’ Gaunt factor depends on electron velocity<br />

hω >><br />

kT<br />

hω =<br />

- Exponential cut-off at that reflects the Maxwell distribution tail<br />

Cut-off can be used to determine T plasma<br />


Thermal Bremsstrahlung 6/6<br />

- In summary:<br />

- Spectrum of Thermal Bremsstrahlung<br />

log(I(ω))<br />

τ >>1<br />

I(ω)<br />

∝ const<br />

τ


Thermal Bremsstrahlung in <strong>Astrophysics</strong> 1/3<br />

- X-ray emission from Cluster of Galaxies<br />

Abell 2029<br />

Optical - HST<br />

X-ray - Chandra<br />

www-xray.ast.cam.ac.uk<br />

- These clusters can contain hundreds or thousands of galaxies<br />

- Largest and most massive objects in the Universe<br />

- Large amount of intergalactic material falling towards the centre<br />

of the cluster reaching very high temperatures


Thermal Bremsstrahlung in <strong>Astrophysics</strong> 2/3<br />

- X-ray emission in the Perseus Cluster of Galaxies<br />

Optical<br />

X-ray<br />

apod.nasa.gov<br />

- Diffuse Thermal Bremsstrahlung X-ray emission due to hot<br />

intergalactic plasma at T~10 8 K


Thermal Bremsstrahlung in <strong>Astrophysics</strong> 3/3<br />

- X-ray spectrum of the Perseus Cluster of Galaxies<br />

- Continuum emission from thermal<br />

Bremsstrahlung of hot intergalactic<br />

gas @ T=7.5 x 10 7 K<br />

- Radiation thermal nature confirmed<br />

by highly ionised Fe +25 lines<br />

- Temperature estimate:<br />

from R.Mushotzky<br />

X-ray Astronomy (1980)<br />

hω = hν ~ kT<br />

T<br />

→<br />

h<br />

~ ν ~<br />

k<br />

3<br />

−19<br />

5×<br />

10 × 1.6×<br />

10<br />

~ ~ 6×<br />

10<br />

−23<br />

1.38×<br />

10<br />

T<br />

5KeV<br />

k<br />

7<br />

K


Bremsstrahlung radiation<br />

- We are going to study three different cases:<br />

- Single electron<br />

- Thermal Bremsstrahlung<br />

- Relativistic Bremsstrahlung<br />

References:<br />

- Longair - Vol 1, Chapter 3


Relativistic Bremsstrahlung<br />

- Relativistic particles interacting with ionised gas<br />

Example:<br />

γ-ray emission of the interstellar medium (ISM) caused by the interaction<br />

of relativistic particles with the ionised ISM<br />

- In this case, the energy distribution of the ultra-relativistic cosmic ray<br />

electrons has a power law <strong>for</strong>m (non-thermal):<br />

N e<br />

( E)<br />

dE<br />

∝<br />

E<br />

−α<br />

dE<br />

- Electrons energy<br />

distribution<br />

N(E)dE:# e- per unit<br />

volume in (E,E+dE)<br />

The final spectrum is obtained integrating over the energies


Relativistic Bremsstrahlung in <strong>Astrophysics</strong><br />

- Low energy gamma-ray emission of the interstellar medium (ISM)<br />

CGRO / EGRET - 30-50 MeV<br />

- Caused by the interaction of relativistic particles with the ionised ISM


Radiation Processes<br />

- Thermal and non-thermal processes<br />

- Radiation from accelerated charged particles<br />

- Bremsstrahlung (Free-free emission)<br />

- Compton Scattering<br />

- Synchrotron emission<br />

- Absorption processes<br />

- Competing processes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!