11.03.2014 Views

Coordinated regulation of gene expression by E ... - Jacobs University

Coordinated regulation of gene expression by E ... - Jacobs University

Coordinated regulation of gene expression by E ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Coordinated</strong> <strong>regulation</strong> <strong>of</strong> <strong>gene</strong> <strong>expression</strong> <strong>by</strong> E.coli<br />

chromatin proteins FIS and H-NS<br />

A Dissertation Presented<br />

<strong>by</strong><br />

Ramesh Mavathur Nanjundaiah<br />

A thesis Submitted in partial fulfillment<br />

<strong>of</strong> the requirements for the degree <strong>of</strong><br />

DOCTOR OF PHILOSOPHY<br />

in Biochemistry<br />

School <strong>of</strong> Engineering and Science<br />

<strong>Jacobs</strong> <strong>University</strong> Bremen


<strong>Coordinated</strong> <strong>regulation</strong> <strong>of</strong> <strong>gene</strong> <strong>expression</strong> <strong>by</strong> E.coli<br />

chromatin proteins FIS and H-NS<br />

<strong>by</strong><br />

Ramesh Mavathur Nanjundaiah<br />

A thesis Submitted in partial fulfillment<br />

<strong>of</strong> the requirements for the degree <strong>of</strong><br />

DOCTOR OF PHILOSOPHY<br />

in Biochemistry<br />

Approved as to style and content <strong>by</strong>:<br />

_________________________________________<br />

Pr<strong>of</strong>. Dr.Georgi Muskhelishvili<br />

___________________________________<br />

Pr<strong>of</strong>. Dr. Albert Jeltsch<br />

___________________________________<br />

Pr<strong>of</strong>. Dr. Sebastian Springer<br />

___________________________________<br />

Pr<strong>of</strong>. Dr. Andrew Travers<br />

Date <strong>of</strong> Defense: August 29 th 2007<br />

School <strong>of</strong> Engineering and Science


Parts <strong>of</strong> this work has been published in:<br />

Auner, H., Buckle, M., Deufel, A., Kutateladze, T., Lazarus, L., Mavathur, R.,<br />

Muskhelishvili, G., Pemberton, I., Schneider, R., and Travers, A. (2003)<br />

Mechanism <strong>of</strong> transcriptional activation <strong>by</strong> FIS: role <strong>of</strong> core promoter structure<br />

and DNA topology. J Mol Biol 331: 331-344.<br />

Blot, N., Mavathur, R., Geertz, M., Travers, A., and Muskhelishvili, G. (2006)<br />

Homeostatic <strong>regulation</strong> <strong>of</strong> supercoiling sensitivity coordinates transcription <strong>of</strong><br />

the bacterial genome. EMBO Rep 7: 710-715.<br />

Lang, B., Madan Babu, M., Blot, N., Bouffartigues, E., Buckle, M., Geertz, M.,<br />

Gualerzi, C., Mavathur, R., Muskhelshvili, G., Pon, C., Rimsky, S., Stella, S.,<br />

Travers, A., (2007) High affinity DNA binding sites for H-NS provide a<br />

molecular basis for selective silencing within proteobacterial genomes. Nucleic<br />

Acids Res: 35(18): 6330-7.<br />

Geertz, M., Mavathur, R., Travers, A., Shimamoto, N., Muskhelishvili, G. RNA<br />

polymerase composition is homeostatically coupled with DNA topology in E. coli<br />

Submitted to EMBO reports.


ABSTRACT<br />

Abstract<br />

Bacteria are omnipresent small organisms that posses impressive ability to adapt to their<br />

environment. Adaptation, a universal phenomenon seen at all different levels <strong>of</strong><br />

organizational complexity <strong>of</strong> life, is accomplished mainly <strong>by</strong> adjustment <strong>of</strong> the <strong>gene</strong><br />

<strong>expression</strong> pattern. Studies using microarray-mediated transcript pr<strong>of</strong>iling in E.coli<br />

demonstrated the existence <strong>of</strong> direct correlations between the global <strong>gene</strong> <strong>expression</strong><br />

patterns and different phases [Tao, 1999; Weber, 2005; Wei, 2001]. Previous work from<br />

our and other laboratories indicated that in E.coli the cellular transcription is under the<br />

control <strong>of</strong> a global regulatory network whose main components are - DNA<br />

topoisomerases, chromatin proteins modulating the supercoil dynamics <strong>of</strong> DNA and, the<br />

RNA polymerase. The aim <strong>of</strong> this project was to understand the basic structural<br />

mechanism <strong>of</strong> interaction <strong>of</strong> two <strong>of</strong> the components (DNA supercoiling and chromatin<br />

proteins) and the underlying functional coordination <strong>of</strong> <strong>gene</strong> <strong>expression</strong> in E.coli.<br />

To understand the coordination <strong>of</strong> the components, the problem was<br />

approached at two levels <strong>of</strong> complexity, (1) global – for this purpose we developed a<br />

novel DNA microarray-based approach combining mutations in the <strong>gene</strong>s <strong>of</strong> chromatin<br />

proteins with directional changes <strong>of</strong> DNA superhelicity and (2)local - at the level <strong>of</strong><br />

individual <strong>gene</strong> promoter, using as a model tyrT promoter system, to understand the<br />

molecular mechanism <strong>of</strong> the interplay between supercoiling and transcriptional<br />

regulators. The study has led us to propose that the global transcription <strong>regulation</strong> is<br />

spatiotemporally coordinated <strong>by</strong> the differential distribution <strong>of</strong> two types <strong>of</strong> information,<br />

‘analog’ and ‘digital’. The digital or discontinous property <strong>of</strong> an information is manifest<br />

in the pattern <strong>of</strong> expressed <strong>gene</strong>s at all times depending on the distribution <strong>of</strong> the analog<br />

component - DNA supercoiling - distribution <strong>of</strong> supercoiling in different parts <strong>of</strong> the<br />

genome. The analog component is continuously converted in the pattern <strong>of</strong> expressed<br />

<strong>gene</strong>s and vice versa, there<strong>by</strong> modulates the physiology to a dynamic equilibrium,<br />

which can be readjusted in response to changes in both the digital (mutation) and<br />

analog (growth phase or stress induced changes <strong>of</strong> supercoiling) information. On the<br />

example <strong>of</strong> tyrT promoter we demonstrate how the sequence organization <strong>of</strong> the


ABSTRACT<br />

promoter region determines the supercoiling sensitivity <strong>of</strong> the promoters. Our data<br />

indicate that the transcription from a strong promoter, like tyrT, is a consequence <strong>of</strong> two<br />

phenomena, the local effect <strong>of</strong> binding <strong>of</strong> chromatin protein FIS at the promoter region<br />

and the <strong>gene</strong>ral effect <strong>of</strong> FIS on the average superhelical density <strong>of</strong> the DNA.


ACKNOWLEDGEMENTS<br />

Acknowledgements<br />

I would like to express my appreciation, gratitude and thanks to the following people<br />

who have supported this work in many ways.<br />

I am indepted to Pr<strong>of</strong>. Dr. Georgi Muskhelishvili not just for guiding my PhD work but<br />

for inspiring scientific temper in me, for being a mentor to whom I always looked up to<br />

during predicament and have very rarely been not satisfied <strong>by</strong> his suggestions and<br />

opinions to problems both scientific and <strong>gene</strong>ral.<br />

Sincere thanks to <strong>Jacobs</strong> <strong>University</strong> Bremen (formerely International <strong>University</strong><br />

Bremen) and Max Planck Institute for Terrestrial Microbiology at Marburg for giving<br />

me an opportunity to pursue my PhD work.<br />

I thank my doctoral examination committee, Pr<strong>of</strong>. AndrewTravers, Pr<strong>of</strong>. Albert Jeltsch<br />

and Pr<strong>of</strong>. Sebastian Springer for support and motivation during my time at <strong>Jacobs</strong><br />

<strong>University</strong> and for their thorough appraisal <strong>of</strong> this dissertation.<br />

I also take this opportunity to thank my family: my father, my mother, my sister Rohini,<br />

my borther-in-law Prakash, my nephew Varun, my niece Varsha, my brother Prasad,<br />

my sister-in-law Shvetha and my twin nieces Anagha and Anusha. The love showered<br />

<strong>by</strong> these people has always provided inspiration and motivation for me.<br />

A special thanks to my group members Marci, Michi, Sebastian, Nico and Claudia who<br />

made working in the lab an enjoyable experience. I will always cherish the time I spent<br />

with these intelligent people. And also thanks to Sissi for inducing and <strong>of</strong>fering<br />

creative inputs on improving the appearance <strong>of</strong> my thesis and presentation beside being<br />

a good friend. Thanks also to all my friends in Marburg all <strong>of</strong> whom gave a very nice


ACKNOWLEDGEMENTS<br />

first impression <strong>of</strong> Germany, so much so that I feel Marburg as my home town in<br />

Germany.<br />

The time at the university was pleasant because <strong>of</strong> my friends all <strong>of</strong> whom I wish to<br />

thank. And friends from IGC, Sanjay, Arun, Abhishek (more popularly known as<br />

‘Badiya’) and Nandu for organizing and participating in the weekend parties.


TABLE OF CONTENTS<br />

1 Introduction ………………………………………………………………….. 1<br />

1.1 Is there a common coordinating factor? ………………………………... 2<br />

1.1.1 Is there a common coordinating mechanism? ………………………… 3<br />

1.2 Global transcription coordination - current knowledge …………….. 4<br />

1.2.1 Gene promoters ………………………………………………………. 5<br />

1.2.2’Gene promoters respond distinctly to changes <strong>of</strong> supercoiling ………… 7<br />

1.2.3 DNA Supercoiling and mechanisms regulating it ……………………. 9<br />

1.2.4 Supercoiling and growth transitions …………………………………. 11<br />

1.2.5 The nucleoid associated proteins – major players in global <strong>gene</strong> <strong>expression</strong><br />

<strong>regulation</strong> …………………………………………………………….. 12<br />

1.2.6 Composition <strong>of</strong> RNAP also changes with growth …………………… 14<br />

1.3 Organisation <strong>of</strong> global transcription - coordinated view …………… 15<br />

2 Materials and methods ……………………………………………………… 18<br />

2.1 Materials ……………………………………………………………….. 18<br />

2.1.1 Enzymes & chemicals ………………………………………………… 18<br />

2.1.2 Antibiotics ……………………………………………………………. 19<br />

2.1.3 Media …………………………………………………………………. 19<br />

2.1.4 Buffers and stock solutions …………………………………………… 20<br />

2.1.5 Bacterial strains ………………………………………………………. 21<br />

2.1.6 Plasmids ……………………………………………………………… 22<br />

2.1.7 Primers ……………………………………………………………….. 23<br />

2.2 Methods ………………………………………………………………… 24<br />

2.2.1 Agarose gel electrophoresis ………………………………………….. 24<br />

2.2.2 Small and medium scale isolation <strong>of</strong> plasmid DNA using Qiagen kit … 24<br />

2.2.3 Restriction Digestion ………………………………………………… 25<br />

2.2.4 Polymerase chain reaction …………………………………………… 25<br />

I


TABLE OF CONTENTS<br />

2.2.5 Preparation <strong>of</strong> competent E.coli cells using calcium chloride ……….. 25<br />

2.2.6 Transformation <strong>of</strong> E.coli cells ………………………………………… 25<br />

2.2.7 Purification <strong>of</strong> nucleic acids <strong>by</strong> Phenol:Chlor<strong>of</strong>orm extraction ……… 26<br />

2.2.8 Concentrating and quantification <strong>of</strong> nucleic acids …………………… 26<br />

2.2.9 Polyacrylamide sequencing gels ……………………………………… 26<br />

2.2.10 Growth curves and norfloxacin treatment ……………………………. 27<br />

2.2.11 Extraction and quality check <strong>of</strong> total RNA …………………………… 27<br />

2.2.12 Microarray hybridization …………………………………………….. 28<br />

2.2.13 Microarray analysis …………………………………………………… 29<br />

2.2.14 Real-time PCR ……………………………………………………….. 30<br />

2.2.15 High resolution agarose gel electrophoresis and determination <strong>of</strong> sigma (σ)<br />

……………………………………………………………………….. 30<br />

2.2.16 In vitro transcription …………………………………………………. 31<br />

2.2.17 Primer extension ……………………………………………………… 32<br />

2.2.18 Potassium permanganate footpriniting ……………………………….. 32<br />

2.2.19 β-galactosidase assay ………………………………………………… 33<br />

3 Results ……………………………………………………………………….. 34<br />

3.1 Growth phase dependent global transcriptional <strong>regulation</strong> ………… 34<br />

3.1.1 Growth <strong>of</strong> CSH50 and LZ strains ……………………………………. 34<br />

3.1.2 A novel microarray based approach to derive growth phase-specific<br />

transcript pr<strong>of</strong>iles organized <strong>by</strong> supercoiling and chromatin proteins<br />

………………………………………………………………………….. 36<br />

3.1.3 Changes <strong>of</strong> supercoiling during growth ……………………………… 38<br />

3.1.4 Genomic wheels <strong>of</strong> supercoiling sensitivity …………………………. 39<br />

3.1.5 Variations <strong>of</strong> supercoiling-associated transcripts …………………….. 42<br />

3.1.6 Supercoiling sensitivity <strong>of</strong> biosynthesis and degradation pathways …. 45<br />

3.1.7 Coordination <strong>of</strong> metabolic pathways <strong>by</strong> supercoiling sensitivity …….. 45<br />

3.2 Role <strong>of</strong> supercoiling and chromatin protein FIS in transcriptional<br />

<strong>regulation</strong> <strong>of</strong> an individual promoter ………………………………… 49<br />

3.2.1 Mechanism <strong>of</strong> transcriptional <strong>regulation</strong> <strong>by</strong> FIS & supercoiling: tyrT<br />

promoter paradigm<br />

…………….…………………………………………………………… 49<br />

II


TABLE OF CONTENTS<br />

3.2.2 In vivo <strong>expression</strong> <strong>of</strong> tyrT in CSH50 Wt & fis mutant ………………. 50<br />

3.2.3 Dependence <strong>of</strong> promoter activity on superhelical density in vivo …… 51<br />

3.2.4 Dependence <strong>of</strong> promoter activity on superhelical density in vitro …... 53<br />

3.2.5 Effects <strong>of</strong> promoter mutations on the function ………………………. 54<br />

4 Discussion …………………………………………………………………… 58<br />

4.1 Interdependency <strong>of</strong> supercoiling and NAPs …………………………. 59<br />

4.2 Supercoiling coordinates metabolic functions ……………………….. 61<br />

4.3 Activity <strong>of</strong> tyrT promoter - Interaction <strong>of</strong> supercoiling and FIS at the<br />

promoter level …………………………………………………………. 63<br />

4.3.1 Promoter structure and function ……………………………………… 64<br />

4.3.2 Mechanism <strong>of</strong> transcriptional activation <strong>of</strong> the tyrT promoter ………. 66<br />

5 Conclusion …………………………………………………………………… 68<br />

6 References ……………………………………………………………………. 69<br />

7 Appendix I - Supplementary data: Gene lists from microarray experiments. .. 81<br />

III


LIST OF TABLES<br />

List <strong>of</strong> tables<br />

Table 1 Bacterial strains used …………………………………………. 21<br />

Table 2<br />

Table 3<br />

Table 4<br />

Number <strong>of</strong> single and double-coded transcripts in fis and hns<br />

transcript pr<strong>of</strong>iles ……………………………………………… 43<br />

Supercoiling sensitivity <strong>of</strong> <strong>gene</strong>s <strong>of</strong> biosynthesis and degradation<br />

pathways ..………………………………………………………. 45<br />

RT-PCR analysis <strong>of</strong> some <strong>of</strong> the <strong>gene</strong>s from TCA cycle and purine<br />

biosynthesis ..……………………………………………………. 48<br />

Supplementary table I<br />

Supplementary table II<br />

Supplementary table III<br />

Supplementary table IV<br />

Supplementary table V<br />

Supplementary table VI<br />

CSH50 wild-type Vs CSH50 ∆fis, Midexponential<br />

phase ….……………………….. 81<br />

CSH50 wild-type Vs CSH50 ∆fis, Transition<br />

to stationary phase ...……………………….. 89<br />

CSH50 wild-type Vs CSH50 ∆fis, Late stationary<br />

phase ………………………………………. 92<br />

CSH50 wild-type Vs CSH50 ∆hns, Midexponential<br />

phase …………………….. 97<br />

CSH50 wild-type Vs CSH50 ∆hns, Transition to<br />

stationary phase ………………....………….. 104<br />

CSH50 wild-type Vs CSH50 ∆hns, Late<br />

stationary phase …………………………….. 107<br />

Supplementary table VII : LZ41 wild-type Vs LZ54 wild-type .……….. 110<br />

Supplementary table VIII LZ41 ∆fis Vs LZ54 ∆fis ……...…………….. 123<br />

Supplementary table IX LZ41 ∆hns Vs LZ54 ∆hns ..…………............ 136<br />

Supplementary table X LZ41 wild-type Vs LZ41 ∆fis …..…………. 150<br />

IV


LIST OF TABLES<br />

Supplementary table XI LZ54 wild-type Vs LZ54 ∆fis …...…………. 160<br />

Supplementary table XII LZ41 wild-type Vs LZ41 ∆hns ……….. .….. 167<br />

Supplementary table XIII LZ54 wild-type Vs LZ54 ∆hns ……….. .….. 179<br />

V


LIST OF FIGURES<br />

List <strong>of</strong> Figures<br />

Figure 1: Schematic illustration <strong>of</strong> operation <strong>of</strong> the <strong>gene</strong>tic system involving an<br />

alternation <strong>of</strong> the digital (discontinuous) and analog (continuous) information. ... 4<br />

Figure 2: Structure <strong>of</strong> consensus Eσ70 promoter showing functionally important<br />

region. ……………………………………………………………………………… 6<br />

Figure 3: Structural pr<strong>of</strong>iles <strong>of</strong> Sigma70 and Sigma54 promoter regions. …….. 7<br />

Figure 4: In vitro transcription from fis & bla promoters at different superhelical<br />

densities …………………………………………………………………………….. 8<br />

Figure 5: Schematic representation <strong>of</strong> core promoters with different spacer<br />

length. ……………………………………………………………...………………... 9<br />

Figure 6: Graphical representation <strong>of</strong> global DNA topology changing with growth<br />

......................................................................................................................................... 12<br />

Figure 7: Abundance <strong>of</strong> NAPs during different phases <strong>of</strong> growth . ........................ 13<br />

Figure 8: Growth phase-dependent change in the level <strong>of</strong> different forms <strong>of</strong> the<br />

RNA polymerase.. ......................................................................................................... 15<br />

Figure 9: Overview <strong>of</strong> comparative <strong>gene</strong> <strong>expression</strong> <strong>of</strong> wild-type & fis (example)<br />

analysis using microarrays. .......................................................................................... 29<br />

Figure 10: Growth curves <strong>of</strong> CSH50 wild-type and the mutants. ........................... 35<br />

Figure 11: Design <strong>of</strong> DNA microarray experiments. ................................................ 37<br />

VI


LIST OF FIGURES<br />

Figure 12: Topoisomer distributions <strong>of</strong> plasmids (pUC18) isolated from growing<br />

cells. ................................................................................................................................ 39<br />

Figure 13: Genomic wheels showing spatiotemporal distribution <strong>of</strong> supercoiling<br />

associated transcripts.................................................................................................... 41<br />

Figure 14: Changes <strong>of</strong> supercoiling associated <strong>gene</strong>s during growth in fis & hns<br />

mutants compared to wild-type . ................................................................................. 44<br />

Figure 15: Coordination <strong>of</strong> essential metabolic pathways <strong>by</strong> supercoiling sensitivity.<br />

......................................................................................................................................... 47<br />

Figure 16: Schematic representation <strong>of</strong> tyrT promoter. ............................................ 50<br />

Figure 17: The relative β-galactosidase activity from different ptyrT derivatives. 51<br />

Figure 18: In vivo <strong>expression</strong> <strong>of</strong> tyrT promoter constructs. ..................................... 52<br />

Figure 19: In vitro transcription <strong>of</strong> ∆61 constructs <strong>of</strong> wild type and derivatives. . 54<br />

Figure 20: in vitro transcription from tyrTwild-type and tyrTD at different<br />

supercoiling. ................................................................................................................... 55<br />

Figure 21: Pottassium permanganate footprinting <strong>of</strong> ptyrT and its derivatives. .. 56<br />

VII


ABBREVIATIONS<br />

Abbreviations<br />

∆61<br />

∆fis<br />

∆hns<br />

Act<br />

bp<br />

CTP<br />

Cy3<br />

Cy5<br />

Promoter constructs with upstream sequence beyond<br />

position -61 deleted.<br />

strain with mutation in fis <strong>gene</strong><br />

strain with mutation in hns <strong>gene</strong><br />

<strong>gene</strong>s activated under a stated condition<br />

base-pairs<br />

cytidine triphosphate<br />

Cyanine 3 dye<br />

Cyanine 5 dye<br />

o C<br />

degree Celsius<br />

dCTP<br />

dNTP<br />

DTT<br />

EDTA<br />

E.coli<br />

deoxycytidine triphosphate<br />

deoxynucleoside triphosphate<br />

Dithiothreitol<br />

ethylenediamine tetraacetic acid<br />

Escherichia coli<br />

Eσ 70 RNAP polymerase holoeenzyme with sigma 70<br />

subunit<br />

GTP<br />

guanosine triphosphate<br />

VIII


ABBREVIATIONS<br />

Hyp<br />

kbp<br />

LS<br />

Mbp<br />

ME<br />

mg<br />

ml<br />

mM<br />

μM<br />

μg<br />

NAP<br />

NTP<br />

PCR<br />

ppGpp<br />

Rel<br />

Rep<br />

RNAP<br />

RT-PCR<br />

SDS<br />

TAE<br />

hypernegative supercoiling associated <strong>gene</strong>s<br />

kilo base-pairs<br />

late sationary growth phase<br />

million base-pairs<br />

mid-exponential growth phase<br />

Milligram<br />

Mililitre<br />

Milimolar<br />

Micromolar<br />

Microgram<br />

nucleoid associated protein<br />

nucleoside tri-phosphae<br />

polymerase chain reaction<br />

guanosine-3’,5’(bis)pyrophosphate<br />

relaxation associated <strong>gene</strong>s<br />

<strong>gene</strong>s repressed under a stated condition<br />

RNA polymerase<br />

Real-time PCR<br />

Sodium dodecyl sulphate<br />

Tris-acetate EDTA<br />

IX


ABBREVIATIONS<br />

TBE<br />

Tris<br />

TS<br />

tyrT35U<br />

tyrTD<br />

tyrTS<br />

tyrTWt<br />

UAS<br />

V/cm<br />

ω<br />

μg<br />

μl<br />

σ<br />

Tris-borate EDTA<br />

Tris-(hydroxymethyl)-aminomethane<br />

transition to stationary growth phase<br />

tyrT plasmid with a mutation in the -35 hexamer<br />

tyrT plasmid with a mutation in the discriminator<br />

tyrT plasmid with a mutation in the spacer<br />

plasmid with wild-type tyrT prmoter<br />

upstream activating sequence<br />

volts per centimeter<br />

omega subunit <strong>of</strong> RNAP<br />

Microgram<br />

Microlitre<br />

sigma subunit <strong>of</strong> RNAP<br />

X


INTRODUCTION<br />

1 Introduction<br />

Cellular division, differentiation and development implicate <strong>gene</strong> <strong>expression</strong> programs,<br />

which are coordinated in time and space both in prokaryotes and eukaryotes. In<br />

prokaryotes, control <strong>of</strong> transcriptional initiation is the most pervasive form <strong>of</strong> <strong>gene</strong><br />

<strong>regulation</strong> where<strong>by</strong> recent development <strong>of</strong> high-throughput technologies allow to<br />

analyze simultaneously the activities <strong>of</strong> thousands <strong>of</strong> <strong>gene</strong>s. Prokaryotes like E.coli K12<br />

(non-pathogenic laboratory strain) give us in addition a possibility to study <strong>gene</strong>tic<br />

<strong>regulation</strong> under wide range <strong>of</strong> variation in external physical and chemical parameters<br />

such as temperature, pH, barometric pressure, osmolarity, oxygen availability, nutrient<br />

supply and presence <strong>of</strong> toxic substances. Furthermore in this classical model organism a<br />

large amount <strong>of</strong> <strong>gene</strong>tic information has already been accumulated, providing a unique<br />

opportunity for genome-wide analyses <strong>of</strong> global <strong>gene</strong> <strong>expression</strong> patterns.<br />

E.coli is a facultative anaerobic, gram-negative bacterium growing at rates<br />

varying from 20 minutes to 24 hours depending on the environment. This organism thus<br />

shows an impressive ability to grow and divide rapidly but can grow slowly for<br />

prolonged times as well. E.coli growing in rich medium reproduces fast and does so<br />

primarily <strong>by</strong> elevating the <strong>expression</strong> levels <strong>of</strong> <strong>gene</strong>s for ribosomal proteins and stable<br />

RNA, and other translation machinery factors. In contrast, in minimal medium<br />

<strong>expression</strong> levels <strong>of</strong> <strong>gene</strong>s involved in biosynthesis <strong>of</strong> building blocks, notably amino<br />

acid biosynthesis are elevated [Wei et al., 2001; Tao et al., 1999; Weber et al., 2005].<br />

Both these conditions are also associated with numerous subtle changes like redirection<br />

<strong>of</strong> intermediary metabolism, changes in electron transport chain composition and<br />

concentration <strong>of</strong> different metabolic enzymes [Murray et al., 1996; Neidhardt et al.,<br />

1987). During the growth, also a number <strong>of</strong> morphological and physiological attributes<br />

change. Investigation <strong>of</strong> <strong>gene</strong> <strong>expression</strong> patterns under different growth conditions<br />

reveals a distinct arrangement <strong>of</strong> expressed functions, indicating that E.coli possess<br />

proprietary over a multitude <strong>of</strong> <strong>gene</strong> <strong>expression</strong> programs. Hetero<strong>gene</strong>ity <strong>of</strong> E.coli’s<br />

response is exemplified as follows in the classical book Escherichia coli and<br />

1


INTRODUCTION<br />

Salmonella: “In more than just a figurative sense, bacteria invented <strong>gene</strong> <strong>regulation</strong>,<br />

and the bacterial cell’s style <strong>of</strong> growth uniquely involves second-<strong>by</strong>-second adjustment<br />

in the flow <strong>of</strong> information from the genome to ribosomes. Individual mRNA molecules<br />

function for only a few minutes before being destroyed and replaced <strong>by</strong> newer, more<br />

timely information”.<br />

The fundamental problem addressed is not so much the understanding<br />

particular <strong>gene</strong> <strong>expression</strong> programs but rather the mechanistic basis <strong>of</strong> the concerted<br />

rearrangements <strong>of</strong> these programs. One incentive <strong>of</strong> this work therefore is to reveal the<br />

mechanism coordinating the growth phase-dependent transcription in E.coli. for this we<br />

have developed a holistic approach, using microarrays and a combination <strong>of</strong> other in<br />

vitro and in vivo techniques, to demonstrate how differential spatio-temporal<br />

distributions <strong>of</strong> supercoiling sensitivity in the genome effected <strong>by</strong> NAPs coordinate<br />

growth phase dependent transcription patterns.<br />

1.1 Is there a common coordinating factor?<br />

A typical growth cycle <strong>of</strong> E.coli growing in batch culture when plotted against time<br />

describes a sigmoidal curve with three clearly discernible stages. Correlations have been<br />

observed between different stages along the sigmoidal curve, called phases <strong>of</strong> growth,<br />

and the global <strong>gene</strong> <strong>expression</strong> patterns [Wei et al., 2001; Tao et al., 1999; Weber et al.,<br />

2005]. To better understand this correlation it is essential to identify those factors which<br />

have global impact on the transcription process. In E.coli the transitions between the<br />

different growth phases are associated with remarkable alterations <strong>of</strong> three parameters<br />

that can affect cellular transcription: the protein composition <strong>of</strong> the nucleoid, the global<br />

supercoiling level <strong>of</strong> DNA and the composition <strong>of</strong> transcriptional machinery.<br />

The two predominant RNA polymerase (RNAP) holoenzyme forms (based on<br />

number <strong>of</strong> <strong>gene</strong>s they are known to transcribe) operating in E.coli, Eσ 70 and Eσ s (RNAP<br />

holoenzyme associated with sigma subunit 70 and sigma s) differ in their DNA<br />

topology requirements. The topological state <strong>of</strong> cellular promoters depends on the<br />

partitioning <strong>of</strong> unconstrained (i.e. free) and constrained (i.e. fixed <strong>by</strong> interactions with<br />

2


INTRODUCTION<br />

binding proteins) DNA supercoils and thus, on the composition <strong>of</strong> DNA-constraining<br />

nucleoid proteins (also termed Nucleoid Associated Proteins, NAPs). This composition<br />

substantially changes with the growth phase and affects the availability <strong>of</strong> <strong>gene</strong><br />

promoters [Ali Azam et al., and Ishihama et al., 1999; McLeod et al., 2001]. Some <strong>of</strong><br />

the nucleoid-associated proteins modulate the activities <strong>of</strong> cellular topoisomerases and<br />

can therefore also exert indirect effects on the growth phase-dependent <strong>gene</strong><br />

transcription [Dorman et al., 2003; Muskhelishvili and Travers, 2003; Browning et al.,<br />

2004].<br />

Alterations <strong>of</strong> global DNA topology are known to strongly affect the<br />

transcription initiation [Travers et al., 2001; Hatfield et al., 2002]. Experimentally<br />

induced changes <strong>of</strong> global DNA superhelicity in E.coli revealed that at least 300 <strong>gene</strong>s<br />

are explicitly sensitive to these changes [Peter et al., 2004]. The alterations <strong>of</strong> global<br />

DNA superhelicity have been observed both during growth phase transitions and also in<br />

response to environmental challenges, thus implicating DNA supercoiling in<br />

coordination <strong>of</strong> <strong>gene</strong> <strong>expression</strong> with physiological demands [Balke and Gralla, 1987;<br />

Dorman et al., 1996; Tse-Dinh et al., 1997; Cheung et al., 2003; Travers and<br />

Muskhelishvili, 2005b]. Another switch <strong>of</strong> the growth phase-dependent <strong>gene</strong> <strong>expression</strong><br />

pattern is accomplished <strong>by</strong> the growth phase-dependent modulation <strong>of</strong> RNAP <strong>by</strong><br />

increased concentration <strong>of</strong> “stringent factor” ppGpp (guanosine-3',5'-<br />

(bis)pyrophosphate) and the competition between initiation sigma (σ) subunits, which<br />

confer different promoter specificities on the RNAP holoenzyme [Heinemann et al.,<br />

1997; Ishihama, 1999 and 2000]. Recently it was also proposed that the composition <strong>of</strong><br />

the RNAP core is also subject to growth related changes [Geertz et al., 2007]<br />

1.1.1 Is there a common coordinating mechanism?<br />

Almost five decades ago, John von Neumann proposed that the flow <strong>of</strong> <strong>gene</strong>tic<br />

information is coordinated <strong>by</strong> an alternation between the ‘digital’ (discontinuous)<br />

properties <strong>of</strong> unique <strong>gene</strong>s and ‘analog’ (continuous) properties <strong>of</strong> the <strong>gene</strong> products<br />

[von Neumann, 1958].<br />

3


INTRODUCTION<br />

Figure 1: Schematic illustration <strong>of</strong> operation <strong>of</strong> the <strong>gene</strong>tic system involving an alternation <strong>of</strong> the<br />

digital (discontinuous) and analog (continuous) information.<br />

Global transcriptional response, represented as a corsstalk between ‘analog’<br />

and ‘digital’ signals points towards a mechanism in which <strong>regulation</strong> <strong>of</strong> the <strong>gene</strong><br />

<strong>expression</strong> does not function as an on-<strong>of</strong>f switch but rather is the result <strong>of</strong><br />

interdependent actions <strong>of</strong> several partially redundant pathways translating into varying<br />

analog output. This mode <strong>of</strong> transcriptional response is termed ‘Rheostatic control’<br />

[Travers and Muskhelishvili, 2005b]. The inter-conversions between digital and analog<br />

properties <strong>of</strong>fer multiple possibilities for cellular response, which can explain the<br />

dynamism manifest in the transcriptome <strong>of</strong> E.coli. Though the interplay <strong>of</strong> coordinating<br />

factors (superhelicity <strong>of</strong> DNA, NAPs & RNAP composition) has been uncovered for<br />

some <strong>gene</strong> promoters, the mechanistic basis for explaining the spatial and temporal<br />

coordination <strong>of</strong> transcription in the genome still remains elusive.<br />

1.2 Global transcription coordination - current knowledge<br />

In this section, the current knowledge <strong>of</strong> transcriptional <strong>regulation</strong> is briefly outlined to<br />

elucidate mechanisms that form the basis <strong>of</strong> the hypothesis explaining global<br />

coordination <strong>of</strong> transcription in the genome. Starting from individual <strong>gene</strong> promoter<br />

4


INTRODUCTION<br />

characteristics, the amount <strong>of</strong> variability in response that can be brought about <strong>by</strong><br />

factors like NAPs and DNA supercoiling is described, and a brief introduction into how<br />

the factors themselves are modulated during growth is outlined.<br />

1.2.1 Gene promoters<br />

Transcription initiation is the predominant step in the <strong>gene</strong> <strong>regulation</strong> and promoter<br />

regions provide binding sites for the different regulatory factors to interact and initiate<br />

or repress transcription. The amount <strong>of</strong> <strong>gene</strong> product synthesized is primarily<br />

determined <strong>by</strong> the rate <strong>of</strong> productive initiation. The initiation rates can vary between<br />

1.5X10 3 transcripts per <strong>gene</strong>ration to as low as 1 transcript per <strong>gene</strong>ration [McClure et<br />

al., 1985]. What determines the hetero<strong>gene</strong>ity in the rate <strong>of</strong> transcription initiation? One<br />

<strong>of</strong> the principal determinants is the promoter sequence itself.<br />

Important elements <strong>of</strong> the promoter sequence are the positions where a change<br />

in sequence affects the rate <strong>of</strong> initiation <strong>of</strong> transcription from the specified start site.<br />

Sequences recognized <strong>by</strong> Eσ70, the most abundant form <strong>of</strong> RNA polymerase<br />

holoenzyme, are shown in Figure 2. There are at least three features within the “core”<br />

region <strong>of</strong> the promoter DNA: two conserved 6-bp (base pair) DNA sequences centered<br />

approximately 10 and 33 bp upstream from the start site <strong>of</strong> transcription (+1), called the<br />

“–10” and “–35” hexamers; and the sequence <strong>of</strong> DNA that separates them, called the<br />

“spacer” region, which is most commonly 17 bp in length but can vary from 15 to 21<br />

bp. Figure 2 summarizes the primary structure <strong>of</strong> the core promoter, specified <strong>by</strong><br />

convention in the 5’ to 3’ direction as the sequence <strong>of</strong> the non-transcribed strand, which<br />

corresponds to the transcript sequence. When optimally aligned, the sequences <strong>of</strong> most<br />

promoters match at least 7 <strong>of</strong> the 12 bp in the consensus –35 (TTGACA) and –10<br />

(TATAAT) hexamers [Lisser et al., 1993]. At many promoters, the primary start site<br />

(+1; specified <strong>by</strong> the same convention) is an A and the flanking bases are C(–1) and<br />

T(+2).<br />

5


INTRODUCTION<br />

UP element<br />

-35 -10<br />

Spacer<br />

17bp<br />

Discriminator<br />

+1 start<br />

Core promoter<br />

Figure 2: Structure <strong>of</strong> consensus Eσ 70 promoter showing functionally important regions.<br />

It is now <strong>gene</strong>rally accepted that promoter structure and geometry is used <strong>by</strong><br />

bacteria as a key regulatory element [Perez-Martin et al., 1997]. Computational studies<br />

on promoter sequences have corroborated the experimental findings that the promoter<br />

regions are more curved and less stable than the average genomic DNA. Observation <strong>by</strong><br />

Ozoline et al., <strong>of</strong> the positioning <strong>of</strong> the highly deformable TA dinucleotide<br />

approximately every 5.6 bp, also indicate the distinct flexibility <strong>of</strong> the promoters<br />

[Ozoline et al., 1999]. Analysis <strong>of</strong> curvature and deformability <strong>of</strong> the promoters based<br />

on their predicted sigma (σ) factor preference also demonstrate variability. From Figure<br />

3, it is evident that the σ 54 class promoters are less deformable compared to σ 70 class.<br />

Sigma 54 protein is known to be structurally unrelated to σ 70 , and it also utilizes a<br />

different pathway to form open complexes during transcription initiation, which in the<br />

case <strong>of</strong> σ54 requires ATP [Gruber et al., 2003]. It is thought, that the core promoter -35<br />

& -10 hexamer sequences, the discriminator sequence and the spacer region also have<br />

evolved to posses regulatory potential. Molecular <strong>gene</strong>tic examinations <strong>of</strong> stable RNA<br />

promoters in E.coli have attributed some <strong>of</strong> the important regulatory events, like<br />

stringent <strong>regulation</strong> and growth-phase <strong>regulation</strong> to the core promoter elements [Travers<br />

et al., 1980; Josaitis et al., 1995; Auner et al., 2003].<br />

6


INTRODUCTION<br />

Figure 3: Structural pr<strong>of</strong>iles <strong>of</strong> sigma70 and sigma54 promoter regions.<br />

Comparison <strong>of</strong> sigma70 specific promoter regions with sigma54 regions show that sigma70 promoters<br />

have more intrinsic curvature and are also more easily deformable than sigma54 promoters [Pedersen,<br />

2000 ].<br />

1.2.2 Gene promoters respond distinctly to changes <strong>of</strong><br />

supercoiling<br />

One <strong>of</strong> the extrinsic determinants <strong>of</strong> the promoter activity is the superhelical density <strong>of</strong><br />

the DNA. Negative supercoiling <strong>of</strong> the DNA provides the thermodynamic driving force<br />

that is required for unwinding the DNA double helix during the initiation process and it<br />

7


INTRODUCTION<br />

can also influence elongation and termination [Lim et al., 2003]. Variations in<br />

promoter’s core sequence combined with a range <strong>of</strong> negative supercoiling bring in an<br />

opportunity for a very wide transcriptional response.<br />

Promoters respond distinctly to supercoiling changes. The in vitro response <strong>of</strong><br />

promoters <strong>of</strong> fis (encoding chromatin protein FIS) and bla (beta lactamase) <strong>gene</strong>s to<br />

varying supercoiling is shown in Figure 4. The two promoters are quite different in their<br />

architecture. The fis promoter has a non-consensus -35 hexamer sequence and a GC rich<br />

discriminator which makes it more strictly dependent on supercoiling. Even promoters<br />

that are quite similar, for example, ‘stringent’ promoters <strong>of</strong> fis and tyrT (tyrosyl tRNA)<br />

<strong>gene</strong>s deviate in their response to supercoiling. The core promoter sequences <strong>of</strong> tyrT<br />

also comprise a non-consensus -35 hexamer and a GC rich discriminator, but the<br />

distinction is due to the requirement <strong>of</strong> UP element and the upstream activating<br />

sequence (UAS) in the case <strong>of</strong> tyrT promoter [Auner et al., 2003]. The activating<br />

protein binding at the UAS (FIS in the case <strong>of</strong> tyrT) essentially wraps the DNA around<br />

itself to buffer the promoter against any variations in the global superhelical density<br />

[Maurer et al., 2006]. This superhelical density that is fostered at the local promoter<br />

region through binding <strong>of</strong> protein is described as ‘effective supercoiling’ [Travers,<br />

2005b], which is a local parameter that is recognized <strong>by</strong> the polymerase. Effective<br />

supercoiling can be considerably different from the ‘global supercoiling’ prevailing at a<br />

particular instant.<br />

Figure 4: In vitro transcription from fis & bla promoters at different superhelical densities<br />

[Modified with permission from Schneider, 2000].<br />

8


INTRODUCTION<br />

Unwinding <strong>of</strong> the -10 hexamer and downstream sequences towards the start<br />

point is strongly facilitated <strong>by</strong> negative supercoiling. Furthermore, the necessity for<br />

supercoiling is seen in the geometry <strong>of</strong> arrangement <strong>of</strong> -10 & -35 hexamer sequences,<br />

the principal recognition elements for RNAP holoenzyme. The consensus spacer length<br />

<strong>of</strong> 17bp aligns the two hexamer sequences in an optimal orientation for RNAP binding.<br />

Variations in the spacer length would require changes <strong>of</strong> twist (Figure 5) for optimal<br />

alignment <strong>of</strong> the –10 and –35 elements.<br />

Figure 5: Schematic representation <strong>of</strong> core promoters with different spacer length.<br />

1.2.3 DNA Supercoiling and mechanisms regulating it<br />

The DNA inside the cell adopts many different structural forms to suit differenet<br />

processes like transcription, replication, recombination etc. All the different processes<br />

pose a challenge to maintain the lengthy polymer (DNA) intact and compact. Since the<br />

movements <strong>of</strong> individual nucleotides in the polymer have only certain degrees <strong>of</strong><br />

freedom, the compensatory adjustments to relieve the helical tension are realized <strong>by</strong><br />

coiling <strong>of</strong> one double helix over the other, at which the DNA is said to be ‘supercoiled’.<br />

The supercoiling can either be positive or negative. The supercoiling is said to be<br />

negative when the DNA strands are under-wound, that is, each 360 o twist <strong>of</strong> DNA will<br />

9


INTRODUCTION<br />

have more base-pairs than there would be in a relaxed molecule <strong>of</strong> DNA (10.4 bp/turn).<br />

The superhelical tension can be relieved <strong>by</strong> nicking one <strong>of</strong> the strands <strong>of</strong> DNA, rotating<br />

and re-ligating the strands. The other option would be to convert the helical tension <strong>of</strong><br />

the twist into writhe, <strong>by</strong> which the DNA attains the supercoiled form. The writhe in the<br />

case <strong>of</strong> negative supercoiling will be right-handed. The DNA is said to be positively<br />

supercoiled when there are fewer base-pairs per helical turn compared to a relaxed<br />

molecule. The superhelical tension <strong>of</strong> twist in this case can be relieved <strong>by</strong> introducing<br />

left-handed writhe.<br />

The supercoiling <strong>of</strong> the DNA can be described using three parameters: [1]<br />

Linking number (Lk) – an integer value which refers to the number <strong>of</strong> times the two<br />

strands make a 360 o turn [2] Twist (Tw) – a real number denoting the winding <strong>of</strong><br />

strands around the helical axis [3] Writhe (Wr) – a real number which denotes the<br />

supercoils in the DNA. The three parameters are related as follows: Linking number =<br />

Twist + Writhe (Lk = Tw + Wr). As said before, most DNA in vivo is negatively<br />

supercoiled. The relative degree to which a molecule is supercoiled can be expressed as<br />

the specific linking difference or superhelical density (σ). This quantity gives a lengthindependent<br />

measure <strong>of</strong> the level <strong>of</strong> supercoiling, σ = (Lk - Lk o )/Lk o .<br />

According to ‘twin supercoiled domain’ model, transcription <strong>gene</strong>rates positive<br />

supercoils in front <strong>of</strong> the transcribing RNAP complex and negative supercoiling behind<br />

it [Liu and Wang, 1987; Wu et al., 1988]. Topoisomerases are the enzymes which take<br />

care <strong>of</strong> these two domains <strong>of</strong> superhelical tension. There are four topoisomerases in<br />

E.coli. Topoisomerase II (gyrase, product <strong>of</strong> gyrA and gyrB <strong>gene</strong>s) introduces negative<br />

supercoils while the other three topoisomerases, topoisomerase I (topA <strong>gene</strong> product),<br />

III (topB <strong>gene</strong> product) and IV (parC and parE <strong>gene</strong> product) relax negative supercoils.<br />

Gyrase, topoisomerase I & IV are held responsible for maintaining the supercoiled state<br />

<strong>of</strong> the DNA while topoisomerases III mainly manages decatenation reactions [Hiasa and<br />

Marians, 1994].<br />

The negatively supercoiled DNA inside the cell is maintained at a steady state<br />

level <strong>by</strong> the actions <strong>of</strong> gyrase, topoisomerases I and topoisomerase IV [ Menzel et al.,<br />

1983; Zechiedrich et al., 2000] within + 15% range <strong>of</strong> normal mean value [Drlica et al.,<br />

1992]. The feedback mechanisms involved in the <strong>expression</strong> <strong>of</strong> gyrA, gyrB (active at<br />

10


INTRODUCTION<br />

low negative supercoiling) [Menzel et al., 1983] and topA (active at high supercoiling<br />

levels) [Tse-Dinh, 1985] and the requirement <strong>of</strong> ATP for gyrase activity can be<br />

considered as two mechanisms <strong>by</strong> which homeostasis is conferred. Among these two<br />

mechanisms, activity <strong>of</strong> the enzyme as compared to <strong>expression</strong> <strong>of</strong> the enzyme was<br />

shown to be more decisive for homeostatic control <strong>of</strong> supercoiling [Snoep et al., 2002].<br />

The discussed control primarily pertains to <strong>regulation</strong> <strong>of</strong> the unrestrained<br />

supercoiling inside the cell which engages about 50% <strong>of</strong> the total DNA. The other half<br />

is restrained <strong>by</strong> chromatin proteins and RNAP. Most <strong>of</strong> our understanding <strong>of</strong> the<br />

physiology <strong>of</strong> supercoiling comes from modulation <strong>of</strong> activity or mutational studies <strong>of</strong><br />

topoisomerases, which predominantly work with unrestrained fraction <strong>of</strong> the DNA<br />

supercoils. A proper understanding <strong>of</strong> the role <strong>of</strong> supercoiling in global <strong>gene</strong> <strong>expression</strong><br />

requires the understanding <strong>of</strong> mechanisms that determine the partitioning between<br />

constrained and unconstrained supercoils.<br />

1.2.4 Supercoiling and growth transitions<br />

In E.coli different growth phases are characterized <strong>by</strong> different global supercoiling<br />

levels <strong>of</strong> DNA, where<strong>by</strong> the unconstrained supercoiling levels are maintained at a<br />

constant level <strong>by</strong> the topoisomerases during a particular growth phase. The transitions<br />

between growth phases, accompanied <strong>by</strong> changes in metabolism modulate supercoiling<br />

levels to a new equilibrium. Also conspicuous in modulating the supercoiling changes is<br />

the binding <strong>of</strong> abundant chromatin proteins [Balke et al., 1987; Schneider et al., 1997].<br />

Chromatin proteins acting as transcriptional regulators are also implicated in<br />

regulating the transcription <strong>of</strong> topoisomerase <strong>gene</strong>s [Schneider et al., 1999; Gomez-<br />

Eichelmann & Camacho-Carranza, 1995]. Notably, stressful stimuli like osmotic or<br />

temperature shifts in the external environment are also known to elicit rapid changes in<br />

the superhelical density <strong>of</strong> DNA within the cell [Cheung et al., 2003; Tse-Dinh et al.,<br />

1997].<br />

11


INTRODUCTION<br />

Figure 6: Graphical representation <strong>of</strong> global DNA topology changing with growth.<br />

The dotted line traces the typical growth curve <strong>of</strong> E.coli in batch culture. Electron microscopy pictures <strong>of</strong><br />

plasmids with different supercoiling are shown. ME, TS and LS stands for phases <strong>of</strong> growth - mid<br />

exponential, transition to stationary and late stationary phase respectively.<br />

1.2.5 The nucleoid associated proteins – major players in global<br />

<strong>gene</strong> <strong>expression</strong> <strong>regulation</strong><br />

Histones are the predominant structural proteins <strong>of</strong> the eukaryotic chromatin, while in<br />

E.coli there are a dozen so-called “histone-like” proteins involved in spatial<br />

organization <strong>of</strong> the nucleoid. About half <strong>of</strong> them are considered to be important in<br />

shaping the nucleoid based on their abundance. The difference between the core group<br />

<strong>of</strong> NAPs and the other proteins that bind to DNA is in the lack <strong>of</strong> clear consensus<br />

binding sequence for the NAPs. Some <strong>of</strong> the NAPs do have a reasonable consensus<br />

binding sequence, while binding <strong>of</strong> the others is dependent on inexplicit sequence<br />

organization combined with topological parameter, like bent/curved DNA. In addition<br />

to providing spatial organization <strong>of</strong> the nucleoid, NAPs also contribute to DNA<br />

transactions such as replication, recombination and transcription.<br />

The regulatory roles <strong>of</strong> nucleoid proteins in DNA functions thus include<br />

modulation <strong>of</strong> the genome conformation as a whole but also more direct effect on the<br />

local conformation <strong>of</strong> specific DNA regions or even direct interaction with other protein<br />

components. For instance, the three FIS dimers binding at the tyrT promoter, may act as<br />

12


INTRODUCTION<br />

a trap for the bound RNAP directing it to the transcription start site [Muskhelishvili et<br />

al., 1995]. In addition, FIS directly interacts with the α subunit <strong>of</strong> polymerase [Bokal et<br />

al., 1995].<br />

Figure 7: Abundance <strong>of</strong> NAP during different phases <strong>of</strong> growth [Ali Azam et al., 1999].<br />

Growth phase-dependent change in the NAP composition <strong>of</strong> the nucleoid<br />

translates into alterations in the chromatin structure and corresponding growth phasespecific<br />

<strong>gene</strong> <strong>expression</strong>. About 50 thousand FIS molecules present in the exponential<br />

phase bind throughout the genome. By wrapping the DNA around it [Maurer et al.,<br />

2006] FIS mimics high negative superhelicity, there<strong>by</strong> redirecting the DNA tension to<br />

individual <strong>gene</strong> promoters. FIS can also indirectly modulate the activity <strong>of</strong> gyrase<br />

[Muskhelishvili & Travers, 2003] which introduces hypernegative supercoiling<br />

depending on the ATP/ADP ratio which is highest during exponential growth<br />

[Lockshon & Morris, 1983; Balke et al., 1987]. FIS also stimulates chromosome<br />

replication form oriC [Gille et al., 1991] and transcription from rRNA and tRNA (stable<br />

RNA) promoters [Nachaliel et al., 1989]. H-NS is another well-charecterised chromatin<br />

protein whose overproduction leads to condensation <strong>of</strong> chromosome and decreases the<br />

availability <strong>of</strong> supercoils to RNAP [Dame et al., 2001] <strong>by</strong> binding to curved DNA<br />

sequences and there<strong>by</strong> effectively repressing <strong>gene</strong> transcription. Ali Azam et al., have<br />

13


INTRODUCTION<br />

shown that H-NS reaches a maximum <strong>of</strong> 20,000 molecules per cell during exponential<br />

phase <strong>of</strong> growth and thereafter decreases to 40% <strong>of</strong> the maximum at the late stationary<br />

phase. Another NAP, HU, considered as prokaryotic counterpart <strong>of</strong> HMG box proteins<br />

<strong>of</strong> eukaryotes is comparable in abundance to FIS during early exponential growth. HU<br />

bends DNA substantially and it has been proposed that replacing <strong>of</strong> H-NS <strong>by</strong> HU on a<br />

plectonemic DNA would change it to more untwisted form, making the DNA more<br />

transcriptionally active [Travers & Muskhelishvili, 2007].<br />

Changing <strong>of</strong> the concentration <strong>of</strong> NAPs represents one <strong>of</strong> the mechanisms to<br />

regulate the growth transitions. It also brings in more versatility <strong>by</strong> virtue <strong>of</strong> its<br />

coordination with other global mechanisms modulating the growth.<br />

1.2.6 Composition <strong>of</strong> RNAP also changes with growth<br />

The major enzyme for E.coli <strong>gene</strong> <strong>expression</strong>, DNA dependent RNA polymerase is one<br />

<strong>of</strong> the functionally best studied enzymes. The core enzyme contains five subunits: β’<br />

(1407 amino acids), β (1342 amino acids), a dimer <strong>of</strong> α (329 amino acids each) and an<br />

ω subunit (91 amino acids). The β’ & β subunits appear to be responsible for the<br />

catalytic function <strong>of</strong> the enzyme. The two α subunits are involved in the stabilization <strong>of</strong><br />

promoter binding and the ω subunit is implicated in the core enzyme assembly [Burgess<br />

et al., 1969]. Though the core enzyme is catalytically pr<strong>of</strong>icient, initiation is only<br />

possible when the core associates with one <strong>of</strong> the 7 specificity factors, the sigma (σ)<br />

subunit, to form the holoenzyme.<br />

The association <strong>of</strong> different σ subunits is modulated <strong>by</strong> concentration <strong>of</strong><br />

growth dependent regulatory nucleotide ppGpp and production <strong>of</strong> anti-sigma factors.<br />

While Eσ 70 predominate the transcription during exponential phase <strong>of</strong> growth, Eσ S<br />

transcribes most <strong>of</strong> the <strong>gene</strong>s during stationary phase. The differences in <strong>gene</strong> selection<br />

<strong>by</strong> different holoenzymes can be attributed to the templates topology [Kusano et al.,<br />

1996], Eσ 70 preferring more supercoiled templates than Eσ S [Bordes et al., 2003]. Also,<br />

the <strong>expression</strong> <strong>of</strong> different sigma factors depends on supercoiling [Peter et al., 2004].<br />

14


INTRODUCTION<br />

Furthermore, <strong>expression</strong> <strong>of</strong> a σ factor (σ 70 ) can in turn affect the global topology <strong>of</strong><br />

DNA [Geertz et al., 2007].<br />

Figure 8: Growth phase-coupled change in the level <strong>of</strong> different forms <strong>of</strong> the RNA polymerase.<br />

(RpoD: sigma70; RpoN: sigma54; RpoS: sigma35; RpoH: sigma32 ; RpoF: sigma28; RpoE: sigma24;<br />

FecI: sigma19)[Ishihama et al., 1999].<br />

1.3 Organization <strong>of</strong> global transcription - coordinated view<br />

The previous sections addressed the growth dependent alterations in factors having a<br />

global influence including DNA superhelical density, abundant DNA binding proteins<br />

and the transcription machinery. The present section describes interactions between<br />

these global regulators under variety <strong>of</strong> conditions where they exert their control.<br />

The E.coli genome compacted ~1000 times inside the cell manages to<br />

coordinate <strong>gene</strong> <strong>expression</strong> with growth phase <strong>by</strong> forming spatially differentiated<br />

domains. Domains, defined as topological barriers preventing diffusion <strong>of</strong> supercoiling,<br />

are dynamic entities. Reported domain sizes vary from 10 to 100 kb (kilo base-pairs)<br />

per domain [Postow et al., 2004; Sinden & Pettijohn, 1981]. The topological barriers<br />

15


INTRODUCTION<br />

formed as a repercussion <strong>of</strong> active transcription from highly transcribed <strong>gene</strong> <strong>by</strong><br />

removing any previously established DNA attachments would <strong>gene</strong>rate barriers near the<br />

transcription terminus [Deng et al., 2005]. Barrier formation is also altered <strong>by</strong> abnormal<br />

activities <strong>of</strong> gyrase and topoisomerase IV enzymes [Staczek & Higgins, 1998].<br />

Scattered binding sites for NAPs in the genome may also act as regions where proteins<br />

bind to prevent the diffusion <strong>of</strong> supercoiling.<br />

DNA supercoiling itself might act as a principal coordinator <strong>of</strong> global <strong>gene</strong><br />

<strong>expression</strong> [Balke & Gralla, 1987; Dorman, 1996; Tse-Dinh et al., 1997; Cheung et al.,<br />

2003; Travers & Muskhelishvili, 2005b]. Recent enumeration <strong>of</strong> number <strong>of</strong> supercoiling<br />

sensitive <strong>gene</strong>s in the E.coli genome found only 8% <strong>of</strong> the total <strong>gene</strong>s to be associated<br />

with supercoiling [Peter et al., 2004]. However the observed role <strong>of</strong> supercoiling in<br />

many distinct processes such as sigma factor recognition, transcription termination,<br />

sensing <strong>of</strong> stress and nutritional status appeal to a much wider influence <strong>of</strong> supercoiling.<br />

Furthermore, recent study <strong>of</strong> the experimental evolution <strong>of</strong> E.coli populations identified<br />

supercoiling as a key target for evolution and mutations in topA & fis <strong>gene</strong>s were found<br />

to conferred increased fitness [Crozat et al., 2005].<br />

The supercoiling transitions during growth are tightly coupled to the changing<br />

NAP composition and abundance. During early exponential phase the nucleoid is<br />

composed <strong>of</strong> FIS, HUα2 and H-NS proteins, to be succeeded <strong>by</strong> HUαβ and H-NS in the<br />

transition between exponential and stationary phase, and finally <strong>by</strong> IHF and Dps in late<br />

stationary phase. Among these FIS, HU, HNS constrain different amounts <strong>of</strong><br />

supercoiling [Travers & Muskhelishvili, 2005a], resulting in a change <strong>of</strong> plasmid DNA<br />

supercoiling when the constraining proteins are eliminated [Schneider et al., 1997;<br />

Berger M et al., unpublished; Blot et al., 2006]. FIS binds to the DNA as a dimer and<br />

can bend DNA <strong>by</strong> 50-90 o [Pan et al., 1996]. Low amount <strong>of</strong> FIS binding has a distinct<br />

effect on the architecture <strong>of</strong> DNA compared to multiple FIS binding. Low amounts <strong>of</strong><br />

FIS lead to the formation <strong>of</strong> branches on the supercoiled DNA, while binding in large<br />

amounts it compacts the DNA [Schneider et al., 2001]. HU present in comparable<br />

amounts to FIS binds non-specifically to supercoiled DNA and to structurally distorted<br />

DNA [Pontiggia et al., 1993]. H-NS present in 20,000 copies binds patches <strong>of</strong> DNA<br />

with a preference for A/T rich tracts and functions as a <strong>gene</strong>ral repressor <strong>of</strong> transcription<br />

16


INTRODUCTION<br />

[Rimsky et al., 2001]. At similar superhelical density HU and H-NS can exert opposite<br />

effect on the transcription. HU binds and bends DNA resulting in a decrease in pitch<br />

angle (the angle between two adjacent major grooves), while H-NS binding leads to an<br />

increase in pitch angle. Replacing HU <strong>by</strong> H-NS on a plectonemic DNA would lead to<br />

over twisting <strong>of</strong> the DNA rendering it less transcriptionally active [Travers &<br />

Muskhelishvili, 2007].<br />

The transcription <strong>of</strong> stable RNA <strong>gene</strong>s is one <strong>of</strong> the determining elements <strong>of</strong><br />

growth rate. The promoters <strong>of</strong> tyrT and rrnA P1 (exemplary stable RNA promoters) are<br />

an excellent model systems to fathom the intricacies <strong>of</strong> the interactions among the<br />

global regulators on a miniaturized location. The unique promoter architecture<br />

involving a GC rich discriminator confers ‘stringent response’ and ‘growth-rate control’<br />

[Travers, 1980] imposing a need for negative superhelicity for promoter activity<br />

[Pemberton et al., 2000]. During stringent response, a result <strong>of</strong> amino acid starvation,<br />

the regulatory nucleotide ppGpp accumulates and inhibits the synthesis <strong>of</strong> rRNA<br />

operons <strong>by</strong> blocking the RNAP at the initiation step. Growth-rate control is essentially a<br />

phenomenon <strong>of</strong> balanced exponential growth controlled <strong>by</strong> a combination <strong>of</strong> promoter<br />

elements (a suboptimal spacer region and -35 hexamer sequences) and a need for UAS<br />

bound <strong>by</strong> activator protein, FIS. Binding <strong>of</strong> H-NS counteracts activation <strong>by</strong> FIS<br />

[Tippner et al., 1994]. Thus it appears that the NAPs on binding DNA exert both global<br />

and local effects. It was <strong>of</strong> interest therefore to investigate, whether the growth phasedependent<br />

patterns <strong>of</strong> transcription are associated with NAP-dependent changes in<br />

distributions <strong>of</strong> effective superhelicity.<br />

17


MATERIALS AND METHODS<br />

2 Materials and methods<br />

2.1 Materials<br />

2.1.1 Enzymes & chemicals<br />

Unless otherwise stated, chemicals were procured from Applichem GmbH and Sigma-<br />

Aldrich.<br />

Lysozyme (100 000 U/mg)<br />

Restriction & nicking enzymes<br />

Taq polymerase<br />

Reverse transcriptase:<br />

Superscript II & MLV-RT<br />

Random primers (3 μg/μl)<br />

DNase I<br />

Vaccinia Topoisomerase I<br />

RNA polymerase<br />

Cyanine 3 and Cyanine 5 dyes<br />

Merck<br />

New England Biolabs<br />

New England Biolabs<br />

Invitrogen<br />

Invitrogen<br />

Qiagen & Ambion<br />

EPICENTRE ® Biotechnologies<br />

Bohreinger Manhein & Purified in house<br />

(Geertz, M)<br />

Cy3-dCTP and Cy5-dCTP from GE healthcare<br />

UK limited.<br />

CyDye3 dCTP and CyDye5 dCTP from<br />

Amersham Biosciences UK limited.<br />

18


MATERIALS AND METHODS<br />

dNTPs (25 μmol)<br />

NTPs<br />

Agarose<br />

Roche<br />

Roche<br />

Roti ® garose from Carl Roth GmbH, Germany.<br />

2.1.2 Antibiotics<br />

The following antibiotics were prepared as described <strong>by</strong> Sambrook et al. [Sambrook<br />

and Russell 2001]. The concentration <strong>of</strong> their stock solution and final working<br />

concentrations used are indicated below.<br />

Stock solution<br />

Working concentration<br />

Ampicillin 50 mg/ml in water 20 μg/ml<br />

Chloremphinicol 34 mg/ml in ethanol 25 μg/ml<br />

Tetracyclin 5 mg/ml in ethanol 10 μg/ml<br />

Kanamycin 10 mg/ml in water 10 μg/ml<br />

2.1.3 Media<br />

The media were prepared as described <strong>by</strong> Sambrook et al. Composition to prepare one<br />

liter <strong>of</strong> media is given below.<br />

2x YT medium:<br />

Tryptone<br />

Yeast extract<br />

NaCl<br />

16 gm<br />

10 gm<br />

5 gm<br />

LB medium:<br />

Tryptone<br />

Yeast extract<br />

10 gm<br />

5 gm<br />

19


MATERIALS AND METHODS<br />

NaCl<br />

10 gm<br />

YT agar plates:<br />

Tryptone<br />

Yeast extract<br />

NaCl<br />

Agar<br />

8 gm<br />

5 gm<br />

5 gm<br />

15 gm<br />

2.1.4 Buffers and stock solutions<br />

TE buffer (pH 8.0):<br />

10mM Tris/HCl<br />

1mM EDTA<br />

TAE buffer (50X):<br />

242 gm <strong>of</strong> Tris base<br />

57.1 ml <strong>of</strong> glacial acetic acid<br />

100 ml <strong>of</strong> 0.5M EDTA (pH 8.0)<br />

TBE buffer (5X):<br />

54 gm <strong>of</strong> Tris base<br />

27.5 gm <strong>of</strong> boric acid<br />

20 ml <strong>of</strong> 0.5M EDTA (pH 8.0)<br />

Killing buffer:<br />

20 mM Tris-Cl (pH 7.5)<br />

5 mM MgCl 2<br />

20 mM Sodium azide<br />

10X in vitro transcription buffer:<br />

100 mM Tris-HCl (pH 8.0)<br />

2 M NaCl<br />

100 mM MgCl 2<br />

10 mM DTT<br />

20


MATERIALS AND METHODS<br />

1X in vitro transcription stop solution:<br />

1 mM EDTA<br />

50 mM sodium acetate<br />

0.2% SDS<br />

1X primer extension stop solution:<br />

50% (v/v) glycerol<br />

10 mM EDTA (pH 8.0)<br />

0.25% (w/v) bromophenol blue<br />

0.25% (w/v) xylene cyanol FF<br />

Lysozyme:<br />

10 mg/ml in 10 mM Tris-Cl (pH 8.0)<br />

6X gel loading solution:<br />

0.25% (w/v) bromophenol blue<br />

0.25% (w/v) xylene cyanol FF<br />

40% (w/v) sucrose in water<br />

Norfloxacin:<br />

20 mg/ml stock prepared in 0.5M sodium hydroxide solution.<br />

2.1.5 Bacterial strains<br />

Table 1: Bacterial strains used<br />

Strain Genotype Reference<br />

CSH50 1<br />

ara ∆(lac pro) thi<br />

Miller, JH (1972), cold<br />

spring hrbr prs.<br />

CSH50 ∆fis CSH50 fis::kan (rpsL) Koch et al., 1988<br />

CSH50 ∆hns CSH50 hns-205::Tn10 P1 transduction <strong>of</strong><br />

CSH50 with hns-<br />

205::Tn10 from<br />

MC4100 2 hns-205::Tn10<br />

21


MATERIALS AND METHODS<br />

LZ41 3<br />

pyrF287 nirA trpR72 iclR7 gal25 Zechiedrich et al., 2000<br />

rpsL195 top10 ∆ (P80 xis1 cI857)<br />

parC K84 Kan R<br />

LZ54 3<br />

pyrF287 nirA trpR72 iclR7 gal25<br />

rpsL195 top10 ∆ (P80 xis1 cI857)<br />

gyrA L83 zei-723::Tn10Kan<br />

Zechiedrich et al., 2000<br />

LZ23 4<br />

F- thr-1 leu-6 thi-1 lacY1 supE44 Khodursky et al., 1995<br />

tonA21 gyrA L83 zei-723::Tn10 Tet<br />

Kan R<br />

LZ41 ∆fis LZ41 ∆fis::Cm P1 transduction <strong>of</strong> LZ41<br />

with ∆fis::Cm from<br />

CSH50 ∆fis::Cm<br />

LZ54 ∆fis LZ54 ∆fis::Cm P1 transduction <strong>of</strong> LZ54<br />

with ∆fis::Cm from<br />

CSH50 ∆fis::Cm<br />

LZ23 ∆fis LZ23 ∆fis::Cm P1 transduction <strong>of</strong> LZ23<br />

with ∆fis::Cm from<br />

CSH50 ∆fis::Cm<br />

LZ41 ∆hns LZ41 hns-205::Tn10 P1 transduction <strong>of</strong> LZ41<br />

with hns-205::Tn10 from<br />

MC4100 hns-205::Tn10<br />

LZ54 ∆hns LZ54 hns-205::Tn10 P1 transduction <strong>of</strong> LZ54<br />

with hns-205::Tn10 from<br />

MC4100 hns-205::Tn10<br />

1 E.coli K12 derivative<br />

2 F- araD139 D (argF-lac) U169 deoC1 rpsL150 ralA1 flbB5301 ptsF25 rbsR<br />

3 Derivative <strong>of</strong> RS2λ (pyrF287 nirA trpR72 iclR7 gal25 rpsL195 top10 ∆ (P80 xis1 cI857))<br />

4 Derivative <strong>of</strong> C600 (F- thr-1 leu-6 thi-1 lacY1 supE44 tonA21)<br />

2.1.6 Plasmids<br />

ptyrTlac [Lazarus & Travers, 1993]<br />

ptyrTD [Lazarus & Travers, 1993]<br />

ptyrT35U [Lazarus & Travers, 1993]<br />

22


MATERIALS AND METHODS<br />

ptyrTS [Schneider et al., 2000b]<br />

∆61 constructs <strong>of</strong> ptyrTlac, ptyrTD, ptyrT35U, ptyrTS [Auner et al., 2003]<br />

pUC18 [Yanisch-Perron et al., 1985]<br />

2.1.7 Primers<br />

Primers for RT-PCR:<br />

Forward<br />

Reverse<br />

aceB CGAGCAGGAGAAGCAAATTC GCGCTGCCAGAAGTTTATTG<br />

glcB TATACGGCAGCGACATCATC CAGCGGTAGAGATTCATCGAG<br />

purC TGATCGCAAAGGTATGGTGA<br />

AGCAGACGCTCCATTTGAGT<br />

purF ATGCCTTAACGGTGCTTCAG GGCGAGCTTCAAATACATCG<br />

purK AAAGCGTGATTACCGCTGAG<br />

sdhD CGTTCACCAAAGTGTTCACC<br />

GGTCAGCAATAATCGGGAAC<br />

CCAGCGGTTTAACGTAGTCG<br />

sucC CAAAGTGAAAGCCGTTCTGG AACACCCACTTCTGCTACCG<br />

Primers for primer extension:<br />

Ex103 GGAATGTGTAAGAGCGGGG<br />

G11<br />

bla<br />

GAGCAGTGCCGCTTCGC<br />

CAGGAAGGCAAAATGCCCC<br />

23


MATERIALS AND METHODS<br />

2.2 Methods<br />

2.2.1 Agarose gel electrophoresis<br />

Electrophoretic separation <strong>of</strong> DNA was carried out using 0.8-1.5% (w/v) agarose gels<br />

prepared in 1X Tris-borate (TBE) or Tris-acetate buffer (TAE). The gel buffer and<br />

running buffer are identical. For all applications (except for topology gels) ethidium<br />

bromide (0.3 μg/ml) was mixed with the gel before casting. Various size <strong>of</strong> gel<br />

chambers (8 X 10 to 19.5 X 19.5 cm) were used to cast the gel and the DNA to be<br />

separated was mixed with 1/6 th the volume <strong>of</strong> loading dye, with size markers (λ pst, see<br />

below) when necessary. Separation was carried out at 0.5 V/cm for topology gels and at<br />

1-5 V/cm for other purposes. Subsequently gels were observed under UV light in gel<br />

documentation equipment (Biodoc analyze from Biometra ® ) and photographed when<br />

necessary.<br />

DNA ladder for size marker was obtained <strong>by</strong> digesting overnight 25 μg <strong>of</strong> λ<br />

DNA (New England Biolabs) with PstI restriction enzyme in an appropriate buffer at<br />

37 o C.<br />

2.2.2 Small and medium scale isolation <strong>of</strong> plasmid DNA using<br />

Qiagen kit<br />

Small and medium scale plasmid isolation was performed using QIAprep Spin<br />

Miniprep Kit and QIAGEN Plasmid Maxi Kit respectively <strong>by</strong> following the<br />

manufacturer’s instruction. The E.coli cultured in 2X YT and LB has been used for<br />

extracting plasmid.<br />

24


MATERIALS AND METHODS<br />

2.2.3 Restriction Digestion<br />

Digestions <strong>of</strong> DNA with restriction enzymes were performed according to<br />

manufacturer’s instructions using recommended buffer systems and at the appropriate<br />

reaction temperatures. Generally, 2-10 units <strong>of</strong> enzymes were used per μg <strong>of</strong> DNA.<br />

Plasmid DNA was usually digested for 1-3 hours and the completion <strong>of</strong> the reaction<br />

monitored <strong>by</strong> gel electrophoresis.<br />

2.2.4 Polymerase chain reaction<br />

PCR was primarily employed to extend the labeled primer (2 pmol) from a footprinted<br />

DNA template (around 1 μg). In a reaction volume <strong>of</strong> 20 μl, using Taq polymerase and<br />

1mM final concentration <strong>of</strong> dNTP mix, the reaction was performed for 6-9 cycles. The<br />

reaction conditions were as follows: Denaturation at 94 o C for 30 seconds, annealing at<br />

52 o C for 1 minute, elongation at 72 o C for 1 minute.<br />

2.2.5 Preparation <strong>of</strong> competent E.coli cells using calcium chloride<br />

Calcium chloride competent cells used for transforming plasmids into E.coli were<br />

prepared following the protocol described <strong>by</strong> Sambrook et al. [Sambrook and Russell<br />

2001]. The competent cells prepared was stored at -80 o C in aliquots <strong>of</strong> 100 μl.<br />

2.2.6 Transformation <strong>of</strong> E.coli cells<br />

Transformation <strong>of</strong> plasmids into E.coli was performed as described <strong>by</strong> Sambrook et al.<br />

[Sambrook and Russell 2001] using calcium chloride competent cells. The standard<br />

protocol was followed except for different heat shock temperature. Heat shock was<br />

25


MATERIALS AND METHODS<br />

given using a heating block (Eppendorf® Thermomixer Compact T1442) at 37 o C for<br />

LZ strains and at 42 o C for CSH50 strains.<br />

2.2.7 Purification <strong>of</strong> nucleic acids <strong>by</strong> Phenol: Chlor<strong>of</strong>orm<br />

extraction<br />

Purification <strong>of</strong> nucleic acids <strong>by</strong> phenol: chlor<strong>of</strong>orm was performed as described in<br />

Sambrook et al [Sambrook and Russell 2001].<br />

2.2.8 Concentrating and quantification <strong>of</strong> nucleic acids<br />

The DNA and RNA were concentrated <strong>by</strong> ethanol precipitation method as described <strong>by</strong><br />

Sambrook et al., [Sambrook and Russell 2001] differing from the standard protocol in<br />

the salts used and the final drying step. When concentrating DNA the salt solution used<br />

was 1/10 th volume <strong>of</strong> sodium acetate (pH 5.2) and in the case <strong>of</strong> RNA 1/5 th the volume<br />

<strong>of</strong> ammonium acetate was used. Finally the pellet <strong>of</strong> nucleic acid was either air dried <strong>by</strong><br />

keeping the tube open at room temperature or dried using a speedvac (Eppendorf ®<br />

Vacufuge concentrator 5301). Quantification <strong>of</strong> the nucleic acids was done using<br />

Nanodrop (ND-1000 Spectrophotometer).<br />

2.2.9 Polyacrylamide sequencing gels<br />

The preparation and resolving, <strong>of</strong> DNA probes and sequencing reaction products, was<br />

performed as described <strong>by</strong> Sambrook et al., using 6% polyacrylamide gels (composition<br />

for 500 ml: 210 gm urea, 50 ml 5X TBE, 74 ml Rotiphorex 40 (Carl Roth GmbH).<br />

26


MATERIALS AND METHODS<br />

2.2.10 Growth curves and norfloxacin treatment<br />

The growth curves for CSH50 and LZ strains were <strong>gene</strong>rated from two overnight<br />

cultures; the first one was in LB and the second in 2X YT medium. The second<br />

overnight culture was diluted 1:200 times in appropriate volume <strong>of</strong> 2X YT and<br />

incubated at 37 o C in the case <strong>of</strong> CSH50 strains and at 30 o C for LZ strains, with shaking<br />

at 150rpm. The optical density measurements (OD) were recorded at 600nm wavelength<br />

(using Eppendorf ® Biophotometer). Sampling <strong>of</strong> cultures was carried out <strong>by</strong> pipetting<br />

the required volume <strong>of</strong> culture into frozen falcon tubes pre-filled with 1/3 volume <strong>of</strong><br />

killing buffer in it. The tubes were centrifuged at 5000 rpm for 5 minutes to obtain the<br />

pellets <strong>of</strong> bacteria which was immediately frozen using liquid nitrogen and<br />

subsequently stored in -80 o C until further use.<br />

Norfloxacin treatment <strong>of</strong> LZ strains was performed as described below.<br />

Norfloxacin at a final concentration <strong>of</strong> 20 μg/ml was added to mid exponentially<br />

growing cells at OD600 around 0.6 to induce the supercoiling changes. After addition<br />

<strong>of</strong> norfloxacin the cultures were incubated for another 5 minutes at 30 o C with shaking,<br />

before being sampled as described above.<br />

2.2.11 Extraction and quality check <strong>of</strong> total RNA<br />

Total RNA from E.coli cells, used here mainly for synthesis <strong>of</strong> cDNA for various<br />

applications such as microarray hybridization, PCR and for primer extension<br />

experiments, was extracted using RNeasy Mini kit following the manufacturers<br />

instruction. To eliminate even small DNA contamination from RNA preparations,<br />

DNase treatment was performed twice. The first DNase treatment was done on the<br />

RNeasy column (part <strong>of</strong> the RNeasy kit protocol) and once after the final elution from<br />

the column, using DNA-free from Ambion. Handling <strong>of</strong> RNA was done using<br />

nuclease free tips and tubes from Ambion. All the buffers and water used were RNase<br />

free procured either as a part <strong>of</strong> the kit or from Ambion (Buffer kit, catalog number<br />

9010). After the second DNase treatment, the RNA solution was extracted once <strong>by</strong><br />

27


MATERIALS AND METHODS<br />

phenol: chlor<strong>of</strong>orm method as described above to get rid <strong>of</strong> DNase removal reagent.<br />

The RNA was then quantified and precipitated <strong>by</strong> ethanol precipitation and then redissolved<br />

in appropriate volume <strong>of</strong> nuclease free water so as to obtain a RNA<br />

concentration appropriate for the application (for microarrays the concentration was<br />

maintained at around 6 μg/ml and for all other applications at 1 μg/ml). The quality <strong>of</strong><br />

the RNA was checked <strong>by</strong> agarose gel electrophoresis and Agilent 2100 Bioanalyzer.<br />

2.2.12 Microarray hybridization<br />

Whole genome E.coli K12 cDNA microarrays used in this study were purchased from<br />

MWG biotech (E.coli K12 arrays) & Ocimum biosolutions (E.coli K12 OciChip). The<br />

cDNA synthesis was performed as described in the MWG/Ocimum’s standardized<br />

protocols. After cDNA synthesis, the hybridization was performed in a moist chamber,<br />

at a temperature <strong>of</strong> 42 o C and with a mild shaking (40 rpm) for 16 to 18 hours. After<br />

hybridization the microarray slides are subjected to three consecutive washing steps as<br />

describe in the manual. Then the slides were dried and scanned at two wavelengths,<br />

550nm for Cy3 and 640nm for Cy5, using ScanExpress confocal laser scanner<br />

(PerkinElmer). The scanner <strong>gene</strong>rates TIFF images <strong>of</strong> the microarray with individual<br />

spots showing relative amounts <strong>of</strong> Cy3 and Cy5 in each spot. Images were quantified<br />

using freely available Spotfinder s<strong>of</strong>tware from TIGR [Saeed et al., 2003]. Figure 9<br />

shows a schematic representation <strong>of</strong> the microarray experiment.<br />

The experiment was always carried out with two biological and technical<br />

replicates. The wild-type and the fis comparison shown below when repeated <strong>by</strong><br />

interchanging the Cy3 to fis mutant and Cy5 to wild-type forms a technical replicate<br />

while a biological replicate is when the whole microarray experiment is repeated anew<br />

staring from the bacterial culture. Each biological replicate consists <strong>of</strong> at least one<br />

technical replicate.<br />

28


MATERIALS AND METHODS<br />

Figure 9: Overview <strong>of</strong> comparative <strong>gene</strong> <strong>expression</strong> <strong>of</strong> wild-type & fis (example) analysis using<br />

microarrays.<br />

2.2.13 Microarray analysis<br />

The scanned images <strong>of</strong> the spots on the arrays after quantification have to be subjected<br />

to normalization before any comparison <strong>of</strong> the <strong>gene</strong> <strong>expression</strong> is possible.<br />

Normalization <strong>of</strong> the spot intensity for a particular dye (Cy3 or Cy5) to the combined<br />

total intensity <strong>of</strong> that dye in all the spots <strong>of</strong> the array has to be performed for several<br />

reasons. It allows for comparison between microarray slides & between experiments<br />

and is necessary to eliminate the inherent difference in the intensities <strong>of</strong> Cy3 & Cy5<br />

fluorophores.<br />

Scanned array images were analyzed using the TM4 s<strong>of</strong>tware package from<br />

TIGR [Saeed et al., 2003]. The first step in the analysis, to quantify the spots and to do a<br />

quality check on the spots, was carried out using TIGR spotfinder s<strong>of</strong>tware. Briefly,<br />

spot intensities were quantified and quality <strong>of</strong> each spot was verified <strong>by</strong> calculating a<br />

quality control (QC) score depending on signal-to-noise ratio <strong>of</strong> both Cy3 and Cy5<br />

channels in the spot and shape quality <strong>of</strong> the spot. Then the p-values were calculated for<br />

each channel as result <strong>of</strong> a t-test comparing the spot pixel set and surrounding<br />

background pixel set still using the TIGR Spotfinder s<strong>of</strong>tware.<br />

29


MATERIALS AND METHODS<br />

Filtered (<strong>by</strong> spot intensity and spot quality) data was normalized <strong>by</strong> locally<br />

weighted linear regression [Cleveland and Devlin, 1988] and, a one-class t-test [Pan et<br />

al., 2002] was applied to the mean ratios (<strong>of</strong> wild-type to mutant or relaxed to<br />

hypernegative) from replicated experiments to obtain differentially regulated <strong>gene</strong>s with<br />

significant p-values (p < 0.05) using the TIGR MIDAS s<strong>of</strong>tware.<br />

Representation <strong>of</strong> regulated <strong>gene</strong>s in the form <strong>of</strong> genome wheels was<br />

accomplished using a web-based visualization tool called the Genome viewer. The webbased<br />

program can be accessed at the web site- http://www.cmbi.ru.nl/MGV/<br />

[Kerkhoven, 2004].<br />

2.2.14 Real-time PCR<br />

Each RT-PCR reaction was carried out in triplicates from the purified total RNA using<br />

QantiTect ® SYBR ® Green one-step Real-Time PCR reactions (Qiagen GmbH, Hilden,<br />

Germany) following the manual <strong>of</strong> manufacturer, using the instrument Mx3000P Real-<br />

Time cycler (Strata<strong>gene</strong> ® , La jolla, CA, USA).<br />

2.2.15 High resolution agarose gel electrophoresis and<br />

determination <strong>of</strong> sigma (σ)<br />

Separation <strong>of</strong> the pUC18 plasmid topoisomers and their supercoiling (σ) determination,<br />

<strong>by</strong> comparing with a plasmid topoisomer ladder, was performed using high-resolution<br />

agarose gel electrophoresis. Electrophoresis was carried out in 1% agarose gel with 1X<br />

TBE buffer and chloroquine in both the gel and the buffer. Different amount <strong>of</strong><br />

chloroquine (0.5μg/ml to 20μg/ml) was used for resolution <strong>of</strong> different topoisomers.<br />

The electrophoresis was performed at 4 o C for 24 hours at 40V. After electrophoresis,<br />

the gels were stained in ethidium bromide (0.5 μg/ml in water) and photographed.<br />

For the determination <strong>of</strong> sigma (σ), a ladder <strong>of</strong> plasmids with overlapping<br />

topoisomer distribution was <strong>gene</strong>rated <strong>by</strong> nicking the pUC18 plasmid DNA and then re-<br />

30


MATERIALS AND METHODS<br />

ligating them in the presence <strong>of</strong> different amount <strong>of</strong> ethidium bromide. Initially the<br />

plasmid was nicked using 20 units <strong>of</strong> Nt.BstNBI, for every 20μg <strong>of</strong> DNA in a reaction<br />

volume <strong>of</strong> 50μl according to manufacturers specification The nicked plasmids (2.5μg<br />

for each reaction) were then ligated using T4 DNA ligase in the presence <strong>of</strong> different<br />

amount <strong>of</strong> ethidium bromide (concentrations ranging from 800μg/ml to 2.5μg/ml were<br />

used) in an overnight reaction. The reaction products were then extracted twice with<br />

phenol: chlor<strong>of</strong>orm mixture, the DNA precipitated, pelleted and re-dissolved in 10μl <strong>of</strong><br />

TE pH 8.0. The σ values <strong>of</strong> the <strong>gene</strong>rated topoisomers were quantified <strong>by</strong> band counting<br />

method [Keller et al., 1975]. Briefly, mid-point <strong>of</strong> a completely relaxed plasmid (nicked<br />

and ligated without ethidium bromide) population was taken as a σ value <strong>of</strong> zero. Then<br />

<strong>by</strong> determining the mid-point <strong>of</strong> other plasmid topoisomers (ladder) and comparing it<br />

with the relaxed gives the linking number difference (∆Lk). From this the σ is<br />

calculated using the formula σ = ∆Lk / ∆Lk o , where ∆Lk o for pUC18 = 2686 bp / (10.4<br />

bp / turn) = 258. The σ values <strong>of</strong> the plasmids from different growth phase and LZ<br />

strains were determined <strong>by</strong> comparing with the ladder.<br />

2.2.16 In vitro transcription<br />

In vitro transcription was performed from supercoiled plasmids with distinct σ (ptyrT &<br />

ptyrTD) and linearized (∆61tyrT) plasmids. Linearized plasmids were obtained <strong>by</strong><br />

cutting the plasmid with 10 units <strong>of</strong> BamHI for every microgram <strong>of</strong> DNA for 1 hr. The<br />

different topoisomer <strong>of</strong> ptyrT & ptyrTD were obtained <strong>by</strong> incubating 20μg <strong>of</strong><br />

supercoiled plasmid with 25 units Vaccinia topoisomerase I in the presence <strong>of</strong> different<br />

ethidium bromide concentrations in topoisomerase buffer (10mM Tris (pH 8.0), 100mM<br />

NaCl, 20mM EDTA) for two hours at 37 o C.<br />

After obtaining the template, in vitro transcription was performed as described<br />

before [Lazarus & Travers, 1993] with 1μg <strong>of</strong> plasmid DNA, 1μl <strong>of</strong> 1 unit/μl RNAP<br />

(Bohreinger), 44nM FIS when indicated and 2.0mM NTP mix in a 50μl reaction<br />

volume. After the reaction, the RNA synthesized was extracted with phenol: chlor<strong>of</strong>orm<br />

and precipitated as described above. The pellet is dissolved in 10 or 20 μl <strong>of</strong> nuclease<br />

31


MATERIALS AND METHODS<br />

free water (Ambion) for subsequent use in the primer extension reaction (10 μl for each<br />

primer).<br />

2.2.17 Primer extension<br />

The mRNA from in vitro transcription <strong>of</strong> ∆61 tyrT constructs and from tyrT with<br />

different supercoiling was divided into two 10 μl parts to be used for primer extension<br />

with Ex103 (for tyrT transcript) and bla primers. Primer extension from total RNA from<br />

LZ strains transformed with different tyrT plasmids was performed with Ex103 and a<br />

collective primer for chromosomal rrn operon’s P1 promoter, G11, as described <strong>by</strong><br />

Nasser et al.,[Nasser et al., 2001].<br />

The primers (200 pmol) to be extended were radioactively labeled using 50 μci<br />

<strong>of</strong> P32 γ-ATP (Amersham Biosciences now a part <strong>of</strong> GE Healthcare) and T4<br />

polynucleotide kinase (PNK) (Invitrogen) in a reaction volume <strong>of</strong> 20μl and the labeled<br />

primer purified using G25 spin columns (GE healthcare, formerly Amersham<br />

Biosciences). Primer extension reaction was performed from 3 μg <strong>of</strong> total RNA or<br />

mRNA from in vitro transcription both in a volume <strong>of</strong> 10 μl, 2 mM final concentration<br />

<strong>of</strong> dNTP mix, 2 pmol <strong>of</strong> labeled primer, 2 μl <strong>of</strong> 0.1M DTT, 4 μl <strong>of</strong> 5X reverse<br />

transcriptase buffer and 1 μl <strong>of</strong> LMV-reverse transcriptase. The primer extension<br />

products were separated on a 6% polyacrylamide gel and visualized <strong>by</strong><br />

phosphorimaging (FUJI film FLA-3000 phosphorimager).<br />

2.2.18 Potassium permanganate footprinting<br />

The components <strong>of</strong> the footprinting reaction are the same as the in vitro transcription<br />

reaction. The footprinting was carried out as described earlier [Nasser et al., 2001]. The<br />

addition <strong>of</strong> potassium permanganate (KMnO4), which oxidize preferentially the<br />

thymine nucleotide (cytosine can also be oxidized) <strong>of</strong> an open double helix, gives a<br />

32


MATERIALS AND METHODS<br />

measure <strong>of</strong> opening <strong>of</strong> the two strands <strong>of</strong> DNA during processes such as initiation <strong>of</strong><br />

transcription.<br />

All the components (except KMnO4) are mixed on ice and equilibrated at<br />

37oC for 5 minutes before adding 2 μl <strong>of</strong> 100 mM KMnO4. After exactly 30 seconds,<br />

the footprint is stopped <strong>by</strong> the addition <strong>of</strong> 2 μl <strong>of</strong> β-mercaptoethanol (14M). To this 100<br />

μl <strong>of</strong> TE (pH 8.0) is added and then the DNA is extracted with phenol: chlor<strong>of</strong>orm and<br />

precipitated as described above. The pellet <strong>of</strong> footprinted DNA is dissolved in 15 μl <strong>of</strong><br />

water and is subjected to primer extension with labeled primer using Taq polymerase<br />

and 1 mM final concentration <strong>of</strong> dNTP mix for six cycles in a PCR machine (Peltier<br />

Thermal Cycler PTC 100 & PTC 200 from MJ research). The product is resolved on<br />

a 6% polyacrylamide gel along with a sequencing reaction and visualized <strong>by</strong><br />

phosphorimaging. The di-deoxynucleotide termination sequencing reaction <strong>of</strong> the<br />

plasmid DNA and the primer used for footprinting and PCR was performed using<br />

commercially available sequencing kit from USB (Sequenase Version 2.0 DNA<br />

Sequencing Kit) following the manufacturers instruction.<br />

2.2.19 β-Galactosidase assay<br />

Beta-galactosidase assay was performed following the protocol <strong>of</strong> Sadler & Novick<br />

[Sadler & Novick, 1965]. The β-Galactosidase assay was performed on freshly diluted<br />

(1:30) overnight cultures after one hour <strong>of</strong> dilution cultures in exponential phase. β-<br />

Galactosidase activity is calculated as a function <strong>of</strong>, colorless ONPG substrate turning<br />

to yellow nitro phenol product (measured at OD420) and the time it takes to turn yellow<br />

<strong>by</strong> using the formula:<br />

β-Galactosidase activity = OD420 X 8.5 X 100<br />

OD600 X time (minutes)<br />

33


RESULTS<br />

3 Results<br />

Growth phase-dependent transcription <strong>regulation</strong> has been studied in the current work at<br />

two levels <strong>of</strong> complexity, global and the local. Global <strong>regulation</strong>, explained in the first<br />

section details the effects <strong>of</strong> DNA supercoiling and chromatin proteins FIS and H-NS in<br />

coordinating the growth phase dependent transcription. In the second section the<br />

mechanism <strong>of</strong> transcriptional <strong>regulation</strong> <strong>by</strong> chromatin protein FIS and supercoiling is<br />

studied at the molecular level in a model system <strong>of</strong> a stable RNA promoter.<br />

3.1 Growth phase dependent global transcriptional<br />

<strong>regulation</strong><br />

Regulation <strong>of</strong> growth is managed <strong>by</strong> the interplay <strong>of</strong> chromatin proteins, topology <strong>of</strong> the<br />

DNA and the transcription machinery. Using DNA microarrays we have tried to address<br />

the relationship between the organization <strong>of</strong> chromosomal supercoiling and growth<br />

phase dependent <strong>gene</strong> <strong>expression</strong> patterns. Since chromosomal supercoiling is tightly<br />

connected to the function <strong>of</strong> abundant chromatin proteins, we used mutants <strong>of</strong> fis and<br />

hns <strong>gene</strong>s known as global transcriptional regulators. We compared the <strong>expression</strong><br />

pr<strong>of</strong>iles <strong>of</strong> wild-type with each mutant separately during three different phases <strong>of</strong><br />

growth and at different superhelicities induced <strong>by</strong> addition <strong>of</strong> a topoisomerase poison.<br />

Our experimental design enabled us to reveal the relationships between the effects <strong>of</strong><br />

chromatin proteins and supercoiling in global transcriptional <strong>regulation</strong>.<br />

3.1.1 Growth <strong>of</strong> CSH50 and LZ strains<br />

All the strains, CSH50 wild-type, CSH50 fis::kan and CSH50 hns-205::Tn10 mutants<br />

and LZ41, LZ54 and their fis::cm and hns-205::Tn10 derivatives were grown in double<br />

YT medium. The CSH50 strains were grown for 24 hours during which three time<br />

34


RESULTS<br />

points were sampled based on the optical density (OD) where<strong>by</strong> the mid-exponential<br />

phase sample corresponds to an OD <strong>of</strong> 0.6 (Figure 10)<br />

The LZ strains which harbor drug resistant alleles <strong>of</strong> topoisomerases, gyrase<br />

(gyrA L83 ) and topoisomerase IV (parC K84 ) <strong>gene</strong>s were treated with quinolone<br />

norfloxacin during mid-exponential growth before sampling. Norfloxacin used at sublethal<br />

concentration in LZ41 and LZ54 strains selectively inhibits DNA gyrase or<br />

topoisomerase IV activity there<strong>by</strong> inducing relaxation or hypernegative supercoiling<br />

respectively. In these strains, the cells are exposed to norfloxacin for 5 minutes and<br />

RNA is then extracted [Rochman et al., 2002]. This allows the variation <strong>of</strong> transcription<br />

with overall superhelical density to be monitored from almost fully relaxed (σ = - 0.015,<br />

strain LZ41) to near physiological (σ = - 0.073, strain LZ23) to hypernegatively<br />

supercoiled (σ = - 0.095, strain LZ54) state [Zechiedrich et al., 1997].<br />

Figure 10: Growth curves <strong>of</strong> CSH50 wild-type and the mutants.<br />

The three phases sampled for the microarray- based comparison <strong>of</strong> differential <strong>gene</strong> <strong>expression</strong>. (A)<br />

Growth curves <strong>of</strong> wild-type and fis mutant. (B) Growth curves <strong>of</strong> wild-type and hns mutant. The dots<br />

indicate the time <strong>of</strong> sampling.<br />

35


RESULTS<br />

Neither the fis nor the hns mutations in the CSH50 or in the LZ strains affected<br />

the overall growth pattern but the growth rates <strong>of</strong> the fis and hns mutants <strong>of</strong> CSH50<br />

were slightly different from the wild-type (data not shown). The growth rate<br />

comparisons showed differences during exponential growth stage and early stages <strong>of</strong><br />

stationary phase. In comparison to wild-type cells the fis mutants had lower and hns<br />

mutants had higher growth rates during exponential phase. These differences are not<br />

clearly understood but correspond to the global repressing effect <strong>of</strong> H-NS and <strong>gene</strong>ral<br />

growth-stimulatory effect <strong>of</strong> FIS (due to activation <strong>of</strong> stable RNA promoters).<br />

3.1.2 A novel microarray based approach to derive growth phasespecific<br />

transcript pr<strong>of</strong>iles organized <strong>by</strong> supercoiling and<br />

chromatin proteins<br />

Two sets <strong>of</strong> microarray experiments were performed, the design <strong>of</strong> which is<br />

schematically represented in figure 11. Briefly, in set A, comparison <strong>of</strong> the transcript<br />

pr<strong>of</strong>iles <strong>of</strong> wild type and mutant at each growth phase allowed the identification <strong>of</strong> FIS<br />

and H-NS regulated <strong>gene</strong>s during the three phases <strong>of</strong> growth (ME, TS and LS). In the<br />

second set (set B) <strong>of</strong> microarray experiments combinations <strong>of</strong> LZ strains were used to<br />

derive supercoiling associated <strong>gene</strong>s (Exp.1 in Figure 11) and <strong>gene</strong>s modulated <strong>by</strong> FIS<br />

and H-NS at different supercoiling (Exp.2 in Figure 11). Comparison <strong>of</strong> LZ41, LZ54<br />

and their mutants in different combinations was performed during the mid-exponential<br />

phase, when effect <strong>of</strong> the topoisomerase inhibitory drug norfloxacin was most<br />

pervading.<br />

In set B the transcript pr<strong>of</strong>iles <strong>of</strong> LZ41 (norfloxacin-induced DNA relaxation),<br />

LZ54 (norfloxacin-induced hypernegative DNA) and their fis and hns mutants were<br />

compared in different combination, which is divided into experiment 1 and experiment<br />

2 for the sake <strong>of</strong> clarity in Figure 11. Experiment 1 compares LZ41 with LZ54 and<br />

mutant (either fis or hns) <strong>of</strong> LZ41 with mutant (either fis or hns) <strong>of</strong> LZ54. The <strong>gene</strong>s<br />

upregulated in LZ41 background (compared to LZ54) and mutant LZ41 background<br />

36


RESULTS<br />

Set A<br />

Set B<br />

CSH50 CSH50mut Exp.1 Exp.2<br />

ME ME ME ME ME ME<br />

TS TS LZ41 LZ54<br />

LZ41 LZ41mut<br />

LS LS LZ41mut LZ54mut<br />

LZ54<br />

LZ54mut<br />

(compared to mutant LZ54) are those that are associated with DNA relaxation.<br />

Similarly <strong>gene</strong>s upregulated in LZ54 and mutant LZ54 background are those that are<br />

associated with hypernegatively supercoiled DNA. In the experiment 2 <strong>of</strong> set B, the<br />

wild-type transcript pr<strong>of</strong>ile <strong>of</strong> LZ41 and LZ54 was compared to their respective mutant<br />

(either fis or hns). In this comparison the upregulated <strong>gene</strong>s in wild-type LZ41<br />

background are those that are activated <strong>by</strong> DNA relaxation in the presence <strong>of</strong> FIS/H-<br />

NS. And the upregulated <strong>gene</strong>s in LZ41 mutant are those that are otherwise repressed<br />

<strong>by</strong> FIS/H-NS under relaxed DNA conditions. Similarly, comparisons <strong>of</strong> LZ54 with<br />

mutants identified <strong>gene</strong>s that are activated and repressed under hypernegative DNA<br />

supercoiling conditions. The differentially expressed <strong>gene</strong>s derived from the microarray<br />

experiments are those that appear consistently in at least two biological replicates and<br />

three technical replicates <strong>of</strong> the microarray experiment (see section 2.2.12 for details <strong>of</strong><br />

biological & technical replicates).<br />

Growth<br />

phaseregulated<br />

<strong>gene</strong>s<br />

Rel<br />

Hyp<br />

Act<br />

Rep<br />

Figure 11: Design <strong>of</strong> DNA microarray experiments.<br />

Set A defines the regulated <strong>gene</strong>s during three phases <strong>of</strong> growth. ME, TS and LS stand for midexponential,<br />

transition to stationary and late stationary phase <strong>of</strong> growth respectively. From experiment 1<br />

<strong>of</strong> set B, the <strong>gene</strong>s associated with relaxation (Rel) and hypernegative (Hyp) supercoiling were derived,<br />

while experiment 2 was used to derive <strong>gene</strong>s either activated (Act) or repressed (Rep) <strong>by</strong> FIS & H-NS<br />

under both relaxation (LZ41) and hypernegative superhelicities (LZ54).<br />

The novelty <strong>of</strong> this experimental design is in the identification <strong>of</strong> growth phase<br />

regulated <strong>gene</strong>s (from set A) and simultaneous derivation <strong>of</strong> supercoiling sensitivity <strong>of</strong><br />

37


RESULTS<br />

these identified <strong>gene</strong>s (<strong>by</strong> mapping the set B <strong>gene</strong> pools on set A). The repertoire <strong>of</strong><br />

reported supercoiling associated <strong>gene</strong>s [Peter et al., 2004] was increased 5 fold <strong>by</strong><br />

including fis & hns mutants in addition to wild-type. This experimental setup also<br />

allows the estimation <strong>of</strong> the role <strong>of</strong> chromatin proteins in distributions <strong>of</strong> effective<br />

superhelicity and organization <strong>of</strong> supercoiling-sensitive transcription.<br />

3.1.3 Changes <strong>of</strong> supercoiling during growth<br />

In parallel to microarray experiments, high-resolution agarose gel electrophoresis was<br />

used to keep track <strong>of</strong> supercoiling changes during different growth phases <strong>of</strong> CSH50<br />

strains and also after norfloxacin treatment in LZ strains. The global supercoiling level<br />

<strong>of</strong> DNA was determined using pUC18 reporter plasmid (Figure 12) <strong>by</strong> band counting<br />

method as previously described [Keller et al., 1975]. The mean σ values (+/- 15%) were<br />

calculated using a range <strong>of</strong> chloroquine concentrations from 0.5 to 20 μg/ml in 1%<br />

agarose gels. In the LZ strains, the relaxed topoisomers <strong>of</strong> the samples isolated from<br />

LZ41 and its derivatives demonstrated a complex pattern making it difficult to define<br />

precisely the superhelical density. During growth cycle the plasmids showed a decrease<br />

in negative supercoiling with time, consistent with the previous finding [Balke and<br />

Gralla, 1987]. The reason for such a decrease in supercoiling is attributed to the<br />

decrease in [ATP/ADP] ratio which influences the gyrase activity directly. Also<br />

consistent with the earlier reports is the increased supercoiling in hns mutant [Mojica et<br />

al., 1997] during mid-exponential phase compared to the wild-type CSH50.<br />

38


RESULTS<br />

Figure 12: Topoisomer distributions <strong>of</strong> plasmids (pUC18) isolated from growing cells.<br />

(A) Topoisomer distributions in LZ54 and LZ41 strains and their mutant derivatives (as indicated) 5 min<br />

after norfloxacin addition. (B) and (C) Topoisomer distributions <strong>of</strong> plasmids isolated from CSH50 strains<br />

and its mutant derivatives during the growth cycle. In (C) all topoisomers migrate as negatively<br />

supercoiled species except for the late stationary (LS) phase samples, which migrate as positively<br />

supercoiled species The σ values for each population (except for transition stage where no significant<br />

differences were observed) are indicated. High-resolution gel-electrophoresis was carried out in presence<br />

<strong>of</strong> 1.0μg/ml (A), 0.5μg/ml (B) and 2μg/ml (C) <strong>of</strong> chloroquine.<br />

3.1.4 Genomic wheels <strong>of</strong> supercoiling sensitivity<br />

The differentially regulated <strong>gene</strong>s were deduced from the relative intensities <strong>of</strong> Cy3 and<br />

Cy5 incorporated in cDNA after hybridization to spotted <strong>gene</strong>s on a microarray. After<br />

quantification, any <strong>gene</strong> can be classified as up or down regulated (activated or<br />

repressed) in relation to the other hybridizing partner. The genomic wheels in figure 13<br />

represent the up-regulated <strong>gene</strong>s in the wild-type (outer circles) or the mutant<br />

background (inner circles), marked as lines <strong>by</strong> their position in the genome. The three<br />

layers show the three phases <strong>of</strong> growth (ME, TS, LS). Furthermore the colour <strong>of</strong> the<br />

lines indicate the supercoiling sensitivity and the inducibility <strong>by</strong> the presence (Act) or<br />

absence (Rep) <strong>of</strong> FIS (circle A) or H-NS (circle B) (see the figure legend for the colour<br />

codes). For example, a <strong>gene</strong> upregulated in wild-type background during ME phase is<br />

represented <strong>by</strong> a line in the outer circle (wild-type) <strong>of</strong> outermost layer (ME phase) and<br />

39


RESULTS<br />

furthermore the colour <strong>of</strong> the line shows the mode <strong>of</strong> <strong>regulation</strong> (activated / repressed<br />

and sensitive to hypernegative / relaxed DNA conditions) <strong>of</strong> the particular <strong>gene</strong>. A line<br />

coloured <strong>by</strong> two colours is a <strong>gene</strong> (will be referred to as ‘double coded’) which was<br />

associated with more than one regulatory condition (for example, a <strong>gene</strong> repressed at<br />

hypernegative supercoiling can be seen as line coloured yellow and blue).<br />

The genomic wheel representation allows visualization <strong>of</strong> growth phase<br />

dependent transcription <strong>of</strong> <strong>gene</strong>s together with corresponding supercoiling sensitivity.<br />

Figure 13 A and B, show respectively the effect <strong>of</strong> fis and hns on the spatiotemporal<br />

organization <strong>of</strong> transcription throughout the growth cycle (compare the outer circle to<br />

inner circle for differences between wild-type & mutant during each growth phase). The<br />

fis mutation most clearly affects the distribution <strong>of</strong> transcripts in the domains <strong>of</strong> the<br />

origin and terminus <strong>of</strong> replication during the exponential and stationary phases. Effect<br />

<strong>of</strong> hns as a global repressor is evident from the high proportion <strong>of</strong> repressed <strong>gene</strong>s<br />

throughout the growth (see below). Both FIS & H-NS are proteins most abundant<br />

during early exponential growth [Ali Azam et al., 1999]. Afterwards the FIS<br />

concentration drops sharply, whereas H-NS is present at relatively high levels<br />

throughout the growth cycle. From the genomic wheels it can be seen that strong effects<br />

<strong>of</strong> FIS and H-NS on transcription are observed even in stationary phase. It is important<br />

to note that FIS is capable <strong>of</strong> exerting an effect on transcription either <strong>by</strong> direct binding<br />

to the promoters or <strong>by</strong> modulating the global topology <strong>of</strong> DNA. The latter effect could<br />

be the basis for <strong>regulation</strong> <strong>by</strong> FIS during the later stages <strong>of</strong> growth. About 50% <strong>of</strong> the fis<br />

and hns regulated <strong>gene</strong>s were found to be sensitive to supercoiling (see below),<br />

suggesting a central role <strong>of</strong> supercoiling in organizing the growth phase dependent<br />

transcription. The observed changing genomic patterns <strong>of</strong> supercoiling sensitivity (seen<br />

as cluster <strong>of</strong> blue [Hyp] or red [Rel]coloured lines) agree with the previous findings <strong>of</strong><br />

fluid short range [Postow et al., 2004; Stein et al., 2005] and long range domains <strong>of</strong><br />

transcription [Jeong et al., 2004].<br />

40


RESULTS<br />

Figure 13: Genomic wheels showing spatiotemporal distribution <strong>of</strong> supercoiling associated<br />

transcripts.<br />

Rel (red), Hyp (blue), Act (green) and Rep (yellow) transcripts among the growth-phase-dependent <strong>gene</strong>s<br />

(grey) in CSH50 wild-type (outer wheels) and fis (A) or hns (B) (inner wheels). ME- mid-exponential<br />

phase; TS-transition phase; LS-late stationary phase; Ori-origin <strong>of</strong> replication; Ter-terminus <strong>of</strong> replication.<br />

41


RESULTS<br />

During the entire growth cycle, 820 <strong>gene</strong>s were found to be regulated <strong>by</strong> fis<br />

and 611 <strong>by</strong> hns. From the former, 371 <strong>gene</strong>s were activated (up-regulated in the wildtype<br />

background) and 475 repressed (up-regulated in the mutant background) <strong>by</strong> fis.<br />

The corresponding numbers for hns are 292 activated and 327 repressed <strong>gene</strong>s. From<br />

experiment 1 <strong>of</strong> set B, 1,596 <strong>gene</strong>s were identified to be associated with supercoiling<br />

(either hypernegative or relaxed DNA), exceeding <strong>by</strong> five times the number identified<br />

previously [Peter et al., 2004]. Out <strong>of</strong> 1,596 Hyp and Rel transcripts identified, only 145<br />

were common to wild-type, fis and hns backgrounds indicating that the supercoiling<br />

response depends on <strong>gene</strong>tic context and explaining the expanded repertoire <strong>of</strong><br />

supercoiling sensitive <strong>gene</strong>s identified. The growth phase dependent <strong>gene</strong>s were then<br />

mapped on the supercoiling associated <strong>gene</strong>s (see Figure 11). Among all the growth<br />

phase dependent <strong>gene</strong>s, 397 out <strong>of</strong> 820 (fis experiment) and 329 out <strong>of</strong> 611 (hns<br />

experiment) were found <strong>by</strong> mapping to be associated with either Rel or Hyp condition.<br />

The dependence <strong>of</strong> supercoiling response on <strong>gene</strong>tic context and high proportion<br />

(almost 50%) <strong>of</strong> supercoiling sensitive <strong>gene</strong>s in each <strong>gene</strong>tic background indicate that<br />

<strong>regulation</strong> involves a cross talk between the chromatin proteins and supercoiling,<br />

wherein both change in an interdependent manner.<br />

3.1.5 Variations <strong>of</strong> supercoiling-associated transcripts<br />

The growth phase dependent <strong>gene</strong>s were further analyzed based on their distribution in<br />

four classes <strong>of</strong> supercoiling associated <strong>gene</strong>s. Out <strong>of</strong> total <strong>of</strong> 302 unique <strong>gene</strong>s upregulated<br />

from all the 3 growth phases in hns mutant, 210 could be mapped as<br />

supercoiling associated <strong>gene</strong>s. From the table 2 we can see that, among these 70% (148<br />

<strong>gene</strong>s) were associated with the Rep group, while the corresponding number in fis<br />

mutant is 39% only (94 out <strong>of</strong> total 239 mapped). The wild-type strain compared to fis<br />

had similar proportion <strong>of</strong> Act & Rep <strong>gene</strong>s while the fis mutant from the same<br />

experiment had approximately three times more Rep than Act <strong>gene</strong>s. In the hns<br />

experiment the distribution <strong>of</strong> growth phase dependent <strong>gene</strong>s is different compared to<br />

42


RESULTS<br />

fis experiment. The wild-type from this experiment shows three times more Act <strong>gene</strong>s<br />

and in the mutant the Rep <strong>gene</strong>s are about nine times more abundant than the Act <strong>gene</strong>s.<br />

Table 2: Numbers <strong>of</strong> transcripts in four classes and double-coded transcripts in fis and hns<br />

transcript pr<strong>of</strong>iles.<br />

Also indicated inside the parentheses is the corresponding percentage taking total mapped <strong>gene</strong>s as 100%.<br />

The double-coded transcripts are those responding to specific combinations <strong>of</strong> supercoiling and <strong>gene</strong>tic<br />

background.<br />

Single-coded<br />

Double-coded<br />

Fis<br />

experiment<br />

Total<br />

mapped<br />

Rel Hyp Act Rep<br />

Rel/<br />

Act<br />

Rel/<br />

Rep<br />

Hyp/<br />

Act<br />

Hyp/<br />

Rep<br />

more in<br />

CSH50<br />

175<br />

62<br />

(35)<br />

69<br />

(39)<br />

38<br />

(21)<br />

38<br />

(21)<br />

6<br />

(3)<br />

5<br />

(2)<br />

12<br />

(6)<br />

8<br />

(4)<br />

more in<br />

CSH50 fis<br />

239<br />

74<br />

(30)<br />

94<br />

(39)<br />

35<br />

(14)<br />

95<br />

(39)<br />

11<br />

(4)<br />

13<br />

(5)<br />

9<br />

(3)<br />

24<br />

(10)<br />

total unique 397<br />

129<br />

(32)<br />

158<br />

(39)<br />

71<br />

(17)<br />

125<br />

(31)<br />

16<br />

(4)<br />

17<br />

(4)<br />

21<br />

(5)<br />

29<br />

(7)<br />

hns<br />

experiment<br />

more in<br />

CSH50<br />

123<br />

42<br />

(34)<br />

33<br />

(26)<br />

55<br />

(44)<br />

18<br />

(14)<br />

12<br />

(9)<br />

5<br />

(4)<br />

6<br />

(4)<br />

2<br />

(1)<br />

more in<br />

CSH50 hns<br />

210<br />

48<br />

(22)<br />

68<br />

(32)<br />

15<br />

(7)<br />

148<br />

(70)<br />

1<br />

(0.4)<br />

25<br />

(11)<br />

4<br />

(1)<br />

38<br />

(18)<br />

total unique 329<br />

89<br />

(27)<br />

100<br />

(30)<br />

68<br />

(20)<br />

165<br />

(50)<br />

13<br />

(3)<br />

30<br />

(9)<br />

9<br />

(2)<br />

40<br />

(12)<br />

The presented numbers indicate that the effect <strong>of</strong> hns is predominantly repressive while<br />

also activating certain <strong>gene</strong>s, whereas fis is acting, as expected as a dual regulator.<br />

Figure 14 represents the distributions <strong>of</strong> supercoiling associated <strong>gene</strong>s<br />

according to the growth phase. The sums <strong>of</strong> total mapped Hyp+Rel or Act+Rep<br />

43


RESULTS<br />

transcripts <strong>of</strong> a growth phase and cell type (wild-type or mutant) were set at 100%.<br />

While in the case <strong>of</strong> double-coded, the sum <strong>of</strong> total mapped double-coded transcripts for<br />

the entire growth cycle was set at 100%. The exponentially growing fis mutant showed<br />

Figure 14: Changes <strong>of</strong> supercoiling associated <strong>gene</strong>s during growth in fis (A) & hns (B) mutants<br />

compared to their wild-types.<br />

Phase wise distributions <strong>of</strong> Hyp (blue), Rel (red), Act (green) and Rep (yellow) <strong>gene</strong> transcripts are shown.<br />

The distinct ‘double-coded’ transcripts—Hyp/Act, Hyp/Rep, Rel/Act and Rel/Rep—are ordered from left<br />

to right for each bar. The number <strong>of</strong> <strong>gene</strong>s is indicated within the bars. fis- CSH50 fis; hns- CSH50 hns;<br />

ME- mid-exponential phase; TS- transition phase; LS- late stationary phase.<br />

an increase <strong>of</strong> both the Hyp and Rel transcripts compared with those in wild-type (69<br />

and 47 compared with 36 and 24 <strong>of</strong> wild-type respectively), whereas in the hns mutant<br />

the relative proportion <strong>of</strong> Hyp transcripts increased, in keeping with the observed<br />

increase <strong>of</strong> global negative superhelicity (Figure 12 B,C). Furthermore, on transition to<br />

the stationary phase, a lower proportion <strong>of</strong> Rel <strong>gene</strong>s were observed in the fis mutant<br />

than in the wild-type, but not in the stationary phase itself. As expected, the effect <strong>of</strong><br />

hns mutation was most pronounced for Rep <strong>gene</strong>s. In the fis mutant, the Rep <strong>gene</strong>s<br />

increased only during the exponential phase, whereas in the hns mutant, the Rep <strong>gene</strong>s<br />

predominated during the entire growth cycle. Also the ‘double-coded’ transcripts<br />

responding to specific combination <strong>of</strong> supercoiling and <strong>gene</strong>tic background were<br />

enriched for Rep/Hyp and Rep/Rel <strong>gene</strong>s, especially in hns cells. Taken together, these<br />

44


RESULTS<br />

observations are in excellent agreement with different abundance <strong>of</strong> FIS and H-NS<br />

during the growth cycle and the <strong>gene</strong>ral repressor role <strong>of</strong> H-NS [Ball et al., 1992;<br />

Dorman, 2004].<br />

3.1.6 Supercoiling sensitivity <strong>of</strong> biosynthesis and degradation<br />

pathways<br />

Interestingly the analysis <strong>of</strong> the distribution <strong>of</strong> Hyp and Rel <strong>gene</strong>s among the functional<br />

groups involved in essential cellular metabolism demonstrated a substantially higher<br />

proportion <strong>of</strong> Hyp <strong>gene</strong>s in anabolic than in catabolic pathways, which was especially<br />

remarkable in wild-type cells (Table 3). It was therefore <strong>of</strong> interest to investigate some<br />

essential metabolic pathways in more detail.<br />

Table 3: Supercoiling sensitivity <strong>of</strong> <strong>gene</strong>s <strong>of</strong> biosynthesis and degradation pathways.<br />

The metabolic pathways comprising 421 <strong>gene</strong>s for biosynthesis and 233 <strong>gene</strong>s from degradation were<br />

derived from http://EcoCyc.org. The Hyp to Rel transcript ratios are derived from the data set B for 148,<br />

111 and 134 metabolic <strong>gene</strong>s expressed in the wild-type, fis and hns mutants, respectively.<br />

Biosynthesis (Hyp/Rel)<br />

Degradation (Hyp/Rel)<br />

Wild type 4.29 0.54<br />

fis 2.07 0.87<br />

hns 1.91 1.0<br />

3.1.7 Coordination <strong>of</strong> metabolic pathways <strong>by</strong> supercoiling<br />

sensitivity<br />

Analysis <strong>of</strong> a pathway <strong>of</strong> exceptional importance for vitality – the citric acid cycle –<br />

demonstrated that the crucial steps producing combustible fuel in the form <strong>of</strong> reducing<br />

equivalents NADH and FADH2, which are required for <strong>gene</strong>ration <strong>of</strong> ATP <strong>by</strong> oxidative<br />

45


RESULTS<br />

phosphorylation, are associated with DNA relaxation. In contrast, the glyoxylate<br />

<strong>by</strong>pass, which is predominantly utilized in aerobically growing cultures where most <strong>of</strong><br />

the energy is derived <strong>by</strong> glycolysis is activated <strong>by</strong> negative superhelicity (Figure 15 A<br />

and Table 3). This suggests that high ATP/ADP ratios favouring supercoiling <strong>of</strong> DNA<br />

<strong>by</strong> gyrase would facilitate glyoxylate <strong>by</strong>pass and plastic substrate synthesis, whereas<br />

DNA relaxation would favour the production <strong>of</strong> ATP required to maintain gyrase<br />

activity. Furthermore we found that the de novo pathway <strong>of</strong> nucleotide biosynthesis<br />

explicitly involves the Hyp <strong>gene</strong>s (Figure 15 B). Purine nucleotides are required during<br />

fast growth and the dependence <strong>of</strong> this pathway on supercoiling levels is in keeping<br />

with the prevailing conditions during fast growth. The data presented here thus shows<br />

that supercoiling has a role not only in <strong>regulation</strong> <strong>of</strong> important individual <strong>gene</strong>s but also<br />

in coordinating the activity <strong>of</strong> metabolic pathways.<br />

46


RESULTS<br />

Figure 15: Coordination <strong>of</strong> essential metabolic pathways <strong>by</strong> supercoiling sensitivity.<br />

The Rel (red) or Hyp (blue) preference <strong>of</strong> the <strong>gene</strong>s in the <strong>regulation</strong> <strong>of</strong> oxaloacetate production and<br />

glyoxylate <strong>by</strong>pass in citric acid cycle (A) and coordination <strong>of</strong> de novo biosynthesis <strong>of</strong> purine nucleotides<br />

(B) are indicated.<br />

Certain relevant <strong>gene</strong>s which were missing in the microarray data like aceB,<br />

glcB, sucC and sdhD were investigated <strong>by</strong> performing Real-time PCR (RT-PCR) (Table<br />

3). In addition randomly selected <strong>gene</strong>s <strong>of</strong> purine biosynthesis pathway were<br />

investigated to validate the quality <strong>of</strong> the microarray results. These results are in<br />

keeping with the inferences from the analyses <strong>of</strong> microarray data.<br />

47


RESULTS<br />

Table 4: RT-PCR analysis <strong>of</strong> some <strong>of</strong> the <strong>gene</strong>s from TCA cycle and purine biosynthesis.<br />

The numbers indicate significant (p


RESULTS<br />

3.2 Role <strong>of</strong> supercoiling and chromatin protein FIS in<br />

transcriptional <strong>regulation</strong> <strong>of</strong> an individual promoter<br />

The current section describes the role <strong>of</strong> supercoiling and FIS in activation <strong>of</strong> the<br />

promoter <strong>of</strong> one <strong>of</strong> the stable RNA promoters, tyrT. The obtained results give an insight<br />

into the mechanistic basis <strong>of</strong> interplay <strong>of</strong> these regulators at the molecular level.<br />

3.2.1 Mechanism <strong>of</strong> transcriptional <strong>regulation</strong> <strong>by</strong> FIS &<br />

supercoiling: tyrT promoter paradigm<br />

It is known that the tyrT and other stable RNA promoters are regulated <strong>by</strong> FIS and<br />

negative supercoiling [Lazarus & Travers, 1993; Muskhelishvili et al., 1995 and 1997;<br />

Free & Dorman, 1994; Bowater et al., 1994]. Figure 16A shows the sequence<br />

organization <strong>of</strong> tyrT promoter. To address the role <strong>of</strong> the core promoter structure in the<br />

response <strong>of</strong> the tyrT promoter to activation <strong>by</strong> FIS and <strong>regulation</strong> <strong>by</strong> supercoiling, three<br />

different “up” mutations were introduced in the tyrT core promoter region: a -35 “up”<br />

mutation (35U), a discriminator mutation (D), and an A-T base-pair insertion at position<br />

-22 in the spacer region between the -10 and -35 elements (S) (Figure 16B). The<br />

mutations in the -35 region and in the spacer (35U and S) increase the homology <strong>of</strong> the<br />

promoter to the consensus polymerase binding sequence and the discriminator mutation<br />

(D) relieves the block imposed <strong>by</strong> the G/C-rich discriminator. Both the wild-type and<br />

truncated promoter constructs lacking sequences beyond position -61 and thus devoid <strong>of</strong><br />

UAS with all three FIS binding sites were used for the study. These latter promoter<br />

constructs are designated ∆61 promoters.<br />

49


RESULTS<br />

Figure 16: Schematic representation <strong>of</strong> tyrT promoter.<br />

(A) Shows the position <strong>of</strong> three upstream FIS binding sites (I, II & III) and the other core promoter<br />

elements. (B) The Sequences <strong>of</strong> core regions <strong>of</strong> tyrT and its derivatives are shown. The spacer region and<br />

the – 35 and – 10 and discriminator elements are indicated. The substitutions in the discriminator and –<br />

35 hexamer regions and the insertion in the spacer region are highlighted in bold. The consensus – 35 and<br />

– 10 elements are shown for reference below.<br />

3.2.2 In vivo <strong>expression</strong> <strong>of</strong> tyrT in CSH50 Wt & fis mutant<br />

The in vivo activity <strong>of</strong> tyrT promoter was investigated <strong>by</strong> transforming the tyrT<br />

promoter – lacZ fusion construct ptyrT (Wt) and its derivatives ptyrTD (D), ptyrTS (S),<br />

ptyrT35U (35U) into CSH50 wild-type and CSH50 fis::kan cells. The corresponding<br />

UAS truncated versions (∆61 constructs) <strong>of</strong> all the core promoter mutants and the wildtype<br />

were also investigated to distinguish the effects <strong>of</strong> core promoter from those <strong>of</strong> FIS<br />

and the UAS region. Figure 17 shows the averaged β-Galactosidase activities from two<br />

independent experiments normalized to the activity <strong>of</strong> full length wild-type promoter set<br />

at 100%. The higher activities <strong>of</strong> the mutant promoters compared to both the full length<br />

and ∆61 wild-type constructs can be explained <strong>by</strong> the introduced up mutations. The<br />

observed absence <strong>of</strong> difference between wild-type and fis cells in the case <strong>of</strong> full length<br />

promoters is consistent with previous finding which suggests a de-repression<br />

mechanism <strong>of</strong> stable RNA promoters operating in fis cells [Lazarus & Travers, 1993].<br />

50


RESULTS<br />

Figure 17: The relative β-Galactosidase activity from different ptyrT derivatives.<br />

The relative (activity <strong>of</strong> full length ptyrT Wt taken as 100%) activities <strong>of</strong> ptyrT derivatives transformed<br />

into CSH50 Wt (Wt) & CSH50 fis::kan (fis) from full length and UAS truncated (∆61) promoters is<br />

shown.<br />

Increased global superhelicity in the fis cells [Schneider et al., 1997] could be<br />

one <strong>of</strong> the reasons <strong>of</strong> de-repression <strong>of</strong> stable RNA promoters, while in wild-type cells,<br />

suboptimal supercoiling at the stable RNA promoters has been shown to be<br />

compensated <strong>by</strong> binding <strong>of</strong> FIS at the UAS [Rochman et al., 2002]. The lack <strong>of</strong> this<br />

compensatory mechanism is clearly seen only in the wild-type ∆61 promoter expressed<br />

in wild type cells (Figure 17). These results confirm the findings that regulatability <strong>of</strong><br />

tyrT promoter is inherent in its core promoter [Travers et al., 1980; Lamond & Travers,<br />

1985] and that FIS plays compensatory role [Lazarus & Travers, 1993].<br />

3.2.3 Dependence <strong>of</strong> promoter activity on superhelical density in<br />

vivo<br />

To test whether the mutations in the core promoter altered the transcriptional response<br />

to supercoiling in vivo we used LZ strains LZ41, LZ54 and LZ23. LZ23 harbors drug<br />

resistant gyrase <strong>gene</strong> (gyrA L83 ) with the wild-type topoisomerase I & IV <strong>gene</strong>s (topA &<br />

51


RESULTS<br />

parC) which allows the supercoiling in this strain to be maintained after norfloxacin<br />

treatment at near physiological levels (σ = - 0.073) [Zechiedrich et al., 1997]. In<br />

contrast, the same treatment induces DNA relaxation in LZ41 and hypernegative<br />

supercoiling in LZ54 (Figure 12A). Under these conditions the response <strong>of</strong> the rrnA P1<br />

promoter is dependent on the fis genotype, implying that there are no significant<br />

variations in FIS levels during the norfloxacin treatment [Rochman et al., 2002]. All the<br />

strains used in the experiment shown in Figure 18 contain FIS. In this <strong>gene</strong>tic<br />

background the activities <strong>of</strong> ∆61 derivatives <strong>of</strong> the wild-type and discriminator mutant<br />

promoters both exhibited a strong dependence on superhelical density (Figure 18).<br />

Figure 18: In vivo <strong>expression</strong> <strong>of</strong> tyrT promoter constructs.<br />

(A) In vivo <strong>expression</strong> from tyrT promoter at different superhelical densities. Primer extension product <strong>of</strong><br />

transcription from genomic total ribosomal RNA P1 promoters (rrn P1), used as a control, is also shown.<br />

(B) Graphical representation <strong>of</strong> tyrT transcript intensities.<br />

52


RESULTS<br />

Both ∆61 wild-type and ∆61 D constructs had low activity at low superhelical<br />

density, about tenfold higher activity at near physiological density and a lower, but<br />

intermediate, activity on hypernegatively supercoiled plasmid. However the two<br />

promoters differed in their response to varying superhelicity in the presence <strong>of</strong> the UAS.<br />

The wild-type promoter had an enhanced response to superhelicity. Again the promoter<br />

lacked significant activity at low superhelicity but was strongly activated at nearphysiological<br />

superhelical density and notably, activity was further increased with the<br />

hypernegatively supercoiled plasmid, similar to the effect observed <strong>by</strong> Bowater et al<br />

[Bowater et al., 1994]. However, with the discriminator mutant the presence UAS<br />

substantially increased promoter activity at all superhelical densities tested but did not<br />

alter the pr<strong>of</strong>ile <strong>of</strong> the response. In sharp contrast the activities <strong>of</strong> the tyrTS and tyrT35U<br />

mutant promoters lacking the UAS were much less dependent on variations in<br />

superhelicity with both <strong>of</strong> these promoters exhibiting high activity in vivo at low<br />

superhelical density. Thus the loss <strong>of</strong> dependence on supercoiling was accompanied <strong>by</strong><br />

a comparable loss <strong>of</strong> dependence on the UAS containing FIS binding sites. The relative<br />

activities <strong>of</strong> the promoters in this <strong>gene</strong>tic background differ somewhat from those<br />

observed in CSH50 as also did the dependence <strong>of</strong> the activity <strong>of</strong> the discriminator<br />

mutant on the UAS.<br />

3.2.4 Dependence <strong>of</strong> promoter activity on superhelical density in<br />

vitro<br />

The in vivo results on the supercoiling sensitivity <strong>of</strong> promoter constructs were verified<br />

<strong>by</strong> in vitro transcription assays with truncated wild-type and mutant promoter<br />

constructs. Transcription was performed using supercoiled and linearized templates. We<br />

observed higher levels <strong>of</strong> transcription from mutants compared to the wild-type on<br />

linearized template, while transcription <strong>of</strong> supercoiled template is comparable between<br />

the wild-type and the mutants (Figure 19). Of all the mutants, 35U shows highest<br />

activity on the linear template and is also least sensitive to changes <strong>of</strong> supercoiling as<br />

seen in the in vivo experiments (Figure 18).<br />

53


RESULTS<br />

Figure 19: In vitro transcription <strong>of</strong> ∆61 constructs <strong>of</strong> wild type and derivatives.<br />

In vitro transcription assay was performed from supercoiled (σ = -0.075) and linearized templates.<br />

Transcripts originating from bla <strong>gene</strong> on the same plasmid is also shown. SC – supercoiled templates; lin<br />

– linear templates.<br />

The tyrT wild-type and tyrTD promoter constructs, which clearly showed<br />

sensitivity to supercoiling, were investigated in more detail to elucidate the extent <strong>of</strong><br />

activation <strong>by</strong> FIS at different superhelical densities. The activity <strong>of</strong> the wild-type<br />

promoter showed a more strict dependence on supercoiling level for its activity, while<br />

tyrTD was active under a broader range <strong>of</strong> superhelical densities (Figure 20A). Presence<br />

<strong>of</strong> FIS was seen to activate the transcription at all supercoiling levels in both wild-type<br />

and the discriminator mutant, but the activation <strong>of</strong> the wild-type was more significant<br />

under non-optimal supercoiling levels (σ = - 0.036 & -0.068) (Figure 20B).<br />

3.2.5 Effects <strong>of</strong> promoter mutations on the function<br />

Since the data obtained implicated the mutations in the core promoter region in the<br />

altered sensitivity to both supercoiling and FIS we next investigated the effects <strong>of</strong> these<br />

mutations on promoter function <strong>by</strong> using potassium permanganate footprinting<br />

54


RESULTS<br />

techniques. Potassium permanganate reacts with bases, especially thymine, where the<br />

base-stacking in the DNA duplex is disrupted [Gralla et al., 1993]. In these experiments<br />

Figure 20: in vitro transcription from tyrTwild-type and tyrTD at different supercoiling.<br />

(A) In vitro transcription at different superhelical densities from tyrT wild-type, tyrTD and reference bla<br />

promoters is shown. (B) Fold activation <strong>of</strong> transcription <strong>by</strong> FIS from tyrT wild-type and tyrT D at<br />

different superhelical densities.<br />

RNA polymerase was used in large excess to promoter DNA and the complexes were<br />

equilibrated for 30 minutes prior to a short exposure to permanganate ion. Figure 21A<br />

(lanes 1 and 2) shows that addition <strong>of</strong> RNA polymerase to the wild-type promoter did<br />

not alter the reactivity pattern on native supercoiled plasmid DNA (σ = −0.068). By<br />

55


RESULTS<br />

contrast the tyrTD promoter mutant showed significantly increased reactivity within the<br />

−10 region at positions T-8, A-10, T-11 and A-12 (lanes 4, 5). In addition bases T-3 and<br />

T-4 within the discriminator as well as bases T+3 and T+4 were reactive suggesting that<br />

DNA unwinding had extended from the −10 region to the start point in this mutant. No<br />

enhanced signals were observed in the other mutants in these positions (C-3, C-4). For<br />

both the tyrTS and tyrT35U increased reactivity was observed within the −10 region at<br />

positions T-8, A-10, T-11 and A-12 (lanes 7, 8 and 10, 11) although the effect was<br />

much for the former mutant. Unlike the tyrTD mutant neither <strong>of</strong> the tyrTS nor the<br />

tyrT35U mutant promoters exhibited increased reactivity at positions T+3, T+4.<br />

Figure 21: Potassium permanganate footprinting <strong>of</strong> ptyrT and its derivatives.<br />

(A) Footprinting performed in the absence <strong>of</strong> nucleoside triphosphates. The positions <strong>of</strong> permanganate<br />

reactive thymine bases are indicated. (B) Footprinting performed in the presence <strong>of</strong> initiating nucleoside<br />

triphosphates GTP and CTP. FIS and RNAP when added is indicated <strong>by</strong> a ‘+’. Wt, D, S and 35U are the<br />

wild-type and mutants <strong>of</strong> ptyrT.<br />

56


RESULTS<br />

Addition <strong>of</strong> FIS increased the reactivity <strong>of</strong> bases T-8 and T-11 at the wild-type<br />

promoter (lanes 1–3). Also, in the presence <strong>of</strong> FIS the permanganate reactivity for all<br />

promoter derivatives was further increased, the tyrTS and tyrT35 mutants exhibiting a<br />

greater response than tyrTD. These observations show that at all promoters, albeit to<br />

varying degrees, FIS enhances the interaction with the −10 region. The formation <strong>of</strong><br />

initiation (open) complex at the wild-type tyrT promoter requires the presence <strong>of</strong> GTP<br />

and CTP to allow the synthesis <strong>of</strong> the dinucleotide pppGpC [Muskhelishvili et al.,<br />

1997]. Figure 21B shows that under these conditions enhanced permanganate reactivity<br />

was observed at the wild-type promoter principally at positions T+3, T+4, T+10, T+26<br />

and addition <strong>of</strong> FIS had very small, if any, effect (lanes 1–3). The reactivity at positions<br />

+3 and +4, and possibly that at +10, corresponds to the transcription “bubble” in the<br />

DNA. The cleavage patterns observed in the mutant promoters differ from the wild-type<br />

in one major respect, permanganate cleavage being apparent in all <strong>of</strong> them in the −10<br />

and/or discriminator regions. For all the mutant promoters FIS enhances cleavage<br />

significantly suggesting that in these cases FIS can facilitate initiation complex<br />

formation. A similar effect <strong>of</strong> FIS on the wild-type promoter has previously been<br />

observed on a linear DNA template [Muskhelishvili et al., 1997].<br />

57


DISCUSSION<br />

4 Discussion<br />

The idea <strong>of</strong> this work was to integrate the effects <strong>of</strong> fis and hns <strong>gene</strong>s, representing the<br />

‘digital’ components <strong>of</strong> <strong>gene</strong>tic information, and variations in DNA superhelicity<br />

forming the ‘analog’ component in order to understand the logics <strong>of</strong> concerted<br />

rearrangement <strong>of</strong> global transcription. In a review <strong>by</strong> Travers and Muskhelishvili<br />

[Travers & Muskhelishvili, 2005b], it is argued that the transcription initiation is<br />

predominantly determined <strong>by</strong> the topology <strong>of</strong> the initiation complex and the intrinsic<br />

twist <strong>of</strong> the DNA, which strongly depends on the mode <strong>of</strong> DNA packaging. This later<br />

property <strong>of</strong> the DNA is determined <strong>by</strong> the chromatin proteins. A high amount <strong>of</strong><br />

variability is seen in DNA packaging <strong>by</strong> different chromatin proteins. FIS has been<br />

shown to stabilize both the toroidal and plectonemic forms <strong>of</strong> DNA, while H-NS<br />

stabilizes a tight plectoneme [Maurer et al., 2006; Schneider et al., 2001]. Further,<br />

repression or activation <strong>of</strong> individual <strong>gene</strong> promoters can also be a result <strong>of</strong> differential<br />

binding <strong>of</strong> chromatin proteins. H-NS is known to be a global repressor <strong>of</strong> transcription<br />

[Dorman, 2004] and manages to do so <strong>by</strong> occluding the polymerase binding site or <strong>by</strong><br />

trapping the polymerase in abortive cycle [Schroder & Wagner, 2000]. H-NS can also<br />

silence a <strong>gene</strong> <strong>by</strong> DNA oligomerization <strong>of</strong> two intrinsically bent, AT rich, remotely<br />

placed upstream and downstream binding sites as observed in the case <strong>of</strong> bgl operon<br />

[Ueguchi & Mizuno, 1993]. FIS also represses promoters <strong>by</strong> promoter occlusion (gyrA<br />

promoter) and polymerase trapping (gyrB promoter) [Schneider et al., 1999]. Activation<br />

<strong>by</strong> FIS, a more widely studied phenomenon, is accomplished <strong>by</strong> direct interaction with<br />

RNAP and also <strong>by</strong> trapping the supercoils and directing them to facilitate promoter<br />

opening. The ability <strong>of</strong> FIS in regulating multiple steps <strong>of</strong> transcription is evident from<br />

the study <strong>of</strong> different tyrT promoter mutants in the current work, a detailed discussion<br />

<strong>of</strong> which will follow in the subsequent sections. The effects exerted <strong>by</strong> global regulators<br />

like FIS and H-NS are complex and require investigation on both global (genome) and<br />

local (single promoter) levels. However, both <strong>of</strong> these phenomena are associated with<br />

58


DISCUSSION<br />

topological deformation <strong>of</strong> DNA, underscoring the importance <strong>of</strong> understanding the<br />

relationships between DNA topology and DNA architectural proteins.<br />

4.1 Interdependency <strong>of</strong> supercoiling and NAPs<br />

Supercoiling in E.coli is predominantly controlled <strong>by</strong> <strong>gene</strong> products <strong>of</strong> gyrA, gyrB and<br />

topA. While gyrA & gyrB promoters are repressed <strong>by</strong> FIS [Schneider et al., 1999], in<br />

vitro studies on binding <strong>of</strong> FIS at topA promoter has been shown to activate its<br />

<strong>expression</strong> depending on the concentration <strong>of</strong> FIS [Weinstein-Fischer & Altuvia, 2007].<br />

Since supercoiling in vivo is maintained <strong>by</strong> the opposing actions <strong>of</strong> these enzymes<br />

[DiNardo et al., and Pruss et al., 1982], their relative activities could be regulated to<br />

produce various levels <strong>of</strong> supercoiling which also has been shown to be modulated <strong>by</strong><br />

FIS [Schneider et al., 1997]. Thus FIS affects both the activity and the <strong>expression</strong> <strong>of</strong><br />

topoisomerases and helps in maintaining a constant superhelical energy during<br />

exponential growth in E.coli. Part <strong>of</strong> this homeostatic control is also due to the<br />

<strong>regulation</strong> <strong>of</strong> topoisomerase <strong>expression</strong> in response to supercoiling [Menzel et al., 1983;<br />

Tse-Dinh et al., 1985]. H-NS mutant has been reported to show an increase in<br />

unconstrained supercoiling [Mojica & Higgins, 1997].<br />

Homeostatic control <strong>of</strong> supercoiling is exerted <strong>by</strong> topoisomerases responding<br />

to a change in the number <strong>of</strong> unrestrained supercoils, which is a consequence <strong>of</strong> change<br />

in binding <strong>of</strong> NAPs or change in external environment. The only known effector for<br />

DNA gyrase to sense the nutritional richness <strong>of</strong> the environment is the in vivo ATP<br />

level. The ATP level has been implicated in the recovery <strong>of</strong> supercoils after starvation,<br />

but the relaxation <strong>of</strong> DNA was seen to be not directly correlated with the cellular ATP<br />

levels [Balke and Gralla, 1987]. Transcription and RNAP binding also change the<br />

dynamics <strong>of</strong> supercoiling [Gamper & Hearst, 1982]. In spite <strong>of</strong> different perturbations,<br />

the bacteria during steady-state growth strive to maintain a constant level <strong>of</strong><br />

superhelical energy. Hence a fundamental question that arises is how the cell<br />

determines the level <strong>of</strong> supercoiling that is appropriate to each physiological situation?<br />

59


DISCUSSION<br />

In a study <strong>by</strong> Balke & Gralla, the changes in supercoiling has been shown to be<br />

dependent on the growth phase rather than on the growth rate [Balke & Gralla, 1987].<br />

In the current work, though there are differences in the growth rates <strong>of</strong> wild-type, fis<br />

(lower growth rate compared to wild-type) & hns (higher growth rate compared to wildtype)<br />

mutants the supercoiling does not differ much (Figure 12). Since it is known that<br />

in slower-growing cells, transcription from stable RNA promoters is decreased relative<br />

to that in fast-growing cells, the decrease in growth rate in the fis mutant or the increase<br />

in the growth rate <strong>of</strong> hns mutant can be a direct effect <strong>of</strong> these proteins on the stable<br />

RNA transcription. The molecular basis <strong>of</strong> this type <strong>of</strong> growth control and the role <strong>of</strong><br />

FIS will be discussed later. H-NS, the other NAP studied here forms a filament like<br />

structure bridging two DNA duplexes and acting as a zipper [Dame, 2005]. The<br />

increase in negative supercoiling shown here is consistent with the previous reports<br />

[Mojica et al., 1997]. The reason for this increase is not clearly understood. The role derepression<br />

<strong>of</strong> transcription in hns mutant leading to an increased global supercoiling<br />

(according to twin-domain model <strong>of</strong> supercoiling distribution) has been ruled out<br />

[Mojica et al., 1997]. Our recent study identified a 10bp AT-rich consensus recognized<br />

<strong>by</strong> H-NS and serving as a nucleation site to restrain negative supercoiling [Lang et al.,<br />

2007].<br />

FIS protein (1 FIS molecule per 450bp <strong>of</strong> E.coli genome) is more abundant<br />

than H-NS (1 H-NS dimer per 1400bp) during exponential growth. These two proteins<br />

are known to compete for binding to DNA and their binding also depends on the<br />

supercoiling. FIS is known to preferentially bind DNA with intermediate superhelical<br />

density and it also has been shown to protect DNA <strong>of</strong> intermediate superhelical density<br />

from relaxation <strong>by</strong> topoisomerases I [Schneider et al., 1997]. Most <strong>of</strong> the effect <strong>of</strong> FIS is<br />

in fine tuning <strong>of</strong> transcription according to the prevailing situation, as it can both<br />

activate and repress the <strong>expression</strong> <strong>of</strong> a certain <strong>gene</strong> based on the growth phase. An<br />

example for this phenomenon can been seen in a work with osmE promoter <strong>by</strong> Bordes<br />

et al., [Bordes et al., 2002]. The effect <strong>of</strong> H-NS on transcription is more straightforward,<br />

it mainly acts as global repressor. In hns mutant 70% <strong>of</strong> the regulated <strong>gene</strong>s are<br />

associated with Rep group while in fis mutant the Rep <strong>gene</strong>s increased transiently only<br />

during exponential phase (Table 1 & Figure 14). Double-coded <strong>gene</strong>s (Figure 14) from<br />

60


DISCUSSION<br />

fis experiment show both activation and repression <strong>by</strong> FIS especially under conditions<br />

<strong>of</strong> relaxation. Whilst, as expected the effect <strong>of</strong> hns mutation was most pronounced for<br />

the Rep <strong>gene</strong>s, these Rep <strong>gene</strong>s predominated the entire growth cycle and were equally<br />

enriched under both hypernegative and relaxed conditions.<br />

In summary variable distribution <strong>of</strong> supercoiling sensitivity <strong>of</strong> transcripts as<br />

seen from the genomic wheels (Figure 13) reflect a compound effect <strong>of</strong> several<br />

cooperating factors, including chromatin proteins FIS and H-NS. The genomic wheel<br />

picture <strong>of</strong> transcript pr<strong>of</strong>ile gives an idea <strong>of</strong> (1) the supercoiling distribution during<br />

different growth phases throughout the genome (2) the effect <strong>of</strong> different chromatin<br />

proteins on such distribution, and (3) also can help in defining the domain boundaries,<br />

formation <strong>of</strong> which is probably a result <strong>of</strong> differential supercoiling sensitivity or<br />

differential NAPs binding in the genome. The data so far supports the idea that<br />

transcription is governed <strong>by</strong> “effective” superhelicity – a parameter reflecting the<br />

dynamic nature <strong>of</strong> competition between topoisomerases, NAPs and also the<br />

transcription machinery itself [Travers & Muskhelishvili, 2005b; Geertz et al., 2007].<br />

4.2 Supercoiling coordinates metabolic functions<br />

The changes <strong>of</strong> supercoiling levels inside the cell not only affect global genome<br />

structure and the formation <strong>of</strong> supercoiling domains with the help <strong>of</strong> NAPs, but also<br />

mediate the change <strong>of</strong> metabolic preferences. Supercoiling is known to act as a sensor<br />

<strong>of</strong> external environment, where<strong>by</strong> the supercoiling level changes in response to<br />

nutrition, stress, temperature and ionic content [Balke & Gralla, 1987; Cheung et al.,<br />

2003; Dorman, 1996; Travers & Muskhelishvili, 2005a]. It is feasible to imagine the<br />

bacterial cell accumulating the energy during exponential growth when nutrition is<br />

freely available and storing it in the form <strong>of</strong> increased torsional tension in the DNA. Put<br />

other way, an increase in nutrition leading to increase in ATP/ADP ratio will increase<br />

gyrase activity making the DNA more negatively supercoiled. Also increased cell<br />

division during exponential growth will have to match with increased requirement for<br />

biosynthesis functions. During unfavourable conditions when the nutrition is sparse the<br />

61


DISCUSSION<br />

cells maintain viability <strong>by</strong> deriving energy from degradation <strong>of</strong> macromolecules. The<br />

current work provides evidence for the first time <strong>of</strong> a relation between the <strong>gene</strong>s<br />

involved in biosynthetic and degradation pathways and supercoiling preference <strong>of</strong> <strong>gene</strong><br />

activities. Table 2 illustrates that the biosynthetic pathways are made up predominantly<br />

<strong>of</strong> Hyp <strong>gene</strong>s while the degradation pathways prefer Rel <strong>gene</strong>s, implicating the<br />

supercoiling as global regulator <strong>of</strong> metabolic functions. A more detailed analysis <strong>of</strong> the<br />

<strong>gene</strong> promoters with respect to their sequence organization, their topological properties,<br />

their preference <strong>of</strong> sigma factors and any NAP binding can help to better understand the<br />

mechanistic basis <strong>of</strong> the functional switch from biosynthesis to degradation.<br />

The tricaboxylic acid (TCA) cycle and the glyoxylate <strong>by</strong>pass provide an<br />

example for coupling <strong>of</strong> supercoiling sensitivity to metabolic function. The TCA cycle<br />

(Figure 15A) plays two essential roles in metabolism. First, the cycle is responsible for<br />

the total oxidation <strong>of</strong> acetyl coenzyme A (CoA), derived mainly from the pyruvate<br />

produced <strong>by</strong> glycolysis. Second, TCA cycle intermediates are required in the<br />

biosynthesis <strong>of</strong> several amino acids. For long the TCA cycle was considered as<br />

housekeeping pathway, but <strong>of</strong> lately evidences show that it is an inducible pathway<br />

[Iuchi & lin, 1988; Iuchi et al., 1989; Guest & Russell, 1992]. The full TCA cycle in<br />

E.coli is seen only during aerobic growth on acetate or fatty acid and under anaerobic<br />

conditions the cycle is not used for energy production but used more as a biosynthetic<br />

pathway. The growth on acetate or fatty acids also results in the induction <strong>of</strong> the<br />

glyoxylate shunt, which is the biosynthetic pathway to replenish the intermediates for<br />

amino acid biosynthesis. The <strong>gene</strong> icdA which codes for IDH (isocitrate dehydogenase)<br />

plays a key role in partition <strong>of</strong> carbon between TCA cycle and glyoxylate shunt. The<br />

switch is controlled <strong>by</strong> phosphorylation <strong>of</strong> IDH which inactivates IDH and activates the<br />

glyoxylate <strong>by</strong>pass. The <strong>gene</strong>s in the <strong>by</strong>pass show preference for hypernegative<br />

supercoiling while the suc and sdh <strong>gene</strong>s <strong>of</strong> the TCA cycle are more active under<br />

relaxation <strong>of</strong> DNA. Thus hypernegative supercoiling reflecting increased gyrase activity<br />

resulting from a high ATP/ADP ratio favours the glyoxylate <strong>by</strong>pass and substrate<br />

synthesis. Activation <strong>of</strong> the suc and sdh <strong>gene</strong> operons under conditions <strong>of</strong> DNA<br />

relaxation (low ATP/ADP ratio) helps in capturing the energy released <strong>by</strong> carbon<br />

metabolism. The switching <strong>gene</strong> icdA itself is also sensitive to hypernegative<br />

62


DISCUSSION<br />

supercoiling, and so is the <strong>gene</strong> for its phosporylation (aceK) in the same ace operon <strong>of</strong><br />

the <strong>by</strong>pass <strong>gene</strong>s. Interestingly the icdA mutants can be readily isolated <strong>by</strong> selecting for<br />

nalidixic acid resistance (gyrase inhibitor) [Helling & Kukora, 1971].<br />

Furthermore, we found that the de novo pathway <strong>of</strong> nucleotide biosynthesis<br />

explicitly involves the Hyp <strong>gene</strong>s (Figure 15B). Most <strong>of</strong> these <strong>gene</strong>s have promoters<br />

with a GC-rich ‘discriminator’ sequence, which confers sensitivity to both high negative<br />

supercoiling and the regulatory nucleotide ppGpp [Neidhardt, F.C. et al., 1987; Nygaard<br />

et al., 1996]. Notably, both the superhelicity and ppGpp concentration are elevated in fis<br />

cells [Travers & Muskhelishvili, 2005b], indicating a homeostatic <strong>regulation</strong><br />

mechanism. The observed coupling <strong>of</strong> distinct supercoiling sensitivities to essential<br />

metabolic pathways provides new insights into the mechanisms that coordinate central<br />

metabolism, and also sheds light on the puzzling observation that mutations in<br />

metabolic <strong>gene</strong>s can affect DNA topology [Hardy & Cozzarelli, 2005].<br />

4.3 Activity <strong>of</strong> tyrT promoter - Interaction <strong>of</strong> supercoiling<br />

and FIS at the promoter level<br />

We also investigated the molecular mechanism <strong>of</strong> <strong>regulation</strong> <strong>of</strong> an individual <strong>gene</strong><br />

transcription and an interplay between supercoiling and transcriptional regulator FIS<br />

using the tyrT promoter system as a model.<br />

The promoters <strong>of</strong> stable RNA operons are subject to a complex regulatory<br />

network which coordinates the activity <strong>of</strong> translation machinery with the metabolic<br />

demands <strong>of</strong> the cell. Our data indicate that the effects <strong>of</strong> fis on tyrT transcription in vivo<br />

are a consequence <strong>of</strong> at least two phenomena, one local and one global: a direct<br />

activation <strong>by</strong> binding <strong>of</strong> FIS to UAS and interaction with RNA polymerase at the<br />

promoter [Bokal et al., 1995; Muskhelishvili et al., 1995] and <strong>gene</strong>ral FIS dependent<br />

reduction in the average superhelical density <strong>of</strong> the DNA template [this work and<br />

Schneider et al., 1997]. These effects would be expected, respectively, to increase and<br />

decrease tyrT transcription consistent with the homeostatic mode <strong>of</strong> <strong>regulation</strong>.<br />

Recently Rochman et al. [Rochman et al., 2002] have shown that stabilization <strong>of</strong> local<br />

63


DISCUSSION<br />

writhe in the UAS <strong>by</strong> FIS protects rrnA P1 promoters from inactivation at sub-optimal<br />

superhelical densities. This compensatory effect is also apparent with wild-type tyrT in<br />

vivo when expressed from hyperhegatively supercoiled plasmid DNA. We see here that<br />

the mutations in the core promoter that alter the sensitivity to supercoiling also alter the<br />

response to FIS, although the UAS region containing the FIS binding sites remain<br />

intact. Also the increased supercoiling <strong>of</strong> the wild-type promoter template in the fis cells<br />

[Auner et al., 2003] may, in principle compensate for the absence <strong>of</strong> FIS. The distinct<br />

roles <strong>of</strong> core promoter and UAS in sensing the supercoiling and FIS revealed in this<br />

work, together describe the extent <strong>of</strong> regulatability built into the stringently controlled<br />

tyrT promoter.<br />

4.3.1 Promoter structure and function<br />

We have studied the effects <strong>of</strong> the three mutations <strong>of</strong> tyrT core promoter: a change in<br />

the -35 region to the consensus sequence TTGACA, an increase in the spacing between<br />

the –10 and –35 hexamers from a suboptimal 16bp to the consensus 17bp [Lisser et al.,<br />

1993], and a 4bp substitution in the discriminator region (TTAA in place <strong>of</strong> CCCC,<br />

Figure 16B). The mutations towards the consensus exhibit substantially increased<br />

activity in vivo (Figure 17).<br />

The permanganate reactivity <strong>of</strong> promoter mutants’ show that all the core<br />

promoter mutants studied in the absence <strong>of</strong> FIS and NTPs have enhanced interactions<br />

with polymerase relative to the wild-type promoter in the TG <strong>of</strong> the extended –10<br />

region and the –10 region itself (Figure 21A). The mutation in the spacer and –35<br />

hexamer also result in the loss <strong>of</strong> dependence on negative superhelicity, showing that<br />

the sensitivity <strong>of</strong> the tyrT promoter to this parameter is determined <strong>by</strong> more than one<br />

aspect <strong>of</strong> sequence organization. A further similarity is that both these mutations act in<br />

vitro to enhance interactions with the –10 region (Figure 21). Notably, neither <strong>of</strong> these<br />

mutations enhanced permanganate reactivity in the vicinity <strong>of</strong> the transcription start<br />

point in the absence <strong>of</strong> NTPs. We infer that a major effect <strong>of</strong> these mutations is to<br />

promote untwisting <strong>of</strong> DNA within the –10 hexamer. The inference we draw is that a<br />

64


DISCUSSION<br />

primary effect <strong>of</strong> negative superhelicity on the tyrT promoter is to drive the untwisting<br />

<strong>of</strong> the –10 region.<br />

The discriminator region has previously been implicated as an important<br />

determinant <strong>of</strong> transcriptional response to negative supercoiling at hisR and tyrT<br />

promoters [Figueroa-Bossi et al., 1998; Pemberton et al., 2000]. In the experiments<br />

described here we have shown that in the absence <strong>of</strong> the initiating NTPs a discriminator<br />

mutation enhances contacts around – 10 region and the transcription start point,<br />

implying that the mutation relieves a discriminator-dependent block on open complex<br />

formation. Also, the tyrTD mutation reduces the optimum superhelical density for<br />

transcription in vitro. However, in the LZ strains the discriminator mutant is still<br />

strongly activated <strong>by</strong> negative superhelicity and is less active at hypernegative sigma<br />

values (Figure 18). Taken together these observations suggest that an intact<br />

discriminator enhances the response <strong>of</strong> a promoter to a negative superhelicity and that<br />

overall its mutation attenuates, but does not abolish, the response.<br />

We found that mutation <strong>of</strong> the –35 region or the spacer region to the consensus<br />

abolishes dependence <strong>of</strong> <strong>expression</strong> on negative superhelicity in vivo while mutation <strong>of</strong><br />

the discriminator does not. We infer that the response to superhelicity is modulated <strong>by</strong><br />

the primary promoter elements (-35 hexamer, spacer, -10 hexamer). These elements<br />

individually or together, determine the torque available for nucleation, the polymerasedependent<br />

untwisting <strong>of</strong> the –10 region. The role <strong>of</strong> the discriminator element is<br />

different. This element blocks the subsequent propagation <strong>of</strong> untwisting from the –10<br />

region to the transcription start point and hence constitutes a barrier to open complex<br />

formation. Even when nucleation was promoted <strong>by</strong> mutation <strong>of</strong> the spacer or the –35<br />

region no further progression <strong>of</strong> the untwisted region to the start point was observed<br />

(Figure 21A) presumably because these variant promoters still contained an intact<br />

discriminator. One explanation for the partial alleviation <strong>of</strong> the response to supercoiling<br />

<strong>by</strong> the tyrTD mutation would be lowering <strong>of</strong> the activation energy for untwisting <strong>of</strong> the<br />

–10 region <strong>by</strong> virtue <strong>of</strong> its proximity [Drew et al., 1985].<br />

65


DISCUSSION<br />

4.3.2 Mechanism <strong>of</strong> transcriptional activation <strong>of</strong> the tyrT promoter<br />

Stable RNA promoters in E. coli are both highly regulated and show a high maximal<br />

rate <strong>of</strong> transcription initiation. The tyrT UAS is necessary for optimal <strong>expression</strong> in vivo<br />

[Lamond & Travers, 1983] and can activate transcription in both FIS-dependent and<br />

independent modes. In vitro the tyrT UAS increases the affinity <strong>of</strong> the polymerase for<br />

the promoter [Sander et al., 1993] and has been inferred to make a contact with RNA<br />

polymerase at positions around -120 to -130 on a negatively supercoiled DNA template<br />

[Pemberton et al., 2002]. We note that using conditions where we would expect this<br />

contact to be formed efficiently we do not observe untwisting <strong>of</strong> the -10 region in the<br />

wild-type promoter (Figure 21A), although the -10 hexamer is contacted prior to the<br />

formation <strong>of</strong> the upstream contact [Pemberton et al., 2002]. However, untwisting does<br />

occur in the presence <strong>of</strong> FIS (Figure 21A). This is consistent with both previous<br />

observation that FIS facilitates DNA untwisting in the -10 region in the presence <strong>of</strong> the<br />

initiating NTPs [Muskhelishvili et al., 1997] and also with other observations that FIS<br />

can rescue the impaired activity <strong>of</strong> a promoter with down mutation in the -10 region<br />

[Lazarus & Travers, 1993] and <strong>of</strong> a mutant RNA polymerase whose binding to the rrnB<br />

P1 promoter is destabilized [Bartlett et al., 2000]. The finding that the -35U and spacer<br />

mutants simultaneously lose the dependence on negative superhelicity and the<br />

requirement for the UAS in vivo suggests that these mutations overcome wholly or<br />

partially the barrier imposed <strong>by</strong> the wild-type promoter organization and hence abolish<br />

the requirement for activation <strong>by</strong> the UAS alone or <strong>by</strong> FIS bound to the UAS. The UAS<br />

thus acts primarily as a regulatory region with a distinct DNA geometry that is sensitive<br />

to the superhelical density <strong>of</strong> the DNA template [Travers & Muskhelishvili, 1998].<br />

Stabilization <strong>of</strong> this geometry <strong>by</strong> FIS buffers polymerase function against variations in<br />

negative superhelicity. Provision <strong>of</strong> such a buffer <strong>by</strong> FIS operates both for the tyrT<br />

promoter (this work) and also for the rrnA P1 promoter [Rochman et al., 2002]. We<br />

would expect this mechanism to be common to all promoters <strong>of</strong> similar organization.<br />

From the data here we infer that the regulated step in transcription initiation at the tyrT<br />

and possibly other stable RNA promoters is the untwisting <strong>of</strong> the -10 region, a step<br />

66


DISCUSSION<br />

which both stabilizes the polymerase–promoter interaction and provides a nucleation<br />

point for strand separation during promoter opening. At the tyrT promoter contacts in<br />

the -10 region are facilitated <strong>by</strong> negative supercoiling [Pemberton et al., 2002] and<br />

untwisting <strong>by</strong> FIS binding to the UAS [Muskhelishvili et al., 1997 and this work]. FIS<br />

can also alleviate the inhibitory effect <strong>of</strong> ppGpp on transcription from the wild-type tyrT<br />

promoter in vitro [Lazarus & Travers, 1993]. One, at least, <strong>of</strong> the mutations tested,<br />

tyrTD, is insensitive to inhibition <strong>by</strong> ppGpp in vivo and in vitro [Lamond & Travers,<br />

1985; Travers, 1980]. Taken as a whole these observations imply that for transcription<br />

initiation at stable RNA promoters there is a mechanistic connection involving not only<br />

high negative superhelicity and ppGpp levels, as previously suggested <strong>by</strong> Ohlsen &<br />

Gralla [Ohlsen and Gralla, 1992] and <strong>by</strong> Figueroa-Bossi et al. [Figueroa-Bossi et al.,<br />

1998] but also FIS. Together these parameters act to maintain tightly controlled levels<br />

<strong>of</strong> transcription.<br />

67


CONCLUSION<br />

5 Conclusion<br />

Regulation <strong>of</strong> cellular growth involves coordinated <strong>gene</strong> <strong>expression</strong> programs. An<br />

essential question is, how during growth the global transcription is organized in the<br />

genome. We demonstrate in unicellular organism E.coli that the coordination <strong>of</strong> growth<br />

phase-dependent transcription involves spatiotemporal organization <strong>of</strong> supercoiling<br />

sensitivity in the genome. On the example <strong>of</strong> tyrT promoter we demonstrate how the<br />

sequence organization <strong>of</strong> a promoter can determine supercoiling sensitivity. We show<br />

that the distributions <strong>of</strong> supercoiling sensitivity are modulated <strong>by</strong> chromatin proteins -<br />

both at global and local promoter levels - involved in organizing cellular metabolism<br />

during successive stages <strong>of</strong> growth. More compellingly, our approach identifies a tight<br />

coupling between unique <strong>gene</strong>s and the ubiquitous torsional properties <strong>of</strong> the genomic<br />

DNA in coordinating essential metabolic functions. Global <strong>regulation</strong> thus appears to<br />

act as a genuine device converting the “analog” information <strong>of</strong> torsional energy<br />

distributions into “digital” patterns <strong>of</strong> genomic activity (and vice versa). This work thus<br />

not only validates the John von Neumann notion on the coordination <strong>of</strong> <strong>gene</strong>tic<br />

information at a most basic level, but also <strong>of</strong>fers a novel strategy for further<br />

investigations. Notably, it is now evident that DNA supercoiling plays an increasingly<br />

important role in <strong>regulation</strong> <strong>of</strong> eukaryotic transcription [Dunaway & Ostrander, 1993],<br />

suggesting that this type <strong>of</strong> approach may facilitate the understanding <strong>of</strong> fundamental<br />

mechanisms coordinating the <strong>gene</strong> <strong>expression</strong>.<br />

68


REFERENCES<br />

6 References<br />

Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999) Growth<br />

phase-dependent variation in protein composition <strong>of</strong> the Escherichia coli nucleoid.<br />

J Bacteriol 181: 6361-6370.<br />

Auner, H., Buckle, M., Deufel, A., Kutateladze, T., Lazarus, L., Mavathur, R.,<br />

Muskhelishvili, G., Pemberton, I., Schneider, R., and Travers, A. (2003)<br />

Mechanism <strong>of</strong> transcriptional activation <strong>by</strong> FIS: role <strong>of</strong> core promoter structure<br />

and DNA topology. J Mol Biol 331: 331-344.<br />

Azam, T.A., and Ishihama, A. (1999) Twelve species <strong>of</strong> the nucleoid-associated protein<br />

from Escherichia coli. Sequence recognition specificity and DNA binding affinity.<br />

J Biol Chem 274: 33105-33113.<br />

Balke, V.L., and Gralla, J.D. (1987) Changes in the linking number <strong>of</strong> supercoiled DNA<br />

accompany growth transitions in Escherichia coli. J Bacteriol 169: 4499-4506.<br />

Ball, C.A., Osuna, R., Ferguson, K.C., and Johnson, R.C. (1992) Dramatic changes in<br />

Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174: 8043-8056.<br />

Bartlett, M.S., Gaal, T., Ross, W., and Gourse, R.L. (2000) Regulation <strong>of</strong> rRNA<br />

transcription is remarkably robust: FIS compensates for altered nucleoside<br />

triphosphate sensing <strong>by</strong> mutant RNA polymerases at Escherichia coli rrn P1<br />

promoters. J Bacteriol 182: 1969-1977.<br />

Blot, N., Mavathur, R., Geertz, M., Travers, A., and Muskhelishvili, G. (2006)<br />

Homeostatic <strong>regulation</strong> <strong>of</strong> supercoiling sensitivity coordinates transcription <strong>of</strong> the<br />

bacterial genome. EMBO Rep 7: 710-715.<br />

Bokal, A.J.t., Ross, W., and Gourse, R.L. (1995) The transcriptional activator protein<br />

FIS: DNA interactions and cooperative interactions with RNA polymerase at the<br />

Escherichia coli rrnB P1 promoter. J Mol Biol 245: 197-207.<br />

69


REFERENCES<br />

Bordes, P., Conter, A., Morales, V., Bouvier, J., Kolb, A., and Gutierrez, C. (2003)<br />

DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaSdependent<br />

transcription in Escherichia coli. Mol Microbiol 48: 561-571.<br />

Bowater, R.P., Chen, D., and Lilley, D.M. (1994) Modulation <strong>of</strong> tyrT promoter activity<br />

<strong>by</strong> template supercoiling in vivo. Embo J 13: 5647-5655.<br />

Browning, D.F., and Bus<strong>by</strong>, S.J. (2004) The <strong>regulation</strong> <strong>of</strong> bacterial transcription<br />

initiation. Nat Rev Microbiol 2: 57-65.<br />

Burgess, R.R. (1969) Separation and characterization <strong>of</strong> the subunits <strong>of</strong> ribonucleic acid<br />

polymerase. J Biol Chem 244: 6168-6176.<br />

Cheung, K.J., Badarinarayana, V., Selinger, D.W., Janse, D., and Church, G.M. (2003)<br />

A microarray-based antibiotic screen identifies a regulatory role for supercoiling<br />

in the osmotic stress response <strong>of</strong> Escherichia coli. Genome Res 13: 206-215.<br />

Crozat, E., Philippe, N., Lenski, R.E., Geiselmann, J., and Schneider, D. (2005) Longterm<br />

experimental evolution in Escherichia coli. XII. DNA topology as a key<br />

target <strong>of</strong> selection. Genetics 169: 523-532.<br />

Dame, R.T., Wyman, C., and Goosen, N. (2001) Structural basis for preferential<br />

binding <strong>of</strong> H-NS to curved DNA. Biochimie 83: 231-234.<br />

Dame, R.T. (2005) The role <strong>of</strong> nucleoid-associated proteins in the organization and<br />

compaction <strong>of</strong> bacterial chromatin. Mol Microbiol 56: 858-870.<br />

Deng, S., Stein, R.A., and Higgins, N.P. (2005) Organization <strong>of</strong> supercoil domains and<br />

their reorganization <strong>by</strong> transcription. Mol Microbiol 57: 1511-1521.<br />

DiNardo, S., Voelkel, K.A., Sternglanz, R., Reynolds, A.E., and Wright, A. (1982)<br />

Escherichia coli DNA topoisomerase I mutants have compensatory mutations in<br />

DNA gyrase <strong>gene</strong>s. Cell 31: 43-51.<br />

Dorman, C.J. (1996) Flexible response: DNA supercoiling, transcription and bacterial<br />

adaptation to environmental stress. Trends Microbiol 4: 214-216.<br />

Dorman, C.J., and Deighan, P. (2003) Regulation <strong>of</strong> <strong>gene</strong> <strong>expression</strong> <strong>by</strong> histone-like<br />

proteins in bacteria. Curr Opin Genet Dev 13: 179-184.<br />

70


REFERENCES<br />

Dorman, C.J. (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev<br />

Microbiol 2: 391-400.<br />

Drew, H.R., Weeks, J.R., and Travers, A.A. (1985) Negative supercoiling induces<br />

spontaneous unwinding <strong>of</strong> a bacterial promoter. Embo J 4: 1025-1032.<br />

Drlica, K. (1992) Control <strong>of</strong> bacterial DNA supercoiling. Mol Microbiol 6: 425-433.<br />

Dunaway, M., and Ostrander, E.A. (1993) Local domains <strong>of</strong> supercoiling activate a<br />

eukaryotic promoter in vivo. Nature 361: 746-748.<br />

Figueroa-Bossi, N., Guerin, M., Rahmouni, R., Leng, M., and Bossi, L. (1998) The<br />

supercoiling sensitivity <strong>of</strong> a bacterial tRNA promoter parallels its responsiveness<br />

to stringent control. Embo J 17: 2359-2367.<br />

Free, A., and Dorman, C.J. (1994) Escherichia coli tyrT <strong>gene</strong> transcription is sensitive<br />

to DNA supercoiling in its native chromosomal context: effect <strong>of</strong> DNA<br />

topoisomerase IV over<strong>expression</strong> on tyrT promoter function. Mol Microbiol 14:<br />

151-161.<br />

Gamper, H.B., and Hearst, J.E. (1982) A topological model for transcription based on<br />

unwinding angle analysis <strong>of</strong> E. coli RNA polymerase binary, initiation and ternary<br />

complexes. Cell 29: 81-90.<br />

Geertz, M., Mavathur, R., Travers, A., Muskhelishvili, G. (2007) RNA polymerase<br />

composition is homeostatically coupled with DNA topology in E. coli. Submitted<br />

to EMBO reports.<br />

Gille, H., Egan, J.B., Roth, A. and Messer, W. (1991) The FIS protein binds and bends<br />

the origin <strong>of</strong> chromosomal DNA replication, oriC, <strong>of</strong> Escherichia coli. Nucleic<br />

Acids Res, 19, 4167-4172.<br />

Gomez-Eichelmann, M.C., and Camacho-Carranza, R. (1995) [DNA supercoiling and<br />

topoisomerases in Escherichia coli]. Rev Latinoam Microbiol 37: 291-304.<br />

Gralla, J.D., Hsieh, M. & Wong, C. (1993) Permanganate probing. In Footprinting<br />

Techniques for Studying Nucleic Acid-Protein complexes (Revzin, A., ed.)<br />

pp.107-128, Academic Press, Orlando, FL.<br />

71


REFERENCES<br />

Gruber, T.M., and Gross, C.A. (2003) Multiple sigma subunits and the partitioning <strong>of</strong><br />

bacterial transcription space. Annu Rev Microbiol 57: 441-466.<br />

Guest, J.R., and Russell, G.C. (1992) Complexes and complexities <strong>of</strong> the citric acid<br />

cycle in Escherichia coli. Curr Top Cell Regul 33: 231-247.<br />

Hardy, C.D., and Cozzarelli, N.R. (2005) A <strong>gene</strong>tic selection for supercoiling mutants<br />

<strong>of</strong> Escherichia coli reveals proteins implicated in chromosome structure. Mol<br />

Microbiol 57: 1636-1652.<br />

Hatfield, G.W., and Benham, C.J. (2002) DNA topology-mediated control <strong>of</strong> global<br />

<strong>gene</strong> <strong>expression</strong> in Escherichia coli. Annu Rev Genet 36: 175-203.<br />

Heinemann, M., and Wagner, R. (1997) Guanosine 3',5'-bis(diphosphate) (ppGpp)-<br />

dependent inhibition <strong>of</strong> transcription from stringently controlled Escherichia coli<br />

promoters can be explained <strong>by</strong> an altered initiation pathway that traps RNA<br />

polymerase. Eur J Biochem 247: 990-999.<br />

Helling, R.B., and Kukora, J.S. (1971) Nalidixic Acid-Resistant Mutants <strong>of</strong> Escherichia<br />

coli Deficient in Isocitrate Dehydrogenase. J. Bacteriol. 105: 1224-1226.<br />

Hengge-Aronis, R. (2002) Recent insights into the <strong>gene</strong>ral stress response regulatory<br />

network in Escherichia coli. J Mol Microbiol Biotechnol 4: 341-346.<br />

Hiasa, H., and Marians, K.J. (1994) Topoisomerase III, but not topoisomerase I, can<br />

support nascent chain elongation during theta-type DNA replication. J Biol Chem<br />

269: 32655-32659.<br />

Ishihama, A. (1999) Modulation <strong>of</strong> the nucleoid, the transcription apparatus, and the<br />

translation machinery in bacteria for stationary phase survival. Genes Cells 4:<br />

135-143.<br />

Ishihama, A. (2000) Functional modulation <strong>of</strong> Escherichia coli RNA polymerase. Annu<br />

Rev Microbiol 54: 499-518.<br />

Iuchi, S., and Lin, E.C. (1988) arcA (dye), a global regulatory <strong>gene</strong> in Escherichia coli<br />

mediating repression <strong>of</strong> enzymes in aerobic pathways. Proc Natl Acad Sci U S A<br />

85: 1888-1892.<br />

72


REFERENCES<br />

Iuchi, S., Cameron, D.C., and Lin, E.C. (1989) A second global regulator <strong>gene</strong> (arcB)<br />

mediating repression <strong>of</strong> enzymes in aerobic pathways <strong>of</strong> Escherichia coli. J<br />

Bacteriol 171: 868-873.<br />

Jeong, K.S., Ahn, J., and Khodursky, A.B. (2004) Spatial patterns <strong>of</strong> transcriptional<br />

activity in the chromosome <strong>of</strong> Escherichia coli. Genome Biol 5: R86.<br />

Josaitis, C.A., Gaal, T., and Gourse, R.L. (1995) Stringent control and growth-ratedependent<br />

control have nonidentical promoter sequence requirements. Proc Natl<br />

Acad Sci U S A 92: 1117-1121.<br />

Keller, W. (1975) Determination <strong>of</strong> the number <strong>of</strong> superhelical turns in simian virus 40<br />

DNA <strong>by</strong> gel electrophoresis. Proc Natl Acad Sci U S A 72: 4876-4880.<br />

Kerkhoven, R., van Enckevort, F.H., Boekhorst, J., Molenaar, D., and Siezen, R.J.<br />

(2004) Visualization for genomics: the Microbial Genome Viewer. Bioinformatics<br />

20: 1812-1814.<br />

Khodursky, A.B., Zechiedrich, E.L., and Cozzarelli, N.R. (1995) Topoisomerase IV is a<br />

target <strong>of</strong> quinolones in Escherichia coli. Proc Natl Acad Sci U S A 92: 11801-<br />

11805.<br />

Koch, C., Vandekerckhove, J., and Kahmann, R. (1988) Escherichia coli host factor for<br />

site-specific DNA inversion: cloning and characterization <strong>of</strong> the fis <strong>gene</strong>. Proc<br />

Natl Acad Sci U S A 85: 4237-4241.<br />

Kusano, S., Ding, Q., Fujita, N., and Ishihama, A. (1996) Promoter selectivity <strong>of</strong><br />

Escherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes.<br />

Effect <strong>of</strong> DNA supercoiling. J Biol Chem 271: 1998-2004.<br />

Lamond, A.I., and Travers, A.A. (1983) Requirement for an upstream element for<br />

optimal transcription <strong>of</strong> a bacterial tRNA <strong>gene</strong>. Nature 305: 248-250.<br />

Lamond, A.I., and Travers, A.A. (1985) Stringent control <strong>of</strong> bacterial transcription. Cell<br />

41: 6-8.<br />

Lang, B., Madan Babu, M., Blot, N., Bouffartigues, E., Buckle, M., Geertz, M.,<br />

Gualerzi, C., Mavathur, R., Muskhelshvili, G., Pon, C., Rimsky, S., Stella, S.,<br />

Travers, A., (2007) High affinity DNA binding sites for H-NS provide a<br />

73


REFERENCES<br />

molecular basis for selective silencing within proteobacterial genomes. Submitted<br />

to PNAS.<br />

Lazarus, L.R., and Travers, A.A. (1993) The Escherichia coli FIS protein is not required<br />

for the activation <strong>of</strong> tyrT transcription on entry into exponential growth. Embo J<br />

12: 2483-2494.<br />

Lim, H.M., Lewis, D.E., Lee, H.J., Liu, M., and Adhya, S. (2003) Effect <strong>of</strong> varying the<br />

supercoiling <strong>of</strong> DNA on transcription and its <strong>regulation</strong>. Biochemistry 42: 10718-<br />

10725.<br />

Lisser, S., and Margalit, H. (1993) Compilation <strong>of</strong> E. coli mRNA promoter sequences.<br />

Nucleic Acids Res 21: 1507-1516.<br />

Liu, L.F., and Wang, J.C. (1987) Supercoiling <strong>of</strong> the DNA template during<br />

transcription. Proc Natl Acad Sci U S A 84: 7024-7027.<br />

Lockshon, D., and Morris, D.R. (1983) Positively supercoiled plasmid DNA is<br />

produced <strong>by</strong> treatment <strong>of</strong> Escherichia coli with DNA gyrase inhibitors. Nucleic<br />

Acids Res 11: 2999-3017.<br />

Maurer, S., Fritz, J., Muskhelishvili, G., and Travers, A. (2006) RNA polymerase and<br />

an activator form discrete subcomplexes in a transcription initiation complex.<br />

Embo J 25: 3784-3790.<br />

McClure, W.R. (1985) Mechanism and control <strong>of</strong> transcription initiation in prokaryotes.<br />

Annu Rev Biochem 54: 171-204.<br />

McLeod, S.M., and Johnson, R.C. (2001) Control <strong>of</strong> transcription <strong>by</strong> nucleoid proteins.<br />

Curr Opin Microbiol 4: 152-159.<br />

Menzel, R., and Gellert, M. (1983) Regulation <strong>of</strong> the <strong>gene</strong>s for E. coli DNA gyrase:<br />

homeostatic control <strong>of</strong> DNA supercoiling. Cell 34: 105-113.<br />

Mojica, F.J., and Higgins, C.F. (1997) In vivo supercoiling <strong>of</strong> plasmid and<br />

chromosomal DNA in an Escherichia coli hns mutant. J Bacteriol 179: 3528-<br />

3533.<br />

74


REFERENCES<br />

Murray, K.D., and Bremer, H. (1996) Control <strong>of</strong> spoT-dependent ppGpp synthesis and<br />

degradation in Escherichia coli. J Mol Biol 259: 41-57.<br />

Muskhelishvili, G., Travers, A.A., Heumann, H., and Kahmann, R. (1995) FIS and<br />

RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable<br />

RNA promoter. Embo J 14: 1446-1452.<br />

Muskhelishvili, G., Buckle, M., Heumann, H., Kahmann, R., and Travers, A.A. (1997)<br />

FIS activates sequential steps during transcription initiation at a stable RNA<br />

promoter. Embo J 16: 3655-3665.<br />

Muskhelishvili, G., and Travers, A. (2003) Transcription factor as a topological<br />

homeostat. Front Biosci 8: d279-285.<br />

Nachaliel, N., Melnick, J., Gafny, R. and Glaser, G. (1989) Ribosome associated<br />

protein(s) specifically bind(s) to the upstream activator sequence <strong>of</strong> the E. coli<br />

rrnA P1 promoter. Nucl. Acids Res., 17, 9811-9822.<br />

Nasser, W., Schneider, R., Travers, A., and Muskhelishvili, G. (2001) CRP modulates<br />

fis transcription <strong>by</strong> alternate formation <strong>of</strong> activating and repressing nucleoprotein<br />

complexes. J Biol Chem 276: 17878-17886.<br />

Neidhardt, F.C. et al. (1987) Escherichia coli and Salmonella typhimurium: Cellular and<br />

Molecular Biology Vol. 2. American Society for Microbiology.<br />

Nygaard, P., Duckert, P., and Saxild, H.H. (1996) Role <strong>of</strong> adenine deaminase in purine<br />

salvage and nitrogen metabolism and characterization <strong>of</strong> the ade <strong>gene</strong> in Bacillus<br />

subtilis. J Bacteriol 178: 846-853.<br />

Nystrom, T. (2004) Stationary-phase physiology. Annu Rev Microbiol 58: 161-181.<br />

Ohlsen, K.L., and Gralla, J.D. (1992) DNA melting within stable closed complexes at<br />

the Escherichia coli rrnB P1 promoter. J Biol Chem 267: 19813-19818.<br />

Ozoline, O.N., Deev, A.A., and Trifonov, E.N. (1999) DNA bendability--a novel<br />

feature in E. coli promoter recognition. J Biomol Struct Dyn 16: 825-831.<br />

75


REFERENCES<br />

Pan, C.Q., Finkel, S.E., Cramton, S.E., Feng, J.A., Sigman, D.S., and Johnson, R.C.<br />

(1996) Variable structures <strong>of</strong> Fis-DNA complexes determined <strong>by</strong> flanking DNAprotein<br />

contacts. J Mol Biol 264: 675-695.<br />

Pan, W. (2002) A comparative review <strong>of</strong> statistical methods for discovering<br />

differentially expressed <strong>gene</strong>s in replicated microarray experiments.<br />

Bioinformatics 18: 546-554.<br />

Pedersen, A.G., Jensen, L.J., Brunak, S., Staerfeldt, H.H., and Ussery, D.W. (2000) A<br />

DNA structural atlas for Escherichia coli. J Mol Biol 299: 907-930.<br />

Pemberton, I.K., Muskhelishvili, G., Travers, A.A., and Buckle, M. (2000) The G+Crich<br />

discriminator region <strong>of</strong> the tyrT promoter antagonises the formation <strong>of</strong> stable<br />

preinitiation complexes. J Mol Biol 299: 859-864.<br />

Pemberton, I.K., Muskhelishvili, G., Travers, A.A., and Buckle, M. (2002) FIS<br />

modulates the kinetics <strong>of</strong> successive interactions <strong>of</strong> RNA polymerase with the<br />

core and upstream regions <strong>of</strong> the tyrT promoter. J Mol Biol 318: 651-663.<br />

Perez-Martin, J., and de Lorenzo, V. (1997) Clues and consequences <strong>of</strong> DNA bending<br />

in transcription. Annu Rev Microbiol 51: 593-628.<br />

Peter, B.J., Arsuaga, J., Breier, A.M., Khodursky, A.B., Brown, P.O., and Cozzarelli,<br />

N.R. (2004) Genomic transcriptional response to loss <strong>of</strong> chromosomal<br />

supercoiling in Escherichia coli. Genome Biol 5: R87.<br />

Pontiggia, A., Negri, A., Beltrame, M., and Bianchi, M.E. (1993) Protein HU binds<br />

specifically to kinked DNA. Mol Microbiol 7: 343-350.<br />

Postow, L., Hardy, C.D., Arsuaga, J., and Cozzarelli, N.R. (2004) Topological domain<br />

structure <strong>of</strong> the Escherichia coli chromosome. Genes Dev 18: 1766-1779.<br />

Pruss, G.J., Manes, S.H., and Drlica, K. (1982) Escherichia coli DNA topoisomerase I<br />

mutants: increased supercoiling is corrected <strong>by</strong> mutations near gyrase <strong>gene</strong>s. Cell<br />

31: 35-42.<br />

Rimsky, S., Zuber, F., Buckle, M., and Buc, H. (2001) A molecular mechanism for the<br />

repression <strong>of</strong> transcription <strong>by</strong> the H-NS protein. Mol Microbiol 42: 1311-1323.<br />

76


REFERENCES<br />

Rochman, M., Aviv, M., Glaser, G., and Muskhelishvili, G. (2002) Promoter protection<br />

<strong>by</strong> a transcription factor acting as a local topological homeostat. EMBO Rep 3:<br />

355-360.<br />

Ryals, J., Little, R., and Bremer, H. (1982) Control <strong>of</strong> rRNA and tRNA syntheses in<br />

Escherichia coli <strong>by</strong> guanosine tetraphosphate. J Bacteriol 151: 1261-1268.<br />

Sadler, J.R., and Novick, A. (1965) The Properties <strong>of</strong> Repressor and the Kinetics <strong>of</strong> Its<br />

Action. J Mol Biol 12: 305-327.<br />

Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa,<br />

M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D.,<br />

Ryltsov, A., Kostukovich, E., Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V.,<br />

and Quackenbush, J. (2003) TM4: a free, open-source system for microarray data<br />

management and analysis. Biotechniques 34: 374-378.<br />

Sambrook, J. and Russell, D.W. (2001) Molecular cloning : a laboratory manual. Third<br />

edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.<br />

Sander, P., Langert, W., and Mueller, K. (1993) Mechanisms <strong>of</strong> upstream activation <strong>of</strong><br />

the rrnD promoter P1 <strong>of</strong> Escherichia coli. J Biol Chem 268: 16907-16916.<br />

Schneider, R., Travers, A., and Muskhelishvili, G. (1997) FIS modulates growth phasedependent<br />

topological transitions <strong>of</strong> DNA in Escherichia coli. Mol Microbiol 26:<br />

519-530.<br />

Schneider, R., Travers, A., Kutateladze, T., and Muskhelishvili, G. (1999) A DNA<br />

architectural protein couples cellular physiology and DNA topology in<br />

Escherichia coli. Mol Microbiol 34: 953-964.<br />

Schneider, R., Travers, A., and Muskhelishvili, G. (2000) The <strong>expression</strong> <strong>of</strong> the<br />

Escherichia coli fis <strong>gene</strong> is strongly dependent on the superhelical density <strong>of</strong><br />

DNA. Mol Microbiol 38: 167-175.<br />

Schneider, R., Lurz, R., Luder, G., Tolksdorf, C., Travers, A., and Muskhelishvili, G.<br />

(2001) An architectural role <strong>of</strong> the Escherichia coli chromatin protein FIS in<br />

organising DNA. Nucleic Acids Res 29: 5107-5114.<br />

77


REFERENCES<br />

Schroder, O., and Wagner, R. (2000) The bacterial DNA-binding protein H-NS<br />

represses ribosomal RNA transcription <strong>by</strong> trapping RNA polymerase in the<br />

initiation complex. J Mol Biol 298: 737-748.<br />

Sinden, R.R., and Pettijohn, D.E. (1981) Chromosomes in living Escherichia coli cells<br />

are segregated into domains <strong>of</strong> supercoiling. Proc Natl Acad Sci U S A 78: 224-<br />

228.<br />

Snoep, J.L., van der Weijden, C.C., Andersen, H.W., Westerh<strong>of</strong>f, H.V., and Jensen,<br />

P.R. (2002) DNA supercoiling in Escherichia coli is under tight and subtle<br />

homeostatic control, involving <strong>gene</strong>-<strong>expression</strong> and metabolic <strong>regulation</strong> <strong>of</strong> both<br />

topoisomerase I and DNA gyrase. Eur J Biochem 269: 1662-1669.<br />

Staczek, P., and Higgins, N.P. (1998) Gyrase and Topo IV modulate chromosome<br />

domain size in vivo. Mol Microbiol 29: 1435-1448.<br />

Stein, R.A., Deng, S., and Higgins, N.P. (2005) Measuring chromosome dynamics on<br />

different time scales using resolvases with varying half-lives. Mol Microbiol 56:<br />

1049-1061.<br />

Tao, H., Bausch, C., Richmond, C., Blattner, F.R., and Conway, T. (1999) Functional<br />

genomics: <strong>expression</strong> analysis <strong>of</strong> Escherichia coli growing on minimal and rich<br />

media. J Bacteriol 181: 6425-6440.<br />

Thanbichler, M., Viollier, P.H., and Shapiro, L. (2005) The structure and function <strong>of</strong> the<br />

bacterial chromosome. Curr Opin Genet Dev 15: 153-162.<br />

Tippner, D., Afflerbach, H., Bradaczek, C., and Wagner, R. (1994) Evidence for a<br />

regulatory function <strong>of</strong> the histone-like Escherichia coli protein H-NS in ribosomal<br />

RNA synthesis. Mol Microbiol 11: 589-604.<br />

Travers, A.A. (1980) Promoter sequence for stringent control <strong>of</strong> bacterial ribonucleic<br />

acid synthesis. J Bacteriol 141: 973-976.<br />

Travers, A., and Muskhelishvili, G. (1998) DNA microloops and microdomains: a<br />

<strong>gene</strong>ral mechanism for transcription activation <strong>by</strong> torsional transmission. J Mol<br />

Biol 279: 1027-1043.<br />

78


REFERENCES<br />

Travers, A., Schneider, R., and Muskhelishvili, G. (2001) DNA supercoiling and<br />

transcription in Escherichia coli: The FIS connection. Biochimie 83: 213-217.<br />

Travers, A., and Muskhelishvili, G. (2005) Bacterial chromatin. Curr Opin Genet Dev<br />

15: 507-514.<br />

Travers, A., and Muskhelishvili, G. (2005) DNA supercoiling - a global transcriptional<br />

regulator for enterobacterial growth? Nat Rev Microbiol 3: 157-169.<br />

Travers, A., and Muskhelishvili, G. (2007) A common topology for bacterial and<br />

eukaryotic transcription initiation? EMBO Rep 8: 147-151.<br />

Tse-Dinh, Y.C. (1985) Regulation <strong>of</strong> the Escherichia coli DNA topoisomerase I <strong>gene</strong> <strong>by</strong><br />

DNA supercoiling. Nucleic Acids Res 13: 4751-4763.<br />

Tse-Dinh, Y.C., Qi, H., and Menzel, R. (1997) DNA supercoiling and bacterial<br />

adaptation: thermotolerance and thermoresistance. Trends Microbiol 5: 323-326.<br />

Ueguchi, C., and Mizuno, T. (1993) The Escherichia coli nucleoid protein H-NS<br />

functions directly as a transcriptional repressor. Embo J 12: 1039-1046.<br />

Valens, M., Penaud, S., Rossignol, M., Cornet, F., and Boccard, F. (2004)<br />

Macrodomain organization <strong>of</strong> the Escherichia coli chromosome. Embo J 23: 4330-<br />

4341.<br />

von Neumann, J., (1958) The Computer and the Brain. New Haven, CT, USA: Yale<br />

<strong>University</strong> Press<br />

Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. (2005) Genomewide<br />

analysis <strong>of</strong> the <strong>gene</strong>ral stress response network in Escherichia coli: sigmaSdependent<br />

<strong>gene</strong>s, promoters, and sigma factor selectivity. J Bacteriol 187: 1591-<br />

1603.<br />

Wei, Y., Lee, J.M., Richmond, C., Blattner, F.R., Rafalski, J.A., and LaRossa, R.A.<br />

(2001) High-density microarray-mediated <strong>gene</strong> <strong>expression</strong> pr<strong>of</strong>iling <strong>of</strong><br />

Escherichia coli. J Bacteriol 183: 545-556.<br />

Weinstein-Fischer, D., and Altuvia, S. (2007) Differential <strong>regulation</strong> <strong>of</strong> Escherichia coli<br />

topoisomerase I <strong>by</strong> Fis. Mol Microbiol 63: 1131-1144.<br />

79


REFERENCES<br />

Willenbrock, H., and Ussery, D.W. (2004) Chromatin architecture and <strong>gene</strong> <strong>expression</strong><br />

in Escherichia coli. Genome Biol 5: 252.<br />

Wu, H.Y., Shyy, S.H., Wang, J.C., and Liu, L.F. (1988) Transcription <strong>gene</strong>rates<br />

positively and negatively supercoiled domains in the template. Cell 53: 433-440.<br />

Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning<br />

vectors and host strains: nucleotide sequences <strong>of</strong> the M13mp18 and pUC19<br />

vectors. Gene 33: 103-119.<br />

Zechiedrich, E.L., Khodursky, A.B., and Cozzarelli, N.R. (1997) Topoisomerase IV, not<br />

gyrase, decatenates products <strong>of</strong> site-specific recombination in Escherichia coli.<br />

Genes Dev 11: 2580-2592.<br />

Zechiedrich, E.L., Khodursky, A.B., Bachellier, S., Schneider, R., Chen, D., Lilley,<br />

D.M., and Cozzarelli, N.R. (2000) Roles <strong>of</strong> topoisomerases in maintaining steadystate<br />

DNA supercoiling in Escherichia coli. J Biol Chem 275: 8103-8113.<br />

80


APPENDIX I<br />

7 Appendix I - Supplementary data: Gene lists from<br />

microarray experiments.<br />

Supplementary table -I: CSH50 wild-type (A) Vs CSH50 fis::kan (B), Mid-exponential phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aceA b4015 0.4993 0.0399 isocitrate lyase monomer<br />

acnA b1276 0.5979 0.0220 aconitase<br />

add b1623 0.7825 0.0299 deoxyadenosine deaminase / adenosine deaminase<br />

adhP b1478 0.5912 0.0138 ethanol dehydrogenase<br />

adk b0474 0.7212 0.0042 adenylate kinase<br />

allR b0506 0.5111 0.0224 AllR transcriptional regulator<br />

ansA b1767 0.5233 0.0335 asparaginase I<br />

araC b0064 0.6958 0.0157 AraC transcriptional dual regulator<br />

argC b3958 1.8029 0.0027 N-acetylglutamylphosphate reductase<br />

argR b3237 0.5625 0.0105 ArgR transcriptional dual regulator<br />

argS b1876 0.6906 0.0296 arginyl-tRNA synthetase<br />

aroG b0754 2.9967 0.0372 2-dehydro-3-deoxyphosphoheptonate aldolase<br />

arsB b3502 0.4948 0.0219 arsenite Ars transporter<br />

artP b0864 1.7795 0.0024 arginine ABC transporter<br />

atoS b2219 2.3222 0.0346 AtoS-Phis<br />

b0259 b0259 1.7818 0.0203 IS5 protein<br />

b0538 b0538 0.4888 0.0102 putative sensory transduction regulator<br />

b1146 b1146 0.4913 0.0184 hypothetical protein<br />

b3044 b3044 1.8424 0.0245 IS21 protein<br />

bax b3570 2.0569 0.0470 putative ATP-binding protein<br />

bcsC b3530 1.9134 0.0035 oxidase involved in cellulose synthesis<br />

bcsE b3536 2.7434 0.0002 putative protease<br />

bcsF b3537 2.2031 0.0199 hypothetical protein<br />

bdm b1481 0.4743 0.0212 hypothetical protein<br />

bfd b3337 3.4231 0.0057 bacteri<strong>of</strong>erritin-associated ferredoxin<br />

blc b4149 1.5094 0.0488 Blc outer membrane lipoprotein (lipocalin)<br />

bolA b0435 3.8179 0.0135 BolA transcriptional regulator<br />

caiB b0038 0.5712 0.0445 CaiB monomer<br />

carB b0033 2.0837 0.0268 carbamoyl phosphate synthetase<br />

chaC b1218 0.5220 0.0378 cation transport regulator<br />

cls b1249 2.0209 0.0254 cardiolipin synthase<br />

cmk b0910 0.5068 0.0341 cytidylate kinase<br />

codB b0336 0.4890 0.0263 CodB cytosine NCS1 transporter<br />

corA b3816 0.6579 0.0224 CorA magnesium ion MIT transporter<br />

csgA b1042 0.4427 0.0472 curlin, major subunit<br />

cspD b0880 0.5276 0.0343 DNA replication inhibitor<br />

cspF b1558 0.4512 0.0391 cold shock protein CspF<br />

cusF b0573 1.4877 0.0197 periplasmic copper-binding protein<br />

cusS b0570 0.5047 0.0393 putative 2-component sensor protein<br />

cyoB b0431 1.9982 0.0279 cytochrome bo terminal oxidase subunit I<br />

dcp b1538 0.7555 0.0449 dipeptidyl carboxypeptidase II<br />

dcuA b4138 1.7199 0.0185 DcuA dicarboxylate Dcu transporter<br />

dcuR b4124 2.1501 0.0059 DcuR-Pasp56<br />

dcuS b4125 2.3146 0.0461 DcuS-Phis349<br />

deoC b4381 3.0453 0.0075 deoxyribose-phosphate aldolase<br />

deoD b4384 1.9030 0.0058 purine nucleoside phosphorylase<br />

81


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

dgkA b4042 1.3606 0.0128 diacylglycerol kinase<br />

dgoA b3692 0.1024 0.0302<br />

dgoA 3871635-3871018 : '2-dehydro-3-deoxyphosphogalactonate aldolase / dgoD<br />

3871021-3869873 : galactonate dehydratase<br />

dgoR b3694 0.2442 0.0306 regulator protein for dgo operon<br />

dhaL b1199 2.4480 0.0354 dihydroxyacetone kinase subunit L<br />

dinB b0231 0.5647 0.0273 DNA polymerase IV (Y-family DNA polymerase; translesion DNA synthesis)<br />

dinI b1061 0.5985 0.0137 damage-inducible protein I<br />

dld b2133 0.4244 0.0262 D-lactate:Quinone Oxidoreductase<br />

dmsA b0894 3.0559 0.0473 dimethyl sulfoxide reductase, chain A<br />

dnaC b4361 0.6833 0.0209 chromosome replication; initiation and chain elongation<br />

dnaN b3701 0.4388 0.0203 DNA polymerase III, beta-subunit<br />

dos b1489 0.4681 0.0009 heme-regulated phosphodiesterase monomer<br />

dpiB b0619 0.6938 0.0436 DpiB<br />

dppA b3544 2.6873 0.0270 dipeptide ABC transporter<br />

dusB b3260 0.1200 0.0055 tRNA dihydrouridine synthase<br />

ecfL b3095 1.4210 0.0186 putative integral membrane protein with possible extracytoplasmic function<br />

eco b2209 0.5356 0.0195 ecotin monomer; serine protease inhibitor<br />

efp b4147 1.6592 0.0497 elongation factor P (EF-P)<br />

emrD b3673 0.6508 0.0203 EmrD multidrug MFS transporter<br />

eutD b2458 0.4733 0.0002 putative phosphate acetyltransferase, ethanolamine utilization<br />

eutK b2438 0.4006 0.0142 hypothetical protein<br />

exbB b3006 3.7552 0.0314 ExbB protein; uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

exbD b3005 3.8008 0.0007 ExbD uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

fadL b2344 0.1834 0.0089 transport <strong>of</strong> long-chain fatty acids; sensitivity to phage T2<br />

fbaB b2097 0.1653 0.0131 fructose bisphosphate aldolase monomer<br />

fbp b4232 0.5580 0.0352 fructose 1,6 bisphosphatase monomer<br />

fdx b2525 0.5482 0.0090 oxidized ferredoxin<br />

fecB b4290 8.6991 0.0075 ferric dicitrate uptake system<br />

fepD b0590 8.7158 0.0041 Ferric Enterobactin Transport System<br />

fhuF b4367 4.4704 0.0311 acts in reduction <strong>of</strong> ferrioxamine B iron<br />

fimC b4316 0.4695 0.0364 periplasmic chaperone, required for type 1 fimbriae<br />

fimI b4315 0.4942 0.0141 fimbrial protein<br />

flgJ b1081 3.8116 0.0170 FlgJ<br />

flgK b1082 2.4424 0.0026 flagellar biosynthesis, hook-filament junction protein 1<br />

fliM b1945 19.0270 0.0382<br />

flagellar motor switch protein FliM; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliQ b1949 8.8017 0.0425 flagellar biosynthesis protein FliQ<br />

fliS b1925 9.2416 0.0232 flagellar biosynthesis protein FliS<br />

fnr b1334 0.4432 0.0445 FNR transcriptional dual regulator<br />

folD b0529 0.6351 0.0380<br />

methyleneTHF enzyme / methenyltetrahydr<strong>of</strong>olate cyclohydrolase /<br />

methylenetetrahydr<strong>of</strong>olate dehydrogenase-(NADP+)<br />

folK b0142 0.7061 0.0168 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase<br />

folP b3177 0.3301 0.0096 dihydropteroate synthase<br />

fpr b3924 1.3795 0.0274 flavodoxin NADP+ reductase<br />

frdC b4152 2.7825 0.0397 fumarate reductase membrane protein<br />

frlC b3373 0.5854 0.0174 fructoselysine and psicoselysine degradation<br />

ftnA b1905 0.2818 0.0240 cytoplasmic ferritin, an iron storage protein)<br />

ftsY b3464 1.3557 0.0167 SRP receptor<br />

fucR b2805 1.7855 0.0380 FucR transcriptional activator<br />

gadC b1492 0.3529 0.0477 XasA GABA APC transporter<br />

galK b0757 0.5451 0.0491 Galactokinase<br />

galR b2837 4.4098 0.0315 GalR-galactose<br />

garK b3124 2.4698 0.0490 glycerate kinase I<br />

gatD b2091 0.7554 0.0174 galactitol-1-phosphate dehydrogenase<br />

gatY b2096 1.6866 0.0090 tagatose-1,6-bisphosphate aldolase 2<br />

gcvH b2904 4.5473 0.0091 dihydrolipoyl-GcvH-protein<br />

gcvT b2905 5.7601 0.0109 Aminomethyltransferase<br />

82


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

gidB b3740 0.4856 0.0237 protein with a methyltransferase fold; possible role in chromosome replication<br />

glcB b2976 0.6190 0.0452 malate synthase G<br />

glmU b3730 1.6033 0.0469<br />

N-acetylglucosamine-1-phosphate uridyltransferase / glucosamine-1-phosphate<br />

acetyltransferase<br />

glnH b0811 0.4352 0.0140 glutamine ABC transporter<br />

gloB b0212 3.5188 0.0181 glyoxalase II<br />

glpA b2241 1.9558 0.0214 glycerol-3-phosphate-dehydrogenase, anaerobic<br />

gnsA b0991 4.7811 0.0050 YmcE<br />

gntY b3414 0.5552 0.0419<br />

predicted membrane-bound protein that is involved in high-affinity gluconate<br />

transport<br />

gspF b3327 1.6223 0.0056 putative protein secretion protein for export<br />

gssA b2988 0.6968 0.0024 glutathionylspermidine synthetase / glutathionylspermidine amidase<br />

guaA b2507 0.3639 0.0040 GMP synthase / GMP synthase (ammonia dependent)<br />

gutQ b2708 2.2100 0.0352 protein with a sugar isomerase domain<br />

hcaR b2537 0.7416 0.0402 HcaR transcriptional activator<br />

hchA b1967 0.5528 0.0128 heat shock protein (Hsp) 31<br />

hdhA b1619 2.5786 0.0216 7-alpha-hydroxysteroid dehydrogenase<br />

helD b0962 0.5183 0.0290 DNA helicase IV<br />

hepA b0059 0.3051 0.0412 RNA Polymerase (RNAP)-binding ATPase and RNAP recycling factor<br />

hflD b1132 0.3468 0.0048 membrane protein in operon with purB<br />

hisC b2021 0.3221 0.0144 histidine-phosphate aminotransferase<br />

hisD b2020 0.3608 0.0326 histidinal dehydrogenase / histidinol dehydrogenase<br />

hisF b2025 0.6098 0.0314 imidazole glycerol phosphate synthase, HisF subunit<br />

hns b1237 2.0288 0.0189 H-NS transcriptional dual regulator<br />

holB b1099 0.7617 0.0287 DNA polymerase III, delta prime subunit<br />

holD b4372 0.6747 0.0191 DNA polymerase III, psi subunit<br />

holE b1842 0.5413 0.0155 DNA polymerase III, theta subunit<br />

hslR b3400 0.4968 0.0137 heat shock protein Hsp15<br />

hslU b3931 0.6792 0.0167 ATPase component <strong>of</strong> the HslVU protease<br />

hslV b3932 0.6182 0.0469 peptidase component <strong>of</strong> the HslVU protease<br />

hupA b4000 2.5232 0.0026 DNA-binding protein HU-alpha (HU-2)<br />

hybO b2997 1.6217 0.0148 Hyb0<br />

hycF b2720 0.4798 0.0143 formate hydrogenlyase complex<br />

hypB b2727 1.4176 0.0207<br />

guanine-nucleotide binding protein, functions as nickel donor for large subunit <strong>of</strong><br />

hydrogenase 3<br />

hypC b2728 1.8523 0.0443 pleiotrophic effects on 3 hydrogenase isozymes<br />

ibpA b3687 0.2895 0.0047 small heat shock protein IbpA<br />

intA b2622 0.3133 0.0364 prophage CP4-57 integrase<br />

intB b4271 1.5659 0.0241 prophage P4 integrase<br />

intD b0537 2.1932 0.0097 prophage DLP12 integrase<br />

iscA b2528 0.4418 0.0028 iron-sulfur cluster assembly protein<br />

iscS b2530 0.3669 0.0026 cysteine desulfurase monomer<br />

iscU b2529 0.4176 0.0013 scaffold protein involved in iron-sulfur cluster assembly<br />

iscX b2524 0.6472 0.0250 protein with possible role in iron-sulfur cluster bio<strong>gene</strong>sis<br />

ispB b3187 0.6536 0.0347 octaprenyl diphosphate synthase<br />

ispE b1208 0.4973 0.0499 4-diphosphocytidyl-2C-methyl-D-erythritol kinase<br />

ivy b0220 0.4552 0.0028 YkfE<br />

kch b1250 6.5771 0.0023 potassium VIC channel<br />

kdgK b3526 2.9680 0.0423 2-dehydro-3-deoxygluconokinase<br />

kdgR b1827 1.3175 0.0072 putative ICLR-type transcriptional regulator<br />

kduD b2842 1.7440 0.0252 2-deoxy-D-gluconate 3-dehydrogenase<br />

kduI b2843 1.5739 0.0360 homolog <strong>of</strong> pectin degrading enzyme 5-keto 4-deoxyuronate isomerase<br />

lepA b2569 0.4578 0.0106 GTP-binding elongation factor, may be inner membrane protein<br />

leuA b0074 0.4198 0.0265 2-isopropylmalate synthase<br />

leuC b0072 0.7154 0.0284 isopropylmalate isomerase<br />

lspA b0027 0.5391 0.0442 prolipoprotein signal peptidase (SPase II)<br />

lsrB b1516 0.5142 0.0288 YneA<br />

83


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

malP b3417 5.2986 0.0307 maltodextrin phosphorylase monomer<br />

malX b1621 0.4991 0.0496 EIIBCMalX<br />

manA b1613 0.5555 0.0306 mannose-6-phosphate isomerase<br />

mcrB b4346 2.7084 0.0157 MrcB subunit <strong>of</strong> 5-methylcytosine restriction system<br />

menD b2264 0.7410 0.0203<br />

putative 2-hydroxyglutarate synthase / SHCHC synthase / 2-oxoglutarate<br />

decarboxylase<br />

metA b4013 0.2076 0.0209 homoserine O-succinyltransferase<br />

metG b2114 0.2830 0.0418 methionyl-tRNA synthetase<br />

mgsA b0963 2.1172 0.0134 methylglyoxal synthase<br />

mhpB b0348 0.4036 0.0047 3-(2,3-dihydroxyphenyl)propionate dioxygenase<br />

mhpC b0349 0.4068 0.0080 2-hydroxy-6-ketonona-2,4-dienedioate hydrolase<br />

mhpD b0350 0.4575 0.0138 2-keto-4-pentenoate hydratase<br />

mhpE b0352 0.4565 0.0376 4-hydroxy-2-ketovalerate aldolase<br />

mhpF b0351 0.3457 0.0134 acetaldehyde dehydrogenase 2<br />

mhpT b0353 0.5565 0.0186 MhpT MFS transporter<br />

miaB b0661 0.2939 0.0013 hypothetical protein<br />

mltA b2813 0.6359 0.0136 membrane-bound lytic murein transglycosylase A<br />

mltB b2701 0.4337 0.0025 membrane-bound lytic murein transglycosylase B<br />

mltD b0211 0.3196 0.0035 membrane-bound lytic murein transglycosylase D<br />

motB b1889 6.4289 0.0485 MotB protein, enables flagellar motor rotation, linking torque machinery to cell wall<br />

mppA b1329 4.3955 0.0068 periplasmic murein tripeptide binding protein<br />

mrcA b3396 0.3396 0.0054 peptidoglycan synthetase; penicillin-binding protein 1A<br />

msrB b1778 0.3349 0.0304<br />

methionine sulfoxide reductase B / protein-methionine-S-oxide reductase /<br />

methionine sulfoxide reductase<br />

mtn b0159 0.5806 0.0469 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase monomer<br />

mtr b3161 0.7656 0.0287 Mtr tryptophan ArAAP transporter<br />

mug b3068 0.4290 0.0023 stationary phase mismatch/uracil DNA glycosylase<br />

mukE b0923 1.6643 0.0073 protein involved in chromosome partitioning<br />

murP b2429 2.5027 0.0181 MurP<br />

mutH b2831 0.5136 0.0241 MutHLS complex, methyl-directed mismatch repair<br />

mutS b2733 0.4971 0.0195 MutHLS complex, methyl-directed mismatch repair<br />

mutY b2961 0.6703 0.0423 adenine glycosylase; G.C --> T.A transversions<br />

nadE b1740 1.4861 0.0474 NAD+ synthase, glutamine dependent / NAD+ synthase, NH3-dependent<br />

napD b2207 9.3356 0.0037 NapD protein<br />

napF b2208 9.2025 0.0031 ferredoxin-type protein<br />

nfi b3998 0.5850 0.0224 endonuclease V (deoxyinosine 3'endoduclease)<br />

nfrA b0568 0.3170 0.0069 bacteriophage N4 receptor, outer membrane protein<br />

nfrB b0569 0.2637 0.0048 bacteriophage N4 receptor, outer membrane protein<br />

nlpB b2477 0.6974 0.0180 lipoprotein-34<br />

nlpD b2742 0.5841 0.0371 NlpD putative outer membrane lipoprotein<br />

nmpC b0553 5.5836 0.0159 outer membrane porin protein; locus <strong>of</strong> qsr prophage<br />

nrfA b4070 34.1708 0.0111 cytochrome C552<br />

nudC b3996 0.7120 0.0330 putative NAD+ diphosphatase<br />

nupG b2964 3.7936 0.0032 NupG nucleoside MFS transporter<br />

nusB b0416 0.4621 0.0462 transcription termination; L factor<br />

obgE b3183 0.6444 0.0244 GTPase involved in chromosomal partitioning<br />

ogrK b2082 0.7617 0.0475 OgrK transcriptional regulator<br />

ompN b1377 0.6915 0.0136 putative outer membrane protein<br />

ompT b0565 3.4380 0.0014 outer membrane protein 3b (a), protease VII<br />

osmB b1283 0.2709 0.0014 OsmB osmotically inducible lipoprotein<br />

paaB b1389 0.3814 0.0222 putative subunit <strong>of</strong> phenylacetate-CoA oxygenase<br />

paaJ b1397 0.4901 0.0419 putative beta-keto-thiolase <strong>of</strong> phenylacetate degradation<br />

paaX b1399 0.6229 0.0058 PaaX transcriptional regulator<br />

paaY b1400 0.4875 0.0220 putative transferase<br />

pabA b3360 0.4832 0.0070 para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate synthase<br />

pcnB b0143 0.6447 0.0227 poly(A) polymerase I<br />

pflA b0902 0.5773 0.0124 pyruvate formate-lyase activating enzyme<br />

84


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

pgl b0767 3.8773 0.0103 6-phosphogluconolactonase<br />

phnK b4097 1.4585 0.0490 PhnK<br />

pldA b3821 0.4974 0.0146 phospholipase A1<br />

pldB b3825 0.5697 0.0157 lysophospholipase L(2)<br />

ppsA b1702 0.4317 0.0283 phosphoenolpyruvate synthase<br />

prmB b2330 0.5513 0.0253 protein-(glutamine-N5) methyltransferase<br />

prmC b1212 0.4252 0.0039 protein-(glutamine-N5) methyltransferase<br />

proP b4111 1.6762 0.0033 ProP proline/betaine MFS transporter<br />

proQ b1831 0.8210 0.0472 protein that affects osmo<strong>regulation</strong> <strong>of</strong> ProP transporter<br />

prsA b1207 0.6550 0.0030 ribose-phosphate diphosphokinase<br />

pstS b3728 0.7215 0.0114 phosphate ABC transporter<br />

ptrA b2821 0.2729 0.0069 protease III<br />

ptsG b1101 0.6082 0.0302 EIIGlc<br />

ptsP b2829 1.9101 0.0202 PTS system, enzyme I, transcriptional regulator (with NPR and NTR proteins)<br />

purB b1131 0.3871 0.0008<br />

5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase /<br />

adenylosuccinate lyase<br />

purU b1232 1.8188 0.0292 formyltetrahydr<strong>of</strong>olate deformylase<br />

puuD b1298 0.6260 0.0406 probable amidotransferase subunit<br />

pyrF b1281 0.5616 0.0387 orotidine-5'-phosphate-decarboxylase<br />

pyrI b4244 1.8211 0.0362 aspartate carbamoyltransferase, PyrI subunit<br />

rbn b3886 2.4777 0.0058 tRNA processing exoribonuclease BN<br />

rbsC b3750 0.4430 0.0301 ribose ABC transporter<br />

rbsD b3748 0.3530 0.0401 D-ribose utilization<br />

rcsD b2216 0.8244 0.0460 putative 2-component sensor protein<br />

recB b2820 0.2328 0.0023<br />

RecB; DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit,<br />

ssDNA endonuclease<br />

recD b2819 0.4974 0.0325<br />

DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit, ssDNA<br />

endonuclease<br />

recJ b2892 0.6227 0.0299 RecJ<br />

recN b2616 0.5404 0.0348 protein used in recombination and DNA repair<br />

recT b1349 0.6541 0.0142 recombinase, DNA renaturation<br />

relE b1563 0.9013 0.0436 toxin <strong>of</strong> the RelE-RelB toxin-antitoxin system; cleaves mRNA in ribosome<br />

rep b3778 0.5157 0.0285 rep helicase, a single-stranded DNA dependent ATPase<br />

rfaC b3621 1.7935 0.0235 lipopolysaccharide core biosynthesis; heptosyl transferase I<br />

rfaL b3622 1.6061 0.0258 lipopolysaccharide core biosynthesis; O-antigen ligase<br />

rfe b3784 3.5759 0.0000 undecaprenyl-phosphate &alpha;-N-acetylglucosaminyl transferase<br />

ribD b0414 0.6197 0.0299 pyrimidine reductase / pyrimidine deaminase<br />

rihA b0651 1.3869 0.0492 ribonucleoside hydrolase 1 (pyrimidine-specific)<br />

rimI b4373 0.6086 0.0452<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S18 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rlmB b4180 2.2471 0.0024 23S rRNA methyltransferase monomer<br />

rluA b0058 0.1900 0.0293 23S rRNA and tRNA pseudouridine synthase<br />

rnhB b0183 0.6624 0.0303 RNAse HII, degrades RNA <strong>of</strong> DNA-RNA hybrids<br />

rnk b0610 0.5074 0.0130 regulator <strong>of</strong> nucleoside diphosphate kinase<br />

rplP b3313 1.4719 0.0001 50S ribosomal subunit protein L16<br />

rplV b3315 1.9726 0.0393 50S ribosomal subunit protein L22<br />

rpoE b2573 0.7058 0.0079 sigmaE<br />

rpsE b3303 1.4454 0.0390 30S ribosomal subunit protein S5<br />

rsmB b3289 0.6882 0.0279 16S rRNA m5C967 methyltransferase<br />

ruvA b1861 0.5638 0.0057 branch migration <strong>of</strong> Holliday structures; repair<br />

sbcD b0398 0.6260 0.0422 ATP-dependent dsDNA exonuclease<br />

sdaA b1814 0.5675 0.0065 L-threonine deaminase I / L-serine ammonia-lyase<br />

sdaB b2797 0.2485 0.0242 L-threonine deaminase II / L-serine deaminase 2<br />

sdaC b2796 0.2639 0.0054 SdaC serine STP transporter<br />

selA b3591 2.5277 0.0308 selenocysteine synthase monomer<br />

seqA b0687 1.4974 0.0332 SeqA, negative modulator <strong>of</strong> initiation <strong>of</strong> replication<br />

setB b2170 0.5500 0.0214 YeiO MFS transporter<br />

setC b3659 1.3277 0.0467 YicK MFS Transporter<br />

85


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

shiA b1981 2.3089 0.0071 ShiA shikimate MFS transporter<br />

smtA b0921 1.8104 0.0156 S-adenosylmethionine-dependent methyltransferase<br />

sodA b3908 2.2699 0.0356 superoxide dismutase (Mn)<br />

soxS b4062 4.6091 0.0238 SoxS transcriptional activator<br />

speC b2965 0.2222 0.0023 ornithine decarboxylase, biosynthetic<br />

speD b0120 0.2969 0.0050 adenosylmethionine decarboxylase, proenzyme<br />

speE b0121 0.2562 0.0023 spermidine synthase<br />

speG b1584 0.7323 0.0129 spermidine acetyltransferase<br />

spr b2175 1.9225 0.0066 putative lipoprotein<br />

srmB b2576 0.5873 0.0118 SrmB, DEAD-box RNA helicase<br />

ssuD b0935 0.5883 0.0008 alkanesulfonate monooxygenase<br />

sufA b1684 2.7742 0.0160 scaffold protein for iron-sulfur cluster assembly<br />

sufB b1683 2.7088 0.0255 component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator complex<br />

sulA b0958 0.5115 0.0067 suppressor <strong>of</strong> lon; inhibits cell division and ftsZ ring formation<br />

tdcB b3117 5.9813 0.0139 threonine dehydratase (catabolic)<br />

thiG b3991 0.8279 0.0346 ThiG<br />

thiI b0423 0.7960 0.0033 ThiI protein<br />

thrC b0004 4.5667 0.0131 threonine synthase<br />

tldD b3244 1.4990 0.0262<br />

protease involved in Microcin B17 maturation and in sensitivity to the DNA gyrase<br />

inhibitor LetD<br />

tolC b3035 0.7151 0.0164 TolC outer membrane channel<br />

tra5-5 b2089 1.7159 0.0251 IS3 element protein InsF<br />

trpA b1260 1.4667 0.0156 tryptophan synthase, alpha subunit / indoleglycerol phosphate aldolase<br />

trpS b3384 1.4491 0.0196 tryptophanyl-tRNA synthetase<br />

tsgA b3364 0.4974 0.0401 YhfC MFS transporter<br />

tsr b4355 2.1465 0.0180 MCP-I<br />

ttk b3641 0.6578 0.0296 Ttk transcriptional regulator<br />

typA b3871 0.5679 0.0271 protein possibly involved in LPS biosynthesis and host colonization<br />

tyrR b1323 1.8233 0.0206 TyrR-Phenylalanine transcriptional repressor<br />

ubiX b2311 0.4366 0.0267 3-octaprenyl-4-hydroxybenzoate decarboxylase 2<br />

udk b2066 0.6047 0.0102 uridine kinase / cytidine kinase<br />

udp b3831 2.1987 0.0472 uridine phosphorylase<br />

ugpC b3450 1.9691 0.0027 glycerol-3-P ABC transporter / tranport<br />

ulaB b4194 0.8937 0.0050 eiisga<br />

ulaD b4196 0.5940 0.0354 3-keto-L-gulonate 6-phosphate decarboxylase<br />

ulaF b4198 0.7134 0.0268 L-ribulose 5-phosphate 4-epimerase<br />

uvrC b1913 2.5330 0.0055 excinuclease ABC, subunit C; repair <strong>of</strong> UV damage to DNA<br />

wbbK b2032 1.1787 0.0066 putative transferase<br />

wrbA b1004 1.8606 0.0149 WrbA<br />

wzxE b3792 1.6853 0.0279 lipid III flippase<br />

xthA b1749 0.4507 0.0112 exonuclease III<br />

xylR b3569 2.2681 0.0011 XylR-Xylose transcriptional activator<br />

yafK b0224 0.6195 0.0023<br />

conserved protein; in enteroaggregative E. coli, YafK is required for development <strong>of</strong><br />

bi<strong>of</strong>ilms<br />

yagN b0280 0.6952 0.0146 hypothetical protein<br />

yagT b0286 1.7860 0.0035 putative oxidoreductase, Fe-S subunit<br />

yagV b0289 1.9412 0.0102 conserved hypothetical protein<br />

yaiV b0375 0.5910 0.0075 putative outer membrane protein, cAMP-binding<br />

ybaD b0413 0.6397 0.0464 conserved protein<br />

ybaE b0445 2.2337 0.0166 hypothetical protein<br />

ybaN b0468 2.0803 0.0260 hypothetical protein<br />

ybeB b0637 0.7033 0.0126 conserved hypothetical protein<br />

ybeD b0631 0.2523 0.0005 conserved hypothetical protein<br />

ybeH b0625 0.5572 0.0439 hypothetical protein<br />

ybfD b0706 0.3122 0.0215 conserved protein<br />

ybhH b0769 0.4829 0.0154 conserved hypothetical protein<br />

ybiJ b0802 0.4837 0.0237 conserved hypothetical protein<br />

86


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ybiM b0806 0.3863 0.0240 conserved hypothetical protein<br />

ybjI b0844 1.9181 0.0193 conserved protein with a phophatase-like domain<br />

ycaM b0899 0.3822 0.0104 YcaM APC amino acid transporter<br />

ycaO b0905 0.5753 0.0151 conserved hypothetical protein<br />

ycbJ b0919 0.5051 0.0363 conserved hypothetical protein<br />

ycbX b0947 2.2239 0.0044 putative Fe-S protein<br />

yccK b0969 0.5751 0.0496 putative sulfite reductase (EC 1.8.-.-)<br />

yccS b0960 0.5639 0.0338 hypothetical protein<br />

yccV b0966 0.5070 0.0014 hemimethylated DNA-binding protein<br />

yceP b1060 2.4225 0.0246 conserved hypothetical protein<br />

ycfD b1128 0.5605 0.0362 putative enzyme<br />

ycgK b1178 1.8393 0.0309 hypothetical protein<br />

ycgV b1202 0.3754 0.0210 putative adhesion and penetration protein<br />

ychE b1242 0.6093 0.0360 putative membrane protein<br />

yciB b1254 0.5700 0.0437 hypothetical protein<br />

yciC b1255 0.6624 0.0484 hypothetical protein<br />

yciS b1279 0.6175 0.0026 conserved hypothetical protein<br />

ydbK b1378 0.6806 0.0083 putative pyruvate synthase<br />

ydcF b1414 0.2689 0.0238 conserved hypothetical protein<br />

ydcP b1435 0.2487 0.0276 putative collagenase<br />

ydgK b1626 0.4982 0.0446 putative oxidoreductase<br />

ydhF b1647 2.1014 0.0131 putative oxidoreductase, NAD(P)-linked<br />

ydiA b1703 0.4022 0.0020 conserved protein<br />

ydiH b1685 0.0411 0.0002 hypothetical protein<br />

ydiI b1686 0.6335 0.0373 conserved hypothetical protein<br />

ydiO b1695 0.4899 0.0220 putative acyl-CoA dehydrogenase<br />

ydiU b1706 0.7123 0.0018 conserved protein<br />

ydiY b1722 0.2336 0.0097 conserved hypothetical protein<br />

yeaC b1777 0.2907 0.0234 conserved hypothetical protein<br />

yeaD b1780 0.8053 0.0485 conserved hypothetical protein<br />

yeaK b1787 0.4458 0.0020 conserved hypothetical protein<br />

yeaL b1789 0.4155 0.0189 hypothetical protein<br />

yeaT b1799 3.0720 0.0141 putative transcriptional regulator LYSR-type<br />

yebE b1846 0.6028 0.0479 conserved hypothetical protein<br />

yebR b1832 3.1582 0.0092 conserved hypothetical protein<br />

yebU b1835 0.5220 0.0183 hypothetical protein<br />

yecN b1869 0.3001 0.0013 putative membrane protein<br />

yecP b1871 0.4509 0.0069 putative enzyme<br />

yedE b1929 0.5180 0.0037 putative transport system permease protein<br />

yedF b1930 0.6433 0.0118 conserved hypothetical protein; might bind RNA<br />

yedL b1932 0.7679 0.0407 putative acyl-CoA N-acyltransferase<br />

yeeZ b2016 0.7112 0.0403 putative enzyme <strong>of</strong> sugar metabolism<br />

yehU b2126 1.3634 0.0204 putative 2-component sensor protein<br />

yeiC b2166 0.5199 0.0069 putative kinase<br />

yeiH b2158 0.5810 0.0329 putative membrane protein<br />

yeiN b2165 0.6223 0.0224 conserved protein<br />

yeiP b2171 0.4453 0.0110 putative elongation factor<br />

yeiQ b2172 1.6577 0.0089 putative oxidoreductase<br />

yejE b2179 1.2788 0.0062 YejA/YejB/YejE/YejF ABC transporter<br />

yejM b2188 0.6919 0.0221 putative sulfatase<br />

yfbV b2295 0.1983 0.0066 conserved hypothetical protein<br />

yfcE b2300 0.5028 0.0272 putative metallo-dependent phosphatase<br />

yfeC b2398 3.6524 0.0085 hypothetical protein<br />

yfeD b2399 4.6195 0.0073 hypothetical protein<br />

yfeU b2428 2.5545 0.0178 putative regulator<br />

yfeZ b2433 0.8288 0.0423 putative membrane protein<br />

87


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yfgD b2495 1.3436 0.0280 putative oxidoreductase<br />

yfhQ b2532 0.7396 0.0351 putative ATP synthase beta subunit<br />

yfiD b2579 2.1520 0.0130 stress-induced alternate pyruvate formate-lyase subunit<br />

yfiF b2581 0.7263 0.0437 hypothetical protein<br />

yfjD b4461 0.6709 0.0382 putative membrane protein, hemolysin-like<br />

yfjF b2618 0.8164 0.0194 conserved hypothetical protein<br />

yfjK b2627 1.8469 0.0067 hypothetical protein<br />

yfjW b2642 2.9798 0.0025 hypothetical protein<br />

ygaH b2683 2.3469 0.0029 putative transport protein<br />

ygaW b2670 0.2097 0.0395 putative membrane protein<br />

ygbT b2755 1.5803 0.0209 conserved hypothetical protein<br />

ygcE b2776 0.6769 0.0395 putative kinase<br />

ygcO b2767 2.1793 0.0250 putative ferredoxin<br />

ygeY b2872 0.3333 0.0367 putative deacetylase<br />

yggE b2922 0.7072 0.0229 putative actin-like protein<br />

yghU b2989 0.6145 0.0305<br />

glutathione transferase-like protein possibly involved in glutathionylspermidine<br />

metabolism<br />

ygiR b3015 0.1712 0.0020 conserved protein<br />

yhaI b3104 1.8901 0.0167 putative cytochrome<br />

yhbG b3201 0.7306 0.0489 YhbG/YhbN ABC transporter<br />

yhbW b3160 2.5842 0.0205 putative enzyme<br />

yhcE b3217 1.8476 0.0321 hypothetical protein<br />

yhcH b3221 1.4134 0.0166 conserved hypothetical protein; <strong>gene</strong> is in sialic acid catabolic operon<br />

yhdE b3248 1.4099 0.0332 conserved hypothetical protein<br />

yhdN b3293 0.3490 0.0092 conserved hypothetical protein<br />

yhfG b3362 2.0525 0.0319 conserved hypothetical protein<br />

yhfT b3377 0.5275 0.0096 putative transport protein<br />

yhfX b3381 0.8420 0.0430 conserved protein<br />

yhjK b3529 0.8141 0.0360 conserved protein<br />

yhjR b3535 3.3058 0.0027 hypothetical protein<br />

yhjV b3539 0.4101 0.0312 YhjV STP transporter<br />

yiaJ b3574 0.4842 0.0009 YiaJ transcriptional repressor<br />

yibG b3596 0.9825 0.0318 conserved hypothetical protein<br />

yibI b3598 1.7891 0.0258 hypothetical protein<br />

yidI b3677 3.0250 0.0389 hypothetical protein<br />

yidZ b3711 0.5369 0.0092 putative transcriptional regulator LysR-type<br />

yifE b3764 1.9633 0.0245 hypothetical protein<br />

yifK b3795 2.3518 0.0138 YifK APC transporter<br />

yjcG b4067 0.7076 0.0091 YjcG SSS transporter<br />

yjcZ b4110 1.5987 0.0010 hypothetical protein<br />

yjdF b4121 1.6223 0.0050 putative membrane protein<br />

yjeI b4144 1.6231 0.0306 conserved protein<br />

yjeO b4158 0.7234 0.0164 conserved hypothetical protein<br />

yjgM b4256 1.3106 0.0028 putative acyltransferase<br />

yjhB b4279 0.2981 0.0096 YjhB MFS transporter<br />

yjhC b4280 0.3673 0.0052 KpLE2 phage-like element; putative NAD(P)-binding dehydrogenase<br />

yjhP b4306 0.6759 0.0413 putative methyltransferase<br />

yjhT b4310 0.4662 0.0446 putative enzyme contains galactose oxidase-like domain<br />

yjiA b4352 1.7339 0.0199 P-loop guanosine triphosphatase<br />

yjiG b4329 0.5318 0.0394 putative membrane protein<br />

yjiT b4342 10.7703 0.0111 conserved protein<br />

yjiX b4353 1.7994 0.0423 hypothetical protein<br />

yjiY b4354 15.2032 0.0105 putative carbon starvation protein<br />

yjjI b4380 1.3283 0.0003 conserved hypothetical protein<br />

yjjK b4391 0.6653 0.0186 YjjK<br />

yjjM b4357 2.3936 0.0179 hypothetical protein<br />

88


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ykiA b0392 1.7064 0.0390 hypothetical protein<br />

ylaB b0457 1.5530 0.0301 conserved protein<br />

yliC b0831 1.4983 0.0007 YliA/YliB/YliC/YliD ABC transporter<br />

yliH b0836 0.1439 0.0035 putative receptor; induced in stationary phase<br />

ymcD b0987 1.7643 0.0439 hypothetical protein<br />

ymfE b1138 0.1571 0.0060 hypothetical protein<br />

ymgA b1165 0.1361 0.0148 hypothetical protein<br />

ymjA b1295 0.5853 0.0312 hypothetical protein<br />

yoaA b1808 0.6334 0.0318 putative enzyme<br />

yoaB b1809 0.5757 0.0165 conserved protein<br />

yoaG b1796 2.4294 0.0346 hypothetical protein<br />

ypfJ b2475 1.4938 0.0049 conserved protein<br />

yphF b2548 0.4557 0.0415 YphD/YphE/YphF ABC transporter<br />

yqaB b2690 0.6835 0.0377 putative phosphoglucomutase that contains a phophatase-like domain<br />

yqcD b2794 0.6211 0.0481 conserved hypothetical protein<br />

yqeH b2846 0.8070 0.0380 conserved protein<br />

yqgE b2948 0.6944 0.0062 conserved protein<br />

yqiI b3048 0.9092 0.0276 conserved protein<br />

yraN b3148 0.6869 0.0193 conserved hypothetical protein<br />

yrbA b3190 0.6820 0.0270 hypothetical protein<br />

yrfG b3399 0.4865 0.0216 putative hydrolase with a phophatase-like domain<br />

ytfL b4218 0.4845 0.0258 putative transport protein<br />

ytfN b4221 0.7948 0.0361 conserved protein<br />

ytjB b4387 0.7147 0.0043 membrane protein<br />

zwf b1852 1.3295 0.0490 glucose 6-phosphate-1-dehydrogenase<br />

b3837 0.6879 0.0253<br />

b0322 0.8183 0.0423<br />

b2391 0.5201 0.0434<br />

b3948 0.7383 0.0244<br />

Supplementary table - II: CSH50 wild-type (A) Vs CSH50 fis::kan (B), Transition to stationary<br />

phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aat b0885 1.5610 0.0387 leucyl, phenylalanyl-tRNA-protein transferase<br />

abrB b0715 0.4795 0.0092 putative transport protein; mutation affects aidB <strong>expression</strong><br />

ampH b0376 0.6790 0.0417 putative enzyme<br />

aphA b4055 0.4046 0.0303 acid phosphatase/phosphotransferase<br />

apt b0469 0.8461 0.0496 adenine phosphoribosyltransferase<br />

arcA b4401 1.1326 0.0030 ArcA-Phosphorylated transcriptional dual regulator<br />

argB b3959 0.7534 0.0093 N-acetylglutamate kinase<br />

asr b1597 0.6179 0.0119 acid shock protein<br />

astD b1746 0.7371 0.0469 succinylglutamic semialdehyde dehydrogenase<br />

btuF b0158 0.5590 0.0133 periplasmic vitamin B12 binding protein<br />

chaA b1216 1.5703 0.0273 ChaA calcium CaCA transporter<br />

cls b1249 1.8397 0.0135 cardiolipin synthase<br />

csgF b1038 2.6963 0.0232 curli assembly component<br />

csiD b2659 0.7824 0.0300 hypothetical protein; <strong>gene</strong> <strong>expression</strong> is induced <strong>by</strong> carbon starvation<br />

cyaY b3807 1.1582 0.0458 iron-binding frataxin homolog<br />

dctR b3507 3.5342 0.0231 protein involved in metabolism <strong>of</strong> C4-dicarboxylates<br />

ddlA b0381 1.3455 0.0452 D-alanine-D-alanine ligase A<br />

ddpB b1486 0.7867 0.0321 YddR<br />

89


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

dicA b1570 1.5452 0.0082 DicA transcriptional regulator<br />

dmsA b0894 1.3291 0.0290 dimethyl sulfoxide reductase, chain A<br />

dnaQ b0215 1.5304 0.0205 DNA polymerase III, epsilon subunit<br />

dpiA b0620 0.7592 0.0156 CitB transcriptional regulator<br />

dsbA b3860 1.3750 0.0408 disulfide oxidoreductase<br />

dusB b3260 0.3858 0.0382 tRNA dihydrouridine synthase<br />

entA b0596 4.4954 0.0362 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase<br />

envY b0566 1.7235 0.0175 EnvY transcriptional activator<br />

eutL b2439 0.6545 0.0455 hypothetical protein<br />

eutM b2457 0.6548 0.0414 putative detox protein, ethanolamine utilization<br />

exuT b3093 0.7604 0.0156 ExuT hexuronate MFS transporter<br />

fliK b1943 0.7529 0.0246 flagellar hook-length control protein FliK<br />

frlC b3372 1.6858 0.0348 fructoselysine and psicoselysine degradation<br />

fruB b2169 3.2743 0.0351 EIIFru<br />

fruK b2168 1.4091 0.0251 1-phosph<strong>of</strong>ructokinase monomer<br />

fsaA b0825 1.2606 0.0464 Fsa<br />

gadC b1492 22.0335 0.0374 XasA GABA APC transporter<br />

gadE b3512 14.1482 0.0012 GadE transcriptional activator<br />

gadW b3515 5.4482 0.0241 GadWtranscriptional repressor<br />

gatR_1 b2087 1.2194 0.0338<br />

negative DNA-binding transcriptional regulator <strong>of</strong> galactitol metabolism, subunit <strong>of</strong><br />

GatR transcriptional repressor<br />

glpF b3927 0.4719 0.0301 GlpF - glycerol MIP channel<br />

hchA b1967 1.3473 0.0385 heat shock protein (Hsp) 31<br />

hdeD b3511 8.1344 0.0428 protein involved in acid resistance<br />

hemY b3802 0.6097 0.0422 a late step <strong>of</strong> protoheme IX synthesis<br />

hisC b2021 0.3625 0.0199 histidine-phosphate aminotransferase<br />

hisD b2020 0.6774 0.0110 histidinal dehydrogenase / histidinol dehydrogenase<br />

htrA b0161 0.3838 0.0164 DegP<br />

hyi b0508 0.5405 0.0469 hydroxypyruvate isomerase<br />

hypB b2727 1.4330 0.0072<br />

guanine-nucleotide binding protein, functions as nickel donor for large subunit <strong>of</strong><br />

hydrogenase 3<br />

inaA b2237 1.1707 0.0448 pH-inducible protein involved in stress response<br />

lplA b4386 0.5894 0.0042 lipoyl-protein ligase A<br />

mcrB b4346 3.7015 0.0154 MrcB subunit <strong>of</strong> 5-methylcytosine restriction system<br />

mdtG b1053 2.7845 0.0406 YceE drug MFS transporter<br />

mraZ b0081 0.6347 0.0132<br />

protein encoded <strong>by</strong> an operon involved in formation <strong>of</strong> the cell envelope and cell<br />

division<br />

mtlA b3599 1.6503 0.0315 EIIMtl<br />

nanA b3225 1.2989 0.0251 N-acetylneuraminate lyase<br />

nikD b3479 1.4297 0.0492 nickel ABC transporter<br />

norR b2709 1.2152 0.0376 transcriptional regulator <strong>of</strong> the anaerobic response to reactive nitrogen species<br />

nudE b3397 1.3014 0.0258 ADP-ribose diphosphatase<br />

obgE b3183 0.6501 0.0090 GTPase involved in chromosomal partitioning<br />

ogrK b2082 1.3568 0.0499 OgrK transcriptional regulator<br />

ompF b0929 0.4480 0.0442 outer membrane porin OmpF<br />

orn b4162 1.8637 0.0289 oligoribonuclease monomer<br />

pdhR b0113 0.7167 0.0089 PdhR-pyruvate<br />

polB b0060 1.7041 0.0257 DNA polymerase II<br />

proW b2678 0.8448 0.0427 proline ABC transporter<br />

prpD b0334 0.4135 0.0183 2-methylcitrate dehydratase<br />

purC b2476 1.4330 0.0212 phosphoribosylaminoimidazole-succinocarboxamide synthase<br />

purH b4006 1.1431 0.0481 AICAR transformylase / IMP cyclohydrolase<br />

puuA b1297 3.7881 0.0276 putative glutamine synthetase (EC 6.3.1.2)<br />

qor b4051 1.4220 0.0378 quinone oxidoreductase<br />

qseB b3025 0.6844 0.0099 putative 2-component transcriptional regulator<br />

rbsA b3749 0.3311 0.0281 ribose ABC transporter<br />

rbsC b3750 0.2093 0.0265 ribose ABC transporter<br />

90


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rbsD b3748 0.2205 0.0061 D-ribose utilization<br />

rem b1561 1.8185 0.0457 hypothetical protein<br />

rhaS b3905 0.7904 0.0441 RhaS transcriptional activator<br />

rhaT b3907 1.2690 0.0108 rhamnose RhaT transporter<br />

rihB b2162 1.7911 0.0339 ribonuceloside hydrolase 2 (pyrimidine-specific)<br />

r<strong>of</strong> b0189 1.8022 0.0294 Rho-binding antiterminator<br />

rplT b1716 1.7302 0.0078 50S ribosomal subunit protein L20, and regulator<br />

rpsQ b3311 0.5968 0.0243 30S ribosomal subunit protein S17<br />

rrmA b1822 1.4094 0.0108 23S rRNA m1G745 methyltransferase<br />

rseA b2572 0.5825 0.0476 anti-sigma factor that inhibits sigmaE<br />

rseB b2571 0.6315 0.0494<br />

negative regulator <strong>of</strong> sigmaE; interacts with RseA and stimulates binding <strong>of</strong> RseA to<br />

sigmaE<br />

rseC b2570 0.7732 0.0251 protein involved in reduction <strong>of</strong> the SoxR iron-sulfur cluster<br />

ruvB b1860 0.6261 0.0271 branch migration <strong>of</strong> Holliday structures; repair helicase<br />

sapB b1293 1.8571 0.0076 peptide uptake ABC transporter<br />

setC b3659 2.8429 0.0171 YicK MFS Transporter<br />

slp b3506 6.4852 0.0424 outer membrane protein induced after carbon starvation<br />

sohB b1272 1.1729 0.0025 putative protease<br />

sufB b1683 2.3472 0.0139 component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator complex<br />

sufC b1682 2.0037 0.0305 ATPase component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator complex<br />

sufS b1680 2.0407 0.0269 L-selenocysteine lyase (and L-cysteine desulfurase) monomer<br />

suhB b2533 0.4978 0.0185 inositol monophosphatase<br />

thiI b0423 1.5919 0.0034 ThiI protein<br />

thiL b0417 1.2963 0.0475 thiamine phosphate kinase<br />

trg b1421 0.6236 0.0473 MCP-III<br />

ugpE b3451 1.9577 0.0269 glycerol-3-P ABC transporter / tranport<br />

upp b2498 1.5767 0.0345 uracil phosphoribosyltransferase<br />

uvrB b0779 1.9383 0.0152 DNA repair; excision nuclease subunit B<br />

uvrY b1914 1.6618 0.0311 UvrY- Phosphorylated transcriptional regulator<br />

xapR b2405 1.7821 0.0157 XapR transcriptional activator<br />

yafU b0218 0.6355 0.0350 conserved hypothetical protein<br />

ybaP b0482 1.8267 0.0130 putative ligase<br />

ybaT b0486 2.9386 0.0011 YbaT APC transporter<br />

ybbA b0495 0.4183 0.0451 YbbA/YbbP ABC transporter<br />

ybcH b0567 1.8118 0.0067 conserved hypothetical protein<br />

ybcM b0546 1.8831 0.0318 putative ARAC-type regulatory protein<br />

ybcN b0547 0.6267 0.0456 hypothetical protein<br />

ybeF b0629 0.7562 0.0180 putative transcriptional regulator LYSR-type<br />

ybgA b0707 1.6805 0.0206 conserved protein<br />

ybgH b0709 0.5997 0.0112 YbgH peptide POT Transporter<br />

ybhF b0794 1.3972 0.0497 YbhF/YbhR/YbhS ABC transporter<br />

ybiH b0796 1.5534 0.0028 hypothetical protein<br />

ycbB b0925 1.9207 0.0065 putative amidase<br />

yceP b1060 2.1087 0.0460 conserved hypothetical protein<br />

ycfR b1112 1.2233 0.0181 conserved hypothetical protein<br />

ycgJ b1177 1.4740 0.0088 hypothetical protein<br />

ycgX b1161 1.4886 0.0341 hypothetical protein<br />

ydeI b1536 4.9897 0.0403 conserved hypothetical protein<br />

ydeU b1509 0.6562 0.0419 conserved protein<br />

ydhS b1668 2.5603 0.0370 putative oxidoreductase<br />

ydjK b1775 1.7556 0.0281 YdjK<br />

yebW b1837 1.9443 0.0270 hypothetical protein<br />

yedR b1963 1.6135 0.0135 hypothetical protein<br />

yedW b1969 2.2168 0.0108 putative 2-component transcriptional response regulator<br />

yeeO b1985 1.1961 0.0398 YeeO MATE Transporter<br />

yfbN b2273 0.5362 0.0182 conserved hypothetical protein<br />

yfeC b2398 1.9649 0.0396 hypothetical protein<br />

91


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yfgH b2505 1.5726 0.0020 putative outer membrane lipoprotein<br />

yfiE b2577 1.2464 0.0464 putative transcriptional regulator LYSR-type<br />

yfjP b2632 0.7520 0.0345 putative GTP-binding protein<br />

yfjS b2636 1.7083 0.0099 inner membrane lipoprotein YfjS<br />

ygcU b2772 1.4215 0.0019 hypothetical protein<br />

ygdQ b2832 0.6766 0.0377 putative transport protein<br />

ygjG b3073 2.1750 0.0476 putrescine:2-oxoglutaric acid aminotransferase<br />

yhdX b3269 0.7823 0.0343 YhdW/YhdX/YhdY/YhdZ ABC transporter<br />

yibA b3594 5.6513 0.0212 putative lyase<br />

yieP b3755 1.9745 0.0106 hypothetical protein<br />

yjgG b4247 0.5699 0.0215 hypothetical protein<br />

yjhE b4282 1.3314 0.0382 KpLE2 phage-like element<br />

yjhF b4296 1.7197 0.0391 YjhF Gnt tranporter<br />

ykfB b0250 0.5364 0.0047 hypothetical protein<br />

ynaI b1330 1.3820 0.0261 YnaI<br />

yneE b1520 2.2054 0.0150 conserved hypothetical protein<br />

yneK b1527 1.7412 0.0171 conserved protein<br />

yphF b2548 0.4656 0.0111 YphD/YphE/YphF ABC transporter<br />

yqiJ b3050 1.6472 0.0159 putative oxidoreductase<br />

ytfL b4218 0.6187 0.0431 putative transport protein<br />

ytfM b4220 0.6059 0.0406 hypothetical protein<br />

Supplementary table - III: CSH50 wild-type (A) Vs CSH50 fis::kan (B), Late stationary phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aaeX b3242 0.1162 0.0119 hypothetical protein<br />

aceK b4016 0.7802 0.0399 isocitrate dehydrogenase phosphatase / isocitrate dehydrogenase kinase<br />

ada b2213 0.5369 0.0145 Ada transcriptional dual regulator / O-6-methylguanine-DNA methyltransferase<br />

alaS b2697 0.7352 0.0016 alanyl-tRNA synthetase<br />

alr b4053 1.8816 0.0448 alanine racemase, minor<br />

amiC b2817 3.3668 0.0494 N-acetylmuramyl-L-alanine amidase<br />

ampC b4150 1.4236 0.0158 beta-lactamase; penicillin resistance<br />

amtB b0451 0.9258 0.0243 AmtB ammonium Amt transporter<br />

araJ b0396 0.5228 0.0297 AraJ MFS transporter<br />

argG b3172 0.5972 0.0146 argininosuccinate synthase<br />

argH b3960 3.5282 0.0064 argininosuccinate lyase<br />

aroK b3390 0.5174 0.0094 shikimate kinase I<br />

asnA b3744 0.8519 0.0127 aspartate-ammonia ligase<br />

astC b1748 9.1016 0.0329 acetylornithine transaminase, catabolic / succinylornithine transaminase<br />

b1578 b1578 3.2990 0.0187 hypothetical protein<br />

b2191 b2191 3.0472 0.0497 hypothetical protein<br />

betA b0311 0.6126 0.0046 choline dehydrogenase<br />

betT b0314 0.5842 0.0485 BetT choline BCCT transporter<br />

borD b0557 1.2137 0.0192 bacteriophage lambda Bor protein homolog<br />

citT b0612 1.4968 0.0388 CitT citrate DASS Transporter<br />

clcA b0155 2.5182 0.0325 EriC chloride ion ClC channel<br />

clcB b1592 0.7312 0.0360 YnfJ chloride ion ClC transporter<br />

clpB b2592 0.3280 0.0079 ClpB chaperone<br />

cobS b1992 0.7962 0.0307 cobalamin 5'-phosphate synthase / cobalamin synthase<br />

codB b0336 0.3742 0.0051 CodB cytosine NCS1 transporter<br />

cpxP b3913 0.2235 0.0170<br />

regulator <strong>of</strong> the Cpx response and possible chaperone involved in resistance to<br />

extracytoplasmic stress<br />

92


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

creB b4398 0.4846 0.0434 CreB- Phosphorylated transcriptional regulator<br />

creC b4399 0.3937 0.0326 CreC-Phis<br />

csdA b2810 0.5874 0.0365 cysteine sulfinate desulfinase<br />

csgC b1043 1.2044 0.0112 putative curli production protein<br />

cspD b0880 16.0799 0.0280 DNA replication inhibitor<br />

cspE b0623 8.6680 0.0365 CspE transcriptional repressor<br />

cspG b0990 0.6140 0.0016 cold shock protein CspG<br />

csrA b2696 3.9886 0.0476<br />

carbon storage regulator; controls glycogen synthesis, gluconeo<strong>gene</strong>sis, cell size and<br />

surface properties<br />

cusF b0573 0.7829 0.0248 periplasmic copper-binding protein<br />

cynS b0340 0.3529 0.0120 cyanase monomer<br />

cysW b2423 0.6881 0.0280 sulfate ABC transporter<br />

cysZ b2413 0.4629 0.0035 required for sulfate transport<br />

ddpX b1488 0.5345 0.0362 D-Ala-D-Ala dipeptidase<br />

deoC b4381 9.0692 0.0321 deoxyribose-phosphate aldolase<br />

dhaR b1201 0.6436 0.0124 putative 2-component regulator<br />

dksA b0145 1.6863 0.0313 DksA<br />

dnaE b0184 0.5435 0.0106 DNA polymerase III, alpha subunit<br />

dnaG b3066 0.4222 0.0495 DNA biosynthesis; DNA primase<br />

dppA b3544 1.7303 0.0446 dipeptide ABC transporter<br />

dsbA b3860 1.1918 0.0084 disulfide oxidoreductase<br />

ecpD b0140 0.4814 0.0137 probable pilin chaperone similar to PapD<br />

elbB b3209 1.9231 0.0350 sigma cross-reacting protein 27A (SCRP-27A)<br />

eutL b2439 0.6724 0.0490 hypothetical protein<br />

exuR b3094 0.8492 0.0144 ExuR transcriptional repressor<br />

fabF b1095 0.6295 0.0460 beta-ketoacyl-ACP synthase II<br />

fdrA b0518 0.5497 0.0092<br />

involved in protein transport; multicopy suppressor <strong>of</strong> dominant negative ftsH<br />

mutants<br />

fecA b4291 0.8222 0.0069 outer membrane receptor; citrate-dependent iron transport, outer membrane receptor<br />

fimC b4316 0.4900 0.0315 periplasmic chaperone, required for type 1 fimbriae<br />

flgB b1073 0.5473 0.0051 flagellar basal-body rod protein FlgB<br />

fliD b1924 0.5664 0.0104 flagellar cap protein FliD; filament capping protein; enables filament assembly<br />

fliK b1943 2.0042 0.0318 flagellar hook-length control protein FliK<br />

fliY b1920 4.1059 0.0296<br />

periplasmic cystine-binding protein; member <strong>of</strong> extracellular bacterial solute-binding<br />

protein family III<br />

frlC b3372 1.1884 0.0410 fructoselysine and psicoselysine degradation<br />

fruA b2167 1.6009 0.0416 EIIFru<br />

frvX b3898 0.6284 0.0373 frv operon protein<br />

fsaB b3946 0.5115 0.0025 fructose 6-phosphate aldolase 2<br />

ftsW b0089 1.6371 0.0330 essential cell division protein FtsW<br />

fumB b4122 1.4742 0.0092 fumarase B monomer<br />

fumC b1611 4.5730 0.0410 fumarase C monomer<br />

fusA b3340 7.4644 0.0072 elongation factor G<br />

g30K b1088 4.4609 0.0486 hypothetical protein<br />

gatY b2096 7.4188 0.0456 tagatose-1,6-bisphosphate aldolase 2<br />

glgS b3049 12.4340 0.0183 glycogen biosynthesis, rpoS dependent<br />

glk b2388 2.4011 0.0080 glucokinase<br />

glnA b3870 0.6508 0.0408 adenylyl-[glutamine synthetase]<br />

gloB b0212 0.7455 0.0328 glyoxalase II<br />

glpA b2241 1.8004 0.0339 glycerol-3-phosphate-dehydrogenase, anaerobic<br />

gntU b4476 0.6904 0.0450 GntU gluconate Gnt transporter<br />

greA b3181 0.5847 0.0466<br />

transcription elongation factor; stimulates the mRNA cleavage activity <strong>of</strong> RNA<br />

polymerase<br />

groL b4143 0.1600 0.0302 GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein<br />

grxB b1064 3.0152 0.0423 oxidized glutaredoxin 2<br />

gyrA b2231 1.2523 0.0381 DNA gyrase, subunit A<br />

hemC b3805 0.7502 0.0425 hydroxymethylbilane synthase<br />

hemH b0475 1.2367 0.0211 ferrochelatase<br />

93


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

hflX b4173 1.1608 0.0414 putative GTPase; possible regulator <strong>of</strong> HflKC<br />

htrA b0161 0.3477 0.0251 DegP<br />

htrL b3618 0.4161 0.0089 involved in lipopolysaccharide biosynthesis<br />

hyfI b2489 0.6981 0.0143 hydrogenase 4, small subunit<br />

ibpB b3686 0.1277 0.0168 small heat shock protein IbpB<br />

iscU b2529 4.5133 0.0350 scaffold protein involved in iron-sulfur cluster assembly<br />

kch b1250 0.6951 0.0255 potassium VIC channel<br />

kgtP b2587 2.2993 0.0011 KgtP &alpha;-ketoglutarate MFS transporter<br />

lpxC b0096 2.7942 0.0029 UDP-3-O-acyl-N-acetylglucosamine deacetylase<br />

lrhA b2289 0.3796 0.0348 LrhA transcriptional repressor<br />

lsrB b1516 0.7399 0.0208 YneA<br />

lysC b4024 0.8123 0.0155 aspartate kinase III<br />

lyxK b3580 0.6681 0.0402 L-xylulose kinase<br />

macB b0879 0.1409 0.0120 MacAB macrolide efflux transporter complex<br />

manZ b1819 2.2877 0.0294 EIIMan<br />

mdtA b2074 1.2909 0.0336 MdtABC RND-type Drug Exporter<br />

metI b0198 0.8178 0.0151 L- and D-methionine uptake ABC permease<br />

modF b0760 0.8025 0.0038 ModF<br />

mqo b2210 0.6329 0.0302 malate dehydrogenase<br />

mutT b0099 0.7175 0.0241 dGTP pyrophosphohydrolase<br />

mviM b1068 2.0452 0.0053 putative virulence factor<br />

napG b2205 1.8609 0.0363 ferredoxin-type protein<br />

narG b1224 2.2871 0.0317 nitrate reductase A, &alpha; subunit<br />

narJ b1226 0.6000 0.0278 NarJ, private chaperone for NarG nitrate reductase subunit<br />

nlpA b3661 0.6811 0.0025 lipoprotein-28<br />

nlpD b2742 4.4441 0.0000 NlpD putative outer membrane lipoprotein<br />

nrdI b2674 0.5413 0.0160 stimulates ribonucleotide reduction<br />

nuoE b2285 0.9495 0.0379 NADH dehydrogenase I<br />

nuoM b2277 1.8342 0.0080 NADH dehydrogenase I<br />

ompA b0957 10.3993 0.0496 outer membrane protein 3a (II*;G;d)<br />

osmY b4376 4.2860 0.0255 hyperosmotically inducible periplasmic protein<br />

pbpC b2519 5.9984 0.0419 putative peptidoglycan enzyme<br />

pckA b3403 2.7797 0.0438 phosphoenolpyruvate carboxykinase (ATP)<br />

pepD b0237 0.5596 0.0476 peptidase D<br />

pgaB b1023 0.3651 0.0064 putative membrane protein<br />

pgpA b0418 0.3457 0.0195 phosphatidylglycerophosphatase A<br />

pheT b1713 16.3765 0.0495 phenylalanyl-tRNA synthetase &beta;-chain<br />

phnP b4092 0.7634 0.0242 phosphonate metabolism<br />

polB b0060 0.6608 0.0120 DNA polymerase II<br />

ppa b4226 2.0727 0.0063 inorganic pyrophosphatase<br />

proY b0402 0.6754 0.0227 ProY cryptic proline APC transporter<br />

pspA b1304 0.3241 0.0349 negative transcriptional regulator <strong>of</strong> the psp operon<br />

pstB b3725 0.9267 0.0131 phosphate ABC transporter<br />

ptsI b2416 5.6371 0.0485 PTS enzyme I<br />

pykA b1854 0.8489 0.0169 pyruvate kinase II monomer<br />

rfaI b3627 0.4462 0.0388 UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-D-galactosyltransferase<br />

rhsD b0497 1.6558 0.0321 RhsD protein in rhs element<br />

rhsE b1456 1.1728 0.0329 RhsE protein in rhs element<br />

ribD b0414 0.6515 0.0084 pyrimidine reductase / pyrimidine deaminase<br />

rimJ b1066 1.7516 0.0255<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rimM b2608 3.7205 0.0153 protein required for wild-type 16S rRNA processing<br />

rluA b0058 0.4039 0.0494 23S rRNA and tRNA pseudouridine synthase<br />

rnhB b0183 0.4660 0.0478 RNAse HII, degrades RNA <strong>of</strong> DNA-RNA hybrids<br />

rplE b3308 5.5781 0.0305 50S ribosomal subunit protein L5<br />

rplI b4203 2.4184 0.0300 50S ribosomal subunit protein L9<br />

rplR b3304 7.8773 0.0179 50S ribosomal subunit protein L18<br />

94


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rplX b3309 3.5468 0.0478 50S ribosomal subunit protein L24<br />

rpmA b3185 0.4113 0.0210 50S ribosomal subunit protein L27<br />

rpmI b1717 6.8633 0.0383 50S ribosomal subunit protein A<br />

rpoA b3295 2.8507 0.0294 RNA polymerase, alpha subunit<br />

rpsD b3296 5.2826 0.0441 30S ribosomal subunit protein S4<br />

rpsE b3303 12.4222 0.0115 30S ribosomal subunit protein S5<br />

rpsH b3306 4.2597 0.0254 30S ribosomal subunit protein S8, and regulator<br />

rpsN b3307 6.6163 0.0259 30S ribosomal subunit protein S14<br />

rpsR b4202 1.8126 0.0017 30S ribosomal subunit protein S18<br />

rsd b3995 0.6020 0.0268 regulator <strong>of</strong> sigma D<br />

rseB b2571 0.2066 0.0278<br />

negative regulator <strong>of</strong> sigmaE; interacts with RseA and stimulates binding <strong>of</strong> RseA to<br />

sigmaE<br />

rusA b0550 0.6409 0.0385 endodeoxyribonuclease RUS (Holliday junction resolvase)<br />

sdhB b0724 1.7743 0.0237 succinate dehydrogenase iron-sulfur protein<br />

sfsA b0146 3.3885 0.0017 SfsA<br />

sgrR b0069 0.5711 0.0195 SgrR transcriptional regulator<br />

slp b3506 1.8331 0.0144 outer membrane protein induced after carbon starvation<br />

slyA b1642 4.5810 0.0274 SlyA transcriptional activator<br />

smf b4473 1.0372 0.0064 hypothetical protein<br />

sohB b1272 0.5393 0.0272 putative protease<br />

somA b0877 0.7299 0.0121 putative enzyme<br />

speD b0120 0.5703 0.0350 adenosylmethionine decarboxylase, proenzyme<br />

speE b0121 1.3579 0.0421 spermidine synthase<br />

speG b1584 0.4922 0.0388 spermidine acetyltransferase<br />

spoT b3650 0.4810 0.0407 GDP diphosphokinase / guanosine-3',5'-bis(diphosphate) 3'-diphosphatase<br />

sucA b0726 8.0970 0.0066 subunit <strong>of</strong> E1(0) component <strong>of</strong> 2-oxoglutarate dehydrogenase<br />

surE b2744 1.5675 0.0023 phosphatase with broad substrate specificity / 3'-nucleotidase / 5'-nucleotidase<br />

talA b2464 7.9764 0.0051 transaldolase A<br />

tauA b0365 1.1408 0.0442 TauA/TauB/TauC ABC transporter<br />

tfaQ b1546 4.3804 0.0443 hypothetical protein<br />

trkA b3290 0.8203 0.0039 TrkA<br />

trmD b2607 8.9475 0.0351 tRNA (guanine-1-)-methyltransferase<br />

trmU b1133 0.5271 0.0381 catalyzes 2-thiouridine modification <strong>of</strong> tRNA<br />

ttk b3641 3.3439 0.0494 Ttk transcriptional regulator<br />

ubiE b3833 0.8435 0.0494<br />

S-adenosylmethionine:2-DMK methyltransferase / 2-octaprenyl-6-methoxy-1,4-<br />

benzoquinone methylase<br />

upp b2498 0.5649 0.0007 uracil phosphoribosyltransferase<br />

uspG b0607 2.9614 0.0340 universal stress protein <strong>of</strong> the UspA family<br />

uxuA b4322 0.8406 0.0459 mannonate dehydratase<br />

uxuR b4324 0.7367 0.0352 UxuR transcriptional regulator<br />

wrbA b1004 4.9428 0.0377 WrbA<br />

xapA b2407 0.7936 0.0468 xanthosine phosphorylase<br />

xylA b3565 2.0099 0.0081 xylose isomerase<br />

xylB b3564 0.5746 0.0049 xylulokinase<br />

xylF b3566 0.7195 0.0419 xylose ABC transporter<br />

yaaH b0010 0.6869 0.0271 putative transport protein<br />

yabI b0065 1.8964 0.0149 putative integral membrane protein<br />

yadH b0128 3.3596 0.0418 YadG/YadH ABC transporter<br />

yadR b0156 2.8838 0.0285 conserved hypothetical protein<br />

yafS b0213 0.6999 0.0147 putative methyltransferase<br />

yahC b0317 0.8078 0.0212 putative membrane protein<br />

yahK b0325 1.3928 0.0045 putative oxidoreductase<br />

ybbP b0496 0.7792 0.0036 YbbA/YbbP ABC transporter<br />

ybcO b0549 0.6231 0.0253 hypothetical protein<br />

ybdL b0600 0.4618 0.0229 methionine aminotransferase<br />

ybeB b0637 1.7480 0.0389 conserved hypothetical protein<br />

ybeR b0645 0.5813 0.0326 conserved hypothetical protein<br />

95


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ybhA b0766 0.7300 0.0055 putative phosphatase<br />

ybhL b0786 2.1462 0.0351 putative transport protein<br />

ybhN b0788 0.7033 0.0260 hypothetical protein<br />

ycbU b0942 0.7402 0.0421 putative fimbrial-like protein<br />

yccJ b1003 5.6972 0.0370 hypothetical protein<br />

ycdF b1005 3.8775 0.0307 hypothetical protein<br />

ycdJ b1009 2.2829 0.0227 putative acetyltransferase<br />

ycdN b1016 1.7264 0.0325 hypothetical protein <strong>of</strong> the OFeT transport family<br />

yceK b1050 0.9386 0.0468 hypothetical protein<br />

ycjF b1322 2.8255 0.0176 putative membrane protein<br />

ycjO b1311 0.5416 0.0001 YcjN/YcjO/YcjP ABC transporter<br />

yddL b1472 0.6258 0.0181 putative outer membrane porin protein<br />

ydeI b1536 3.2270 0.0014 conserved hypothetical protein<br />

ydfJ b1543 0.2900 0.0231 YdfJ<br />

yeaK b1787 1.5080 0.0319 conserved hypothetical protein<br />

yebQ b1828 0.8734 0.0441 YebQ<br />

yebS b1833 0.8160 0.0391 putative membrane protein<br />

yecC b1917 0.7788 0.0141 putative ATP-binding component <strong>of</strong> a transport system<br />

yeeA b2008 0.6257 0.0087 putative membrane protein, transport<br />

yeeL_2 b1979 0.6176 0.0176 putative transport protein<br />

yeeO b1985 0.5128 0.0485 YeeO MATE Transporter<br />

yeeT b2003 0.5966 0.0348 hypothetical protein<br />

yejB b2178 1.2896 0.0364 YejA/YejB/YejE/YejF ABC transporter<br />

yfbE b2253 0.5801 0.0012 UDP-L-Ara4O C-4" transaminase<br />

yfeC b2398 0.3352 0.0137 hypothetical protein<br />

yfeK b2419 0.6148 0.0371 conserved protein<br />

yfgM b2513 0.4685 0.0406 conserved protein<br />

yfhG b2555 0.9007 0.0264 conserved protein<br />

yfhR b2534 0.8297 0.0101 putative methylase or hydrolase<br />

yfiP b2583 1.7964 0.0494 conserved hypothetical protein<br />

yfjX b2643 0.7308 0.0082 hypothetical protein<br />

ygdQ b2832 0.6379 0.0085 putative transport protein<br />

ygeF b2850 0.8063 0.0120 conserved hypothetical protein<br />

yggC b2928 6.2501 0.0187 putative kinase<br />

yggN b2958 0.7475 0.0321 conserved hypothetical protein<br />

yghJ b2974 1.1108 0.0216 predicted inner membrane lipoprotein<br />

yghU b2989 1.1448 0.0338<br />

glutathione transferase-like protein possibly involved in glutathionylspermidine<br />

metabolism<br />

ygiH b3059 0.6438 0.0454 putative membrane protein<br />

ygiU b3022 3.8905 0.0267 putative cyanide hydratase<br />

ygjJ b3079 0.9097 0.0041 hypothetical protein<br />

yhaK b3106 2.4963 0.0437 conserved hypothetical protein<br />

yhbN b3200 0.6192 0.0050 YhbG/YhbN ABC transporter<br />

yhfX b3381 1.2679 0.0037 conserved protein<br />

yhhX b3440 0.7634 0.0300 putative galactose 1-dehydrogenase<br />

yhjD b3522 2.7084 0.0452 putative membrane protein<br />

yiaD b3552 2.3769 0.0160 putative outer membrane protein<br />

yiaV b3586 0.5516 0.0468 putative membrane protein<br />

yicH b3655 1.5065 0.0436 conserved protein<br />

yifN b3777 0.5132 0.0378 conserved hypothetical protein<br />

yigF b3817 0.4341 0.0171 conserved hypothetical protein<br />

yiiX b3937 0.6653 0.0054 conserved hypothetical protein <strong>of</strong> the NlpC/P60 peptidase superfamily<br />

yjdK b4128 0.6048 0.0143 hypothetical protein<br />

yjeQ b4161 0.9234 0.0275 GTPase and putative translation factor / GTPase<br />

yjgR b4263 0.7614 0.0369 putative enzyme with P-loop containing nucleotide triphosphate hydrolase domain<br />

yjhB b4279 4.7570 0.0247 YjhB MFS transporter<br />

yjhT b4310 0.8659 0.0460 putative enzyme contains galactose oxidase-like domain<br />

96


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ykgJ b0288 0.5411 0.0198 putative ferredoxin<br />

ymgA b1165 1.8693 0.0273 hypothetical protein<br />

ymgC b1167 13.1366 0.0366 hypothetical protein<br />

ymgD b1171 0.3867 0.0100 hypothetical protein<br />

ynaA b1368 0.9570 0.0079 putative alpha helix protein<br />

yncA b1448 1.1679 0.0391 putative N-acetyltransferase<br />

yneG b1523 1.1135 0.0464 conserved hypothetical protein<br />

ynfA b1582 5.9471 0.0110 inner membrane protein<br />

yniB b1726 3.4656 0.0443 hypothetical protein<br />

yoaG b1796 0.5357 0.0394 hypothetical protein<br />

yobB b1843 0.7096 0.0410 conserved hypothetical protein<br />

yohC b2135 3.0037 0.0304 putative transport protein<br />

yohD b2136 0.6268 0.0385 hypothetical protein<br />

yohJ b2141 0.8408 0.0481 putative transmembrane protein<br />

yphA b2543 2.8374 0.0476 hypothetical protein<br />

yqjE b3099 1.9245 0.0368 conserved protein<br />

yraM b3147 0.8763 0.0122 putative glycosylase<br />

yrbD b3193 1.2481 0.0359 YrbD<br />

yrdA b3279 0.4732 0.0240 putative transferase<br />

yrfG b3399 0.5282 0.0267 putative hydrolase with a phophatase-like domain<br />

ytfF b4210 0.4613 0.0484 putative transmembrane subunit<br />

ytfK b4217 11.1610 0.0296 hypothetical protein<br />

ytjB b4387 0.5306 0.0382 membrane protein<br />

znuA b1857 0.4613 0.0187 ZnuA/ZnuB/ZnuC ABC transporter<br />

zraP b4002 0.2157 0.0093 zinc homeostasis protein<br />

b0395 2.2058 0.0439<br />

b0322 1.4431 0.0208<br />

b3948 0.7342 0.0285<br />

Supplementary table - IV: CSH50 wild-type (A) Vs CSH50 hns-205::Tn10 (B), Mid-exponential<br />

phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

acrE b3265 0.4232 0.0319 transmembrane protein affects septum formation and cell membrane permeability<br />

ade b3665 0.0880 0.0027 cryptic adenine deaminase monomer<br />

agaB b3138 0.5821 0.0060 EIIAga<br />

agaC b3139 0.5600 0.0258 EIIAga<br />

allD b0517 0.3467 0.0295 ureidoglycolate dehydrogenase<br />

alsA b4087 1.4648 0.0056 YjcW<br />

alsK b4084 1.6686 0.0186 putative D-allose kinase<br />

aniC b4115 0.1952 0.0013 AdiC Arginine:Agmatine Antiporter<br />

artJ b0860 1.3014 0.0092 arginine ABC transporter<br />

asnA b3744 4.5645 0.0110 aspartate-ammonia ligase<br />

azoR b1412 1.7670 0.0328 acyl carrier protein phosphodiesterase<br />

b0501 b0501 0.3204 0.0148 hypothetical protein<br />

b1172 b1172 0.3230 0.0046 conserved hypothetical protein<br />

b1364 b1364 1.7953 0.0104 hypothetical protein<br />

b1437 b1437 2.0579 0.0149 hypothetical protein<br />

b2084 b2084 0.2573 0.0018 hypothetical protein<br />

b2680 b2680 0.2973 0.0151 YgaY MFS transporter<br />

b4283 b4283 0.7779 0.0431 IS911 protein<br />

basR b4113 0.5152 0.0269 BasR-Phosphorylated transcriptional regulator<br />

bcsE b3536 0.7416 0.0435 putative protease<br />

97


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

bglG b3723 0.3084 0.0458 BglG monomer<br />

bioF b0776 0.5910 0.0182 8-amino-7-oxononanoate synthase<br />

cadA b4131 0.4186 0.0251 lysine decarboxylase<br />

cfa b1661 1.7766 0.0466 cyclopropane fatty acid synthase<br />

chaC b1218 0.6361 0.0124 cation transport regulator<br />

chbB b1738 0.7761 0.0260 EIIChb<br />

chbR b1735 0.6426 0.0292 ChbR transcriptional regulator<br />

citC b0618 0.4542 0.0028 citrate lyase ligase<br />

citD b0617 0.4617 0.0403 subunit <strong>of</strong> acyl carrier protein<br />

clpA b0882 2.1712 0.0279 ATP-binding component <strong>of</strong> serine protease<br />

clpB b2592 1.8746 0.0335 ClpB chaperone<br />

copA b0484 2.0211 0.0020 YbaR<br />

csgA b1042 0.3262 0.0123 curlin, major subunit<br />

csgB b1041 0.3223 0.0205 curlin, minor subunit precursor<br />

csgD b1040 0.2580 0.0060 CsgD transcriptional activator<br />

csgF b1038 0.3660 0.0143 curli assembly component<br />

csiE b2535 2.3439 0.0459 hypothetical protein<br />

cspC b1823 0.5094 0.0463 cold shock protein CspC<br />

cspI b1552 0.1583 0.0104 cold shock protein CspI<br />

cutC b1874 0.6803 0.0402 copper homeostasis protein<br />

cysH b2762 1.3960 0.0442 3'-phospho-adenylylsulfate reductase<br />

cysP b2425 1.7696 0.0110 thiosulfate ABC transporter<br />

dcrB b3472 1.7334 0.0438 conserved protein involved in bacteriophage adsorption<br />

dctR b3507 0.4226 0.0328 protein involved in metabolism <strong>of</strong> C4-dicarboxylates<br />

dcuS b4125 1.6044 0.0224 DcuS-Phis349<br />

ddpC b1485 1.3826 0.0444 YddQ<br />

dgoR b3694 1.6453 0.0106 regulator protein for dgo operon<br />

djlC b0649 0.6688 0.0445 Hsc56; a DnaJ-like protein that activates ATPase activity <strong>of</strong> Hsc62<br />

dmsB b0895 1.5182 0.0340 dimethyl sulfoxide reductase, chain B<br />

dmsC b0896 1.4176 0.0279 dimethyl sulfoxide reductase, chain C<br />

dmsD b1591 1.3281 0.0123 DMS reductase maturation protein<br />

dpiA b0620 0.2993 0.0020 CitB transcriptional regulator<br />

dpiB b0619 0.2370 0.0054 DpiB<br />

dsbC b2893 0.3743 0.0137 DsbCoxidized<br />

elaD b2269 0.7119 0.0344 putative sulfatase / phosphatase<br />

entA b0596 1.8924 0.0444 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase<br />

exbB b3006 3.9960 0.0236 ExbB protein; uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

exbD b3005 3.9950 0.0076 ExbD uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

fdoG b3894 1.9381 0.0090 formate dehydrogenase-O, &alpha; subunit<br />

fecR b4292 3.3052 0.0019 regulator for fec operon, periplasmic<br />

feoB b3409 8.1963 0.0108 FeoB ferrous iron transporter<br />

fepC b0588 2.0669 0.0123 Ferric Enterobactin Transport System<br />

fhuA b0150 3.0188 0.0173<br />

FhuA outer membrane protein receptor for ferrichrome, colicin M, and phages T1,<br />

T5, and phi80<br />

fhuB b0153 1.7527 0.0468 ferrichrome uptake system<br />

fhuC b0151 2.1582 0.0127 ferrichrome uptake system<br />

fic b3361 1.3570 0.0403 stationary-phase protein with possible role in p-aminobenzoate or folate biosynthesis<br />

fimB b4312 0.1579 0.0019 regulator for fimA<br />

fimC b4316 0.2925 0.0204 periplasmic chaperone, required for type 1 fimbriae<br />

fimD b4317 0.2625 0.0115 outer membrane protein; export and assembly <strong>of</strong> type 1 fimbriae, interrupted<br />

fimE b4313 0.4518 0.0341 regulator for fimA<br />

fimF b4318 0.1795 0.0195 fimbrial morphology<br />

fimG b4319 0.3289 0.0425 fimbrial morphology<br />

fimH b4320 0.3630 0.0420 minor fimbrial subunit, D-mannose specific adhesin<br />

fixA b0041 0.2419 0.0368 probable flavoprotein subunit required for anaerobic carnitine metabolism<br />

flgA b1072 5.3030 0.0410 flagellar biosynthesis; assembly <strong>of</strong> basal-body periplasmic P ring<br />

flgC b1074 13.7652 0.0406 flagellar basal-body rod protein FlgC<br />

98


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

flgD b1075 11.0115 0.0367 flagellar biosynthesis, initiation <strong>of</strong> hook assembly<br />

flgG b1078 5.4828 0.0333 flagellar basal-body rod protein FlgG<br />

flgI b1080 2.4887 0.0470 flagellar P-ring protein FlgI<br />

fliE b1937 1.6564 0.0329 flagellar basal-body protein FliE<br />

fliH b1940 1.5432 0.0196 flagellar biosynthesis protein FliH<br />

fliL b1944 5.3308 0.0268 flagellar biosynthesis<br />

fliN b1946 4.7917 0.0295<br />

flagellar motor switch protein FliN; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliZ b1921 4.2696 0.0330 possible cell-density responsive regulator <strong>of</strong> sigmaF<br />

folC b2315 0.7311 0.0443 folylpoly-&gamma;-glutamate synthetase / dihydr<strong>of</strong>olate synthetase<br />

fpr b3924 2.5348 0.0149 flavodoxin NADP+ reductase<br />

frdD b4151 1.6186 0.0382 fumarate reductase membrane protein<br />

frlB b3371 2.2009 0.0184 fructoselysine 6-phosphate deglycase monomer<br />

fruB b2169 0.3434 0.0332 EIIFru<br />

fruK b2168 0.4896 0.0376 1-phosph<strong>of</strong>ructokinase monomer<br />

fsaA b0825 7.7628 0.0036 Fsa<br />

ftnA b1905 0.5763 0.0388 cytoplasmic ferritin, an iron storage protein)<br />

gadA b3517 0.0773 0.0039 glutamate decarboxylase A subunit<br />

gadC b1492 0.1005 0.0061 XasA GABA APC transporter<br />

gadE b3512 0.1805 0.0075 GadE transcriptional activator<br />

gadW b3515 0.2415 0.0112 GadWtranscriptional repressor<br />

gadX b3516 0.2187 0.0018 GadX transcriptional activator<br />

gcl b0507 1.3668 0.0281 glyoxylate carboligase<br />

glf b2036 0.8672 0.0128 UDP-galactopyranose mutase<br />

glk b2388 1.8333 0.0429 glucokinase<br />

glnB b2553 1.3692 0.0068 PII-UMP<br />

glnQ b0809 1.7145 0.0305 glutamine ABC transporter<br />

glpK b3926 1.4158 0.0147 glycerol kinase<br />

gltF b3214 0.3892 0.0017 regulator <strong>of</strong> gltBDF operon, induction <strong>of</strong> Ntr enzymes<br />

gltJ b0654 1.5962 0.0062 glutamate ABC transporter<br />

gor b3500 1.5677 0.0412 glutathione reductase (NADPH)<br />

groE b4142 1.7003 0.0104<br />

GroES, 10 Kd chaperone binds to Hsp60 in pres. Mg-ATP, suppressing its ATPase<br />

activity<br />

groL b4143 1.6506 0.0412 GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein<br />

grpE b2614 2.1870 0.0236 phage lambda replication; host DNA synthesis; heat shock protein; protein repair<br />

hdeD b3511 0.1890 0.0048 protein involved in acid resistance<br />

hemA b1210 0.5195 0.0126 glutamyl-tRNA reductase<br />

hlyE b1182 0.1049 0.0060 hemolysin E<br />

h<strong>of</strong>B b0107 1.8089 0.0424 protein involved in plasmid replication<br />

hsdS b4348 1.3534 0.0115 specificity determinant for hsdM and hsdR<br />

htrL b3618 0.3544 0.0428 involved in lipopolysaccharide biosynthesis<br />

hycF b2720 1.3712 0.0000 formate hydrogenlyase complex<br />

hyfA b2481 1.4088 0.0450 hydrogenase 4, component A<br />

hyfI b2489 1.2438 0.0144 hydrogenase 4, small subunit<br />

hypB b2727 1.7286 0.0223<br />

guanine-nucleotide binding protein, functions as nickel donor for large subunit <strong>of</strong><br />

hydrogenase 3<br />

iaaA b0828 1.6736 0.0020 beta cleavage product <strong>of</strong> IaaA<br />

idnD b4267 0.5169 0.0436 L-idonate 5-dehydrogenase<br />

idnR b4264 1.1480 0.0279 IdnR-5-ketogluconate<br />

ilvC b3774 1.6530 0.0410 acetohydroxy acid isomeroreductase<br />

ilvY b3773 1.7029 0.0090 IlvY transcriptional dual regulator<br />

infB b3168 0.8211 0.0337 protein chain initiation factor IF-2<br />

intG b1936 0.3431 0.0453 hypothetical protein<br />

katG b3942 1.3880 0.0202 hydroperoxidase I<br />

kdsB b0918 1.5677 0.0297 3-deoxy-D-manno-octulosonate-cytidylyltransferase<br />

ldhA b1380 2.9107 0.0129 D-lactate dehydrogenase<br />

lrhA b2289 0.4409 0.0449 LrhA transcriptional repressor<br />

99


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

mak b0394 1.4938 0.0390 manno(fructo)kinase<br />

malQ b3416 1.2649 0.0206 maltose degrading enzyme 2 / maltose degrading enzyme / amylomaltase<br />

map b0168 2.1116 0.0092 methionine aminopeptidase<br />

mcrC b4345 0.7384 0.0462 MrcC subunit <strong>of</strong> 5-methylcytosine restriction system<br />

mdtC b2076 0.7845 0.0383 MdtABC RND-type Drug Exporter<br />

mdtF b3514 0.4998 0.0195 YhiV<br />

mdtM b4337 0.6514 0.0140 YjiO drug MFS transporter<br />

menF b2265 0.6845 0.0468 isochorismate synthase, menaquinone-specific<br />

menG b3929 1.4163 0.0172 inhibitor <strong>of</strong> ribonuclease E (RNase E) activity<br />

mfd b1114 1.2470 0.0009 transcription-repair coupling factor; mutation frequency decline<br />

mntH b2392 2.1445 0.0446 MntH manganese ion NRAMP transporter<br />

mobA b3857 2.0022 0.0164 molybdopterin guanine dinucleotide synthase<br />

molR_1 b2115 0.5716 0.0391 molybdate metabolism regulator, interrupted<br />

mppA b1329 0.3284 0.0002 periplasmic murein tripeptide binding protein<br />

msbA b0914 0.7297 0.0302 ATP-binding transport protein; multicopy suppressor <strong>of</strong> htrB<br />

mtlA b3599 1.2772 0.0244 EIIMtl<br />

murA b3189 0.6703 0.0265 UDP-N-acetylglucosamine enolpyruvoyl transferase<br />

mutS b2733 0.7424 0.0275 MutHLS complex, methyl-directed mismatch repair<br />

nrdH b2673 4.4358 0.0460 glutaredoxin-like protein; hydrogen donor<br />

nrdI b2674 2.8928 0.0050 stimulates ribonucleotide reduction<br />

nuoB b2287 1.3211 0.0440 NADH dehydrogenase I<br />

ompF b0929 2.0493 0.0041 outer membrane porin OmpF<br />

ompR b3405 1.5638 0.0031 OmpR transcriptional dual regulator<br />

ompW b1256 1.5536 0.0299 OmpW, outer membrane protein<br />

osmC b1482 0.3366 0.0477 osmotically inducible peroxidase OsmC<br />

paaH b1395 1.6745 0.0471 putative 3-hydroxy-acyl-CoA dehydrogenase <strong>of</strong> phenylacetate degradation<br />

paaI b1396 1.5659 0.0497 hypothetical protein with some similarity to thioesterases<br />

pagP b0622 0.2030 0.0037 PagP monomer<br />

pfkA b3916 2.4655 0.0114 6-phosph<strong>of</strong>ructokinase-1 monomer / putative NAD+ kinase<br />

pflB b0903 2.0318 0.0371 pyruvate formate-lyase (inactive)<br />

pflD b3951 1.4252 0.0361 formate acetyltransferase 2<br />

pflE b0824 4.1008 0.0376 putative pyruvate formate-lyase 2 activating enzyme<br />

pgaA b1024 1.9171 0.0243 putative outer membrane protein<br />

pgaB b1023 0.5469 0.0305 putative membrane protein<br />

pgk b2926 1.3537 0.0305 phosphoglycerate kinase<br />

pinR b1374 0.2637 0.0145 putative transposon resolvase<br />

pmrF b2254 0.3626 0.0319 undecaprenyl phosphate-L-Ara4FN transferase<br />

pptA b1461 0.5373 0.0206 probable 4-oxalocrotonate tautomerase (4-OT) monomer<br />

prlC b3498 1.6015 0.0034 oligopeptidase A<br />

proV b2677 0.1318 0.0010 proline ABC transporter<br />

proW b2678 0.1876 0.0048 proline ABC transporter<br />

pspF b1303 1.5821 0.0168 PspF transcriptional activator<br />

pspG b4050 0.7424 0.0314 phage shock protein PspG<br />

pta b2297 1.5264 0.0118 phosphate acetyltransferase<br />

pyrB b4245 2.0111 0.0261 aspartate carbamoyltransferase, PyrB subunit<br />

rdgC b0393 0.7189 0.0182 nonspecific DNA binding protein; nucleoid component<br />

recA b2699 0.7639 0.0133<br />

DNA strand exchange and renaturation, DNA-dependent ATPase, DNA- and ATPdependent<br />

coprotease<br />

recN b2616 0.2723 0.0087 protein used in recombination and DNA repair<br />

recX b2698 0.4849 0.0425 inhibitor <strong>of</strong> RecA<br />

relE b1563 0.7927 0.0031 toxin <strong>of</strong> the RelE-RelB toxin-antitoxin system; cleaves mRNA in ribosome<br />

rfaG b3631 0.6527 0.0257 lipopolysaccharide core biosynthesis; glucosyltransferase I<br />

rfaQ b3632 0.5460 0.0077 lipopolysaccharide core biosynthesis<br />

rhsA b3593 0.4066 0.0429 RhsA protein in rhs element<br />

rhsD b0497 0.1528 0.0099 RhsD protein in rhs element<br />

rihB b2162 0.4066 0.0069 ribonuceloside hydrolase 2 (pyrimidine-specific)<br />

rihC b0030 2.2156 0.0351 ribonucleoside hydrolase 3<br />

100


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rna b0611 1.9534 0.0081 RNase I, cleaves phosphodiester bond between any two nucleotides<br />

rnhA b0214 0.8180 0.0094 RNase HI, degrades RNA <strong>of</strong> DNA-RNA hybrids, participates in DNA replication<br />

rpmH b3703 0.5985 0.0307 50S ribosomal subunit protein L34<br />

rsmC b4371 0.6908 0.0180 putative enzyme<br />

rsxB b1628 0.4784 0.0272 member <strong>of</strong> SoxR-reducing complex<br />

ruvA b1861 0.5930 0.0118 branch migration <strong>of</strong> Holliday structures; repair<br />

secA b0098 1.7377 0.0270 Sec Protein Secretion Complex<br />

selA b3591 1.4733 0.0470 selenocysteine synthase monomer<br />

sfmA b0530 1.3127 0.0420 putative fimbrial-like protein<br />

sgcR b4300 1.3635 0.0167 SgcR transcriptional regulator<br />

slp b3506 0.2034 0.0108 outer membrane protein induced after carbon starvation<br />

soxS b4062 7.4619 0.0398 SoxS transcriptional activator<br />

stpA b2669 0.2808 0.0208 DNA-binding protein; H-NS-like protein; chaperone activity; RNA splicing?<br />

sufA b1684 2.0899 0.0341 scaffold protein for iron-sulfur cluster assembly<br />

sufC b1682 1.4335 0.0368<br />

ATPase component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator<br />

complex<br />

suhB b2533 0.7121 0.0469 inositol monophosphatase<br />

tdcR b3119 1.3440 0.0327 TdcR transcriptional activator<br />

tdk b1238 0.2845 0.0028 thymidine kinase / deoxyuridine kinase<br />

torT b0994 1.5195 0.0473 TorT-unknown inducer<br />

torZ b1872 0.4520 0.0239 trimethylamine N-oxide reductase III, TorZ subunit<br />

treB b4240 1.3851 0.0394 EIITre<br />

treC b4239 1.5854 0.0202 trehalose-6-phosphate hydrolase<br />

trpD b1263 1.4240 0.0122 anthranilate synthase component II<br />

trpE b1264 1.3868 0.0296 anthranilate synthase component I<br />

ubiD b3843 1.3999 0.0173 3-octaprenyl-4-hydroxybenzoate decarboxylase monomer<br />

ugd b2028 0.5278 0.0277 UDP-glucose 6-dehydrogenase<br />

ulaG b4192 1.1945 0.0340 putative L-ascorbate 6-phosphate lactonase<br />

uspA b3495 2.2175 0.0364 universal stress protein; broad regulatory function?<br />

wcaD b2056 0.2374 0.0250 putative colanic acid polymerase<br />

wzyE b3793 1.4246 0.0304 4-&alpha;-fucosyltransferase<br />

xapR b2405 0.1865 0.0024 XapR transcriptional activator<br />

xerC b3811 1.3838 0.0440<br />

site-specific recombinase, acts on cer sequence <strong>of</strong> ColE1, effects chromosome<br />

segregation at cell division<br />

yabP b0056 0.4273 0.0003 conserved hypothetical protein<br />

yacH b0117 1.3658 0.0346 putative membrane protein<br />

yadK b0136 0.2247 0.0062 putative adhesin-like protein<br />

yadL b0137 0.4099 0.0151 putative adhesin-like protein<br />

yafD b0209 1.4773 0.0349 conserved hypothetical protein<br />

yafW b0246 1.8615 0.0241 antitoxin <strong>of</strong> the YkfI-YafW toxin-antitoxin pair<br />

yaiB b0382 0.5256 0.0360 conserved hypothetical protein<br />

yaiW b0378 0.8394 0.0355 conserved hypothetical protein<br />

yajD b0410 1.3406 0.0194 conserved hypothetical protein<br />

ybaD b0413 1.5654 0.0479 conserved protein<br />

ybaK b0481 1.3718 0.0213 conserved hypothetical protein<br />

ybaW b0443 1.1589 0.0085 conserved hypothetical protein<br />

ybbD b0500 0.3702 0.0301 conserved hypothetical protein<br />

ybcM b0546 0.2015 0.0007 putative ARAC-type regulatory protein<br />

ybdG b0577 0.5999 0.0390 putative transport protein<br />

ybfH b0691 0.8192 0.0421 conserved hypothetical protein<br />

ybgO b0716 1.2872 0.0428 conserved hypothetical protein<br />

ybiF b0813 0.3984 0.0307 Threonine and Homoserine Exporter<br />

ybiW b0823 4.0177 0.0341 putative formate acetyltransferase<br />

ybjL b0847 0.7609 0.0095 putative transport protein<br />

ycaK b0901 0.6234 0.0102 YcaK<br />

ycaL b0909 1.2929 0.0439 putative heat shock protein<br />

ycaM b0899 0.3732 0.0035 YcaM APC amino acid transporter<br />

101


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ycbQ b0938 0.2233 0.0046 putative fimbrial-like protein<br />

ycbS b0940 0.4473 0.0081 putative outer membrane protein<br />

ycbT b0941 0.5092 0.0133 homolog <strong>of</strong> Salmonella FimH protein<br />

yccU b0965 1.4442 0.0412 putative NAD(P)-binding enzyme<br />

ycdN b1016 1.2686 0.0288 hypothetical protein <strong>of</strong> the OFeT transport family<br />

ycdU b1029 0.3114 0.0236 putative enzyme<br />

yceI b1056 0.6004 0.0350 periplasmic protein; possibly secreted<br />

ycfR b1112 0.3049 0.0045 conserved hypothetical protein<br />

ycgH_1 b1169 0.2603 0.0228 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgV b1202 0.1758 0.0031 putative adhesion and penetration protein<br />

yciE b1257 0.5250 0.0110 conserved protein<br />

ycjN b1310 0.4274 0.0070 YcjN/YcjO/YcjP ABC transporter<br />

ycjO b1311 1.4055 0.0364 YcjN/YcjO/YcjP ABC transporter<br />

ycjP b1312 0.5766 0.0237 YcjN/YcjO/YcjP ABC transporter<br />

ycjQ b1313 0.5545 0.0251 putative oxidoreductase<br />

ydbH b1381 1.4568 0.0176 conserved protein<br />

ydcA b1419 0.7482 0.0460 hypothetical protein<br />

yddJ b1470 0.7674 0.0421 hypothetical protein<br />

yddV b1490 0.4204 0.0091 conserved protein<br />

ydeH b1535 0.2575 0.0002 hypothetical protein<br />

ydeI b1536 0.3455 0.0164 conserved hypothetical protein<br />

ydeM b1497 0.7525 0.0152 putative enzyme<br />

ydeO b1499 0.3105 0.0065 putative ARAC-type regulatory protein<br />

ydeP b1501 0.5015 0.0287 acid resistance protein<br />

ydeS b1504 0.4386 0.0418 putative fimbrial-like protein<br />

ydeT b1505 0.5607 0.0195 putative outer membrane protein<br />

ydfJ b1543 1.4099 0.0448 YdfJ<br />

YdgE b1599 0.1355 0.0016 YdgE SMR Protein<br />

YdgF b1600 0.0941 0.0008 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydgK b1626 0.5783 0.0429 putative oxidoreductase<br />

ydgT b1625 0.3754 0.0341 conserved hypothetical protein<br />

ydhT b1669 0.6822 0.0135 conserved protein<br />

ydhY b1674 0.5117 0.0365 putative oxidoreductase, Fe-S subunit<br />

ydiA b1703 0.4514 0.0302 conserved protein<br />

ydiT b1700 0.5051 0.0079 putative ferredoxin<br />

ydjI b1773 0.5134 0.0380 putative aldolase<br />

ydjJ b1774 0.5684 0.0403 putative oxidoreductase<br />

yeaD b1780 2.3475 0.0375 conserved hypothetical protein<br />

yeaJ b1786 0.3536 0.0274 putative membrane protein<br />

yeaU b1800 0.6621 0.0455 putative tartrate dehydrogenase<br />

yebN b1821 0.3605 0.0299 putative membrane protein, terpenoid synthase-like<br />

yecT b1877 0.7868 0.0119 hypothetical protein<br />

yedL b1932 0.7234 0.0377 putative acyl-CoA N-acyltransferase<br />

yedW b1969 0.2224 0.0277 putative 2-component transcriptional response regulator<br />

yeeP b1999 1.5217 0.0256 putative histone<br />

yeeR b2001 3.3879 0.0270 hypothetical protein<br />

yegI b2070 0.5059 0.0139 putative chaperonin<br />

yegJ b2071 0.4400 0.0002 hypothetical protein<br />

yegZ b2083 0.4459 0.0458 hypothetical protein<br />

yehD b2111 1.2074 0.0153 putative fimbrial-like protein<br />

yehZ b2131 1.4371 0.0308 YehW/YehX/YehY/YehZ ABC transporter<br />

yeiC b2166 0.1058 0.0054 putative kinase<br />

yeiL b2163 0.2356 0.0045 yeiL transcriptional activator<br />

yeiS b2145 0.3579 0.0009 hypothetical protein<br />

yfaO b2251 0.6774 0.0483 putative enzyme (Nudix hydrolase)<br />

yfbE b2253 0.5011 0.0326 UDP-L-Ara4O C-4" transaminase<br />

102


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yfbT b2293 1.7768 0.0251 putative phosphatase, contains a phophatase-like domain<br />

yfcV b2339 0.2396 0.0363 putative fimbrial-like protein<br />

yfcZ b2343 1.9842 0.0309 conserved hypothetical protein<br />

yfdY b2377 1.9172 0.0152 hypothetical protein<br />

yfeH b2410 2.5659 0.0020 putative cytochrome oxidase<br />

yfeO b2389 1.3810 0.0219 hypothetical protein<br />

yfgH b2505 0.3998 0.0112 putative outer membrane lipoprotein<br />

yfgI b2506 0.3691 0.0138 putative membrane protein<br />

yfiC b2575 0.5114 0.0115 putative enzyme<br />

yfiR b2603 0.4214 0.0315 conserved protein<br />

yfjT b2637 1.2855 0.0166 hypothetical protein<br />

ygaD b2700 1.5905 0.0380 conserved protein<br />

ygaQ b2654 0.5771 0.0145 hypothetical protein<br />

ygcG b2778 0.5541 0.0426 putative membrane protein<br />

ygcI b2757 0.2705 0.0485 hypothetical protein<br />

ygcK b2759 0.1525 0.0146 hypothetical protein<br />

ygeH b2852 1.2703 0.0166 putative invasion protein<br />

ygfJ b2877 0.5915 0.0145 conserved protein<br />

ygiD b3039 1.7851 0.0438 putative enzyme with dioxygenase domain<br />

ygiL b3043 0.1979 0.0050 putative fimbrial-like protein<br />

ygiP b3060 0.3869 0.0138 putative transcriptional regulator LYSR-type<br />

ygjG b3073 0.7150 0.0032 putrescine:2-oxoglutaric acid aminotransferase<br />

ygjR b3087 1.7341 0.0151 putative NAD(P)-binding dehydrogenase<br />

yhaC b3121 0.7029 0.0259 conserved protein<br />

yhaH b3103 1.4810 0.0409 putative cytochrome<br />

yheT b3353 0.9395 0.0476 putative hydrolase with an alpha/beta-hydrolase domain<br />

yhgG b3410 8.7789 0.0083 putative transcriptional regulator<br />

yhhS b3473 1.9023 0.0214 YhhS MFS transporter<br />

yhiM b3491 0.3980 0.0150 conserved inner membrane protein<br />

yhiS b3504 0.4148 0.0135 conserved protein<br />

yhjB b3520 1.6281 0.0425 putative regulator<br />

yhjD b3522 1.3548 0.0218 putative membrane protein<br />

yhjH b3525 1.9821 0.0096 protein involved in flagellar function<br />

yhjX b3547 2.3356 0.0409 YhjX MFS transporter<br />

yiaU b3585 0.4160 0.0154 putative transcriptional regulator LYSR-type<br />

yibA b3594 0.2851 0.0477 putative lyase<br />

yicO b3664 0.2533 0.0165<br />

putative membrane protein with possible relationship to novobiocin and<br />

deoxycholate resistance<br />

yieI b3716 1.7977 0.0144 putative membrane protein<br />

yigF b3817 0.4178 0.0439 conserved hypothetical protein<br />

yigL b3826 1.3312 0.0472 conserved protein with a phosphatase-like domain<br />

yigZ b3848 1.4946 0.0135 putative elongation factor<br />

yihF b3861 0.6315 0.0205 conserved protein<br />

yjaG b3999 1.5544 0.0152 conserved protein<br />

yjbB b4020 1.4828 0.0113 putative alpha helix protein<br />

yjbM b4048 0.5829 0.0309 conserved hypothetical protein<br />

yjcZ b4110 0.6510 0.0102 hypothetical protein<br />

yjdA b4109 0.3357 0.0151 hypothetical protein<br />

yjdL b4130 0.7255 0.0483 YjdL peptide POT transporter<br />

yjeJ b4145 0.5658 0.0365 conserved protein<br />

yjeN b4157 0.4976 0.0199 conserved hypothetical protein<br />

yjeS b4166 1.9051 0.0114 conserved ferredoxin-like protein<br />

yjfM b4185 1.4600 0.0495 conserved hypothetical protein<br />

yjgK b4252 1.5575 0.0381 conserved hypothetical protein<br />

yjgN b4257 0.6494 0.0031 putative membrane protein possible involved in transport<br />

yjhE b4282 0.6011 0.0270 KpLE2 phage-like element<br />

yjhH b4298 0.2791 0.0089 putative lyase/synthase<br />

103


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yjhI b4299 0.3015 0.0021 putative regulator<br />

yjiP b4338 0.2074 0.0198 hypothetical protein<br />

yjiW b4347 0.3864 0.0124 hypothetical protein<br />

yjjI b4380 1.2300 0.0003 conserved hypothetical protein<br />

yjjN b4358 0.7146 0.0214 putative oxidoreductase<br />

yliH b0836 1.4511 0.0323 putative receptor; induced in stationary phase<br />

ymdA b1044 1.3743 0.0405 conserved hypothetical protein<br />

ymdE b1028 1.2439 0.0093 putative malonyl-CoA:Acyl carrier protein transacylase<br />

ymfM b1148 1.3536 0.0483 hypothetical protein<br />

ymgD b1171 0.4644 0.0021 hypothetical protein<br />

ynaE b1375 0.2665 0.0186 hypothetical protein<br />

ynaI b1330 0.5285 0.0218 YnaI<br />

ynbD b1411 1.4997 0.0330 putative enzyme<br />

yncC b1450 0.6862 0.0367 hypothetical protein<br />

yncD b1451 1.5934 0.0332 Probable TonB-dependent receptor<br />

yncI b1458 0.1672 0.0266 conserved protein<br />

yneI b1525 3.7228 0.0368 putative aldehyde dehydrogenase<br />

yneK b1527 0.9040 0.0285 conserved protein<br />

ynfN b1551 0.2403 0.0063 hypothetical protein<br />

yohJ b2141 2.9847 0.0353 putative transmembrane protein<br />

yohN b2107 0.6686 0.0265 hypothetical protein<br />

ypfJ b2475 1.4122 0.0100 conserved protein<br />

ypjF b2646 1.6516 0.0435 member <strong>of</strong> the YeeV, YkfI, YpjF family <strong>of</strong> toxin proteins<br />

yqaC b2657 0.3850 0.0243 putative enzyme<br />

yqeC b2876 0.6850 0.0170 conserved protein<br />

yqeI b2847 0.3106 0.0215 putative sensory transducer<br />

yqeJ b2848 0.3761 0.0379 conserved hypothetical protein<br />

yqgA b2966 2.0839 0.0160 putative transport protein<br />

yrhA b3443 0.7276 0.0181 conserved hypothetical protein<br />

ytfR b4485 1.7393 0.0402 subunit <strong>of</strong> YtfQ/YtfR/YtfS/YtfT/YjfF ABC transporter<br />

ytfT b4230 1.5937 0.0012 YtfQ/YtfR/YtfS/YtfT/YjfF ABC transporter<br />

zraS b4003 2.0921 0.0305 ZraS-Phis<br />

Supplementary table – V: CSH50 wild-type (A) Vs CSH50 hns-205::Tn10 (B), Transition to<br />

stationary phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aaeB b3240 1.1872 0.0075 hypothetical protein<br />

aceE b0114 0.2646 0.0654 subunit <strong>of</strong> E1p component <strong>of</strong> pyruvate dehydrogenase complex<br />

acrD b2470 1.3042 0.1589 AcrD<br />

ade b3665 0.0725 0.0088 cryptic adenine deaminase monomer<br />

adiA b4117 0.9019 0.0328 Adi<br />

agaB b3138 1.1736 0.1822 EIIAga<br />

alsC b4086 1.2567 0.1129 YjcV<br />

ansB b2957 0.2992 0.0537 asparaginase II<br />

arpB_2 b1721 0.9159 0.1043 hypothetical protein<br />

artJ b0860 0.8070 0.0643 arginine ABC transporter<br />

b1367 b1367 1.2731 0.0856 hypothetical protein<br />

b1567 b1567 0.7688 0.1747 hypothetical protein<br />

b3808 b3808 1.2642 0.0697 hypothetical protein<br />

b4103 b4103 1.4344 0.0818 putative C terminus <strong>of</strong> split phnE <strong>gene</strong> product<br />

betA b0311 1.2923 0.0890 choline dehydrogenase<br />

104


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

caiF b0034 0.2262 0.0374 CaiF transcriptional activator<br />

cheY b1882 1.4371 0.1824 CheY-Pasp<br />

csgD b1040 0.6260 0.1715 CsgD transcriptional activator<br />

cusB b0574 1.8915 0.0232 membrane fusion protein <strong>of</strong> the CusCFBA copper efflux system<br />

cydA b0733 0.4010 0.0979 cytochrome bd-I terminal oxidase subunit I<br />

cysS b0526 0.8028 0.2224 cysteinyl-tRNA synthetase<br />

dapB b0031 0.5764 0.1246 dihydrodipicolinate reductase<br />

degS b3235 1.4438 0.2115<br />

inner membrane serine protease required for the extracytoplasmic stress response<br />

mediated <strong>by</strong> sigmaE<br />

ebgC b3077 1.1456 0.1104 evolved beta-D-galactosidase, beta subunit; cryptic <strong>gene</strong><br />

entA b0596 1.2670 0.1112 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase<br />

entC b0593 0.7369 0.0692 isochorismate synthase, enterobactin specific<br />

eutJ b2454 0.8315 0.0043 putative ethanolamine utilization protein<br />

fabB b2323 0.4887 0.0554 beta-ketoacyl-ACP synthase I / malonyl-ACP decarboxylase<br />

fadI b2342 1.5169 0.2349 FadI monomer<br />

fdrA b0518 0.8147 0.1193<br />

involved in protein transport; multicopy suppressor <strong>of</strong> dominant negative ftsH<br />

mutants<br />

fhuB b0153 1.3218 0.2319 ferrichrome uptake system<br />

fimD b4317 0.5627 0.2047 outer membrane protein; export and assembly <strong>of</strong> type 1 fimbriae, interrupted<br />

fixA b0041 0.0756 0.1450 probable flavoprotein subunit required for anaerobic carnitine metabolism<br />

fixC b0043 0.2155 0.2179<br />

flavoprotein (electron transport), possibly involved in anaerobic carnitine<br />

metabolism<br />

flgB b1073 0.8033 0.0745 flagellar basal-body rod protein FlgB<br />

folC b2315 1.3627 0.0775 folylpoly-&gamma;-glutamate synthetase / dihydr<strong>of</strong>olate synthetase<br />

folP b3177 1.2314 0.1694 dihydropteroate synthase<br />

frlB b3371 2.0432 0.0360 fructoselysine 6-phosphate deglycase monomer<br />

frlC b3372 1.2382 0.2287 fructoselysine and psicoselysine degradation<br />

frmA b0356 1.3302 0.0420 formaldehyde dehydrogenase, glutathione-dependent<br />

fucA b2800 0.2508 0.0258 L-fuculose-phosphate aldolase<br />

garD b3128 0.3928 0.2088 galactarate dehydratase<br />

gloA b1651 1.3030 0.0348 glyoxalase I<br />

gltJ b0654 1.2726 0.0202 glutamate ABC transporter<br />

gnd b2029 0.2673 0.1255 6-phosphogluconate dehydrogenase (decarboxylating)<br />

gspF b3327 1.1553 0.2132 putative protein secretion protein for export<br />

hemG b3850 1.3439 0.1949 protoporphyrinogen oxidase<br />

insB b0264 1.2537 0.0298 IS1 protein InsB (B0264)<br />

iscA b2528 1.4368 0.0689 iron-sulfur cluster assembly protein<br />

iscS b2530 2.5506 0.1524 cysteine desulfurase monomer<br />

kdsB b0918 0.6326 0.0429 3-deoxy-D-manno-octulosonate-cytidylyltransferase<br />

kdtA b3633 1.3532 0.1040 KDO transferase<br />

kefG b3351 1.3412 0.1984 KefG<br />

lepB b2568 1.1466 0.0947 leader peptidase (signal peptidase I)<br />

mdtF b3514 0.2922 0.2011 YhiV<br />

menD b2264 0.5481 0.0119<br />

putative 2-hydroxyglutarate synthase / SHCHC synthase / 2-oxoglutarate<br />

decarboxylase<br />

moaC b0783 0.7275 0.0123 molybdopterin biosynthesis, protein C<br />

nanA b3225 1.7915 0.0363 N-acetylneuraminate lyase<br />

nfnB b0578 0.6237 0.0070 dihydropteridine reductase<br />

nrdH b2673 1.4711 0.2098 glutaredoxin-like protein; hydrogen donor<br />

ompF b0929 1.7917 0.1439 outer membrane porin OmpF<br />

oppF b1247 0.8461 0.0600 oligopeptide ABC transporter<br />

osmC b1482 0.6061 0.1300 osmotically inducible peroxidase OsmC<br />

paaE b1392 1.6951 0.1043 putative oxygenase reductase <strong>of</strong> phenylacetate degradation<br />

paaY b1400 1.4811 0.0096 putative transferase<br />

pgaC b1022 0.6851 0.0781 predicted N-glycosyltransferase<br />

potH b0856 1.3620 0.0482 putrescine ABC transporter<br />

ppsA b1702 0.6429 0.1319 phosphoenolpyruvate synthase<br />

proP b4111 1.3631 0.1790 ProP proline/betaine MFS transporter<br />

105


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

proV b2677 0.4218 0.1799 proline ABC transporter<br />

puuC b1300 1.6935 0.1184 aldehyde dehydrogenase<br />

pykA b1854 0.7604 0.0838 pyruvate kinase II monomer<br />

pyrB b4245 1.1503 0.1874 aspartate carbamoyltransferase, PyrB subunit<br />

rbsC b3750 0.6695 0.0468 ribose ABC transporter<br />

recA b2699 0.3452 0.1832<br />

DNA strand exchange and renaturation, DNA-dependent ATPase, DNA- and ATPdependent<br />

coprotease<br />

relA b2784 1.2742 0.1110 GDP pyrophosphokinase / GTP pyrophosphokinase<br />

rfe b3784 1.3370 0.2082 undecaprenyl-phosphate &alpha;-N-acetylglucosaminyl transferase<br />

rluF b4022 1.3140 0.1201 23S rRNA pseudouridine synthase<br />

rusA b0550 1.4113 0.1436 endodeoxyribonuclease RUS (Holliday junction resolvase)<br />

serB b4388 0.7904 0.0773 phosphoserine phosphatase<br />

sieB b1353 0.8383 0.1178 phage superinfection exclusion protein<br />

slp b3506 0.4025 0.1450 outer membrane protein induced after carbon starvation<br />

sra b1480 1.6764 0.1726<br />

30S ribosomal subunit protein S22; sub-stoichiometric stationary phase ribosomal<br />

component<br />

srlB b2704 1.2552 0.1276 GutB<br />

tdcD b3115 0.1894 0.1458 propionate kinase / acetate kinase C<br />

tfaS b2353 1.2824 0.0709 hypothetical protein<br />

thiC b3994 0.9357 0.1591 thiC protein<br />

thiE b3993 1.2669 0.1306 thiamine phosphate synthase<br />

thiL b0417 1.2068 0.0179 thiamine phosphate kinase<br />

torY b1873 0.4910 0.1241 trimethylamine N-oxide reductase III, c-type cytochrome subunit<br />

torZ b1872 0.5350 0.0783 trimethylamine N-oxide reductase III, TorZ subunit<br />

trmE b3706 1.3641 0.0940 GTP-binding protein with a role in modification <strong>of</strong> tRNA<br />

udk b2066 1.1984 0.1082 uridine kinase / cytidine kinase<br />

uppP b3057 0.9220 0.0886 undecaprenyl diphosphatase; bacitracin resistance<br />

uxuA b4322 1.5879 0.1280 mannonate dehydratase<br />

xapB b2406 0.7826 0.0813 XapB xanthosine MFS transporter<br />

xylH b3568 0.2488 0.1621 xylose ABC transporter<br />

xylR b3569 0.5185 0.1010 XylR-Xylose transcriptional activator<br />

ybbV b0510 0.8643 0.0029 hypothetical protein<br />

ybgH b0709 1.2353 0.1593 YbgH peptide POT Transporter<br />

ycbY b0948 1.4626 0.2285 putative methyltransferase<br />

yccA b0970 0.8900 0.1984<br />

putative carrier/transport protein; substrate or modulator <strong>of</strong> FtsH-mediated<br />

proteolysis<br />

yccU b0965 1.6297 0.1818 putative NAD(P)-binding enzyme<br />

yceH b1067 0.7620 0.2327 conserved hypothetical protein<br />

ycgH_1 b1169 0.3656 0.1003 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgV b1202 0.5050 0.0863 putative adhesion and penetration protein<br />

yciQ b1268 1.0958 0.0693 putative membrane protein<br />

ycjS b1315 1.2033 0.2091 putative galactose 1-dehydrogenase<br />

ycjX b1321 0.8771 0.2180 putative EC 2.1 enzyme<br />

ydaV b1360 1.2315 0.1919 putative DNA replication factor<br />

ydcF b1414 1.3872 0.0086 conserved hypothetical protein<br />

ydcL b1431 1.3586 0.0134 conserved hypothetical protein<br />

YdgF b1600 0.4729 0.0174 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydgR b1634 1.3701 0.0111 YdgR putative peptide POT Transporter<br />

ydiQ b1697 0.7378 0.0072 putative subunit <strong>of</strong> YdiQ-YdiR flavoprotein<br />

ydjI b1773 0.6874 0.0303 putative aldolase<br />

yeaC b1777 1.2788 0.0410 conserved hypothetical protein<br />

yegK b2072 0.7214 0.0032 conserved hypothetical protein<br />

yegS b2086 1.2631 0.0064 conserved protein<br />

yeiC b2166 0.3541 0.2324 putative kinase<br />

yfdT b2363 1.1129 0.0883 hypothetical protein<br />

yfeX b2431 0.7909 0.0108 conserved protein<br />

yfiP b2583 0.7684 0.0969 conserved hypothetical protein<br />

106


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yfiR b2603 0.6636 0.1282 conserved protein<br />

yfjP b2632 1.3077 0.1930 putative GTP-binding protein<br />

ygcB b2761 0.4844 0.2032 putative enzyme<br />

ygcI b2757 0.2748 0.2013 hypothetical protein<br />

ygcS b2771 0.7026 0.1397 YgcS MFS transporter<br />

ygeG b2851 0.5939 0.1993 conserved hypothetical protein<br />

yhbG b3201 1.0641 0.0935 YhbG/YhbN ABC transporter<br />

yhbW b3160 1.4346 0.0533 putative enzyme<br />

yhdX b3269 0.8973 0.1366 YhdW/YhdX/YhdY/YhdZ ABC transporter<br />

yhgE b3402 1.3316 0.1019 putative transport<br />

yhhA b3448 1.3377 0.1710 conserved protein<br />

yhhJ b3485 1.1309 0.1809 YhiH/YhhJ ABC transporter<br />

yhhW b3439 1.1799 0.2435 conserved hypothetical protein<br />

yhiM b3491 0.1095 0.0552 conserved inner membrane protein<br />

yhiP b3496 1.1708 0.1262 YhiP peptide POT transporter<br />

yhjD b3522 1.4333 0.0321 putative membrane protein<br />

yicI b3656 1.8297 0.1437 putative alpha-xylosidase<br />

yidC b3705 1.4704 0.1123 inner-membrane protein insertion factor<br />

yihW b3884 0.8220 0.0407 putative DEOR-type transcriptional regulator<br />

yjeM b4156 0.7016 0.1081 YjeM APC transporter<br />

yjhC b4280 0.5790 0.1944 KpLE2 phage-like element; putative NAD(P)-binding dehydrogenase<br />

yjhE b4282 1.2886 0.0221 KpLE2 phage-like element<br />

yjhI b4299 0.5334 0.0761 putative regulator<br />

yjhS b4309 1.2490 0.1765 conserved protein<br />

yjiP b4338 0.2190 0.0587 hypothetical protein<br />

ymfL b1147 1.2231 0.1027 hypothetical protein<br />

ynaI b1330 0.3691 0.1029 YnaI<br />

yneK b1527 1.2307 0.0945 conserved protein<br />

ynjH b1760 1.2650 0.1545 conserved hypothetical protein<br />

yphF b2548 0.8131 0.1404 YphD/YphE/YphF ABC transporter<br />

yqaA b2689 1.5094 0.1026 putative integral membrane protein<br />

yqcE b2775 0.3813 0.0410 YqcE MFS transporter<br />

yqeA b2874 0.6119 0.2140 putative carbamate kinase<br />

yqgF b2949 1.1217 0.0662 possible Holliday junction resolvase<br />

yraR b3152 0.8804 0.0477 putative NADH dehydrogenase<br />

yrbD b3193 1.2804 0.0766 YrbD<br />

yrhA b3443 1.4004 0.1317 conserved hypothetical protein<br />

ytfL b4218 0.6807 0.0752 putative transport protein<br />

Supplementary table – VI: CSH50 wild-type (A) Vs CSH50 hns-205::Tn10 (B), Late stationary<br />

phase<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aas b2836 0.8153 0.0200 2-acylglycerophosphoethanolamine acyltransferase / acyl-ACP synthetase<br />

accA b0185 0.6328 0.0126 acetyl CoA carboxylase<br />

asnC b3743 2.7539 0.0441 AsnC transcriptional dual regulator<br />

astA b1747 0.3481 0.0052 arginine succinyltransferase<br />

astC b1748 0.6661 0.0099 acetylornithine transaminase, catabolic / succinylornithine transaminase<br />

b1567 b1567 0.7803 0.0356 hypothetical protein<br />

b3975 b3975 1.3034 0.0341 hypothetical protein<br />

bdm b1481 0.2891 0.0268 hypothetical protein<br />

ccmA b2201 1.4349 0.0053 CcmABCDEFGH cytochrome c bio<strong>gene</strong>sis system<br />

clpS b0881 1.4414 0.0407 specificity factor for ClpA-ClpP chaperone-protease complex<br />

107


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

csgG b1037 0.6187 0.0112 curli production component<br />

cspI b1552 0.2912 0.0302 cold shock protein CspI<br />

cutC b1874 0.7767 0.0309 copper homeostasis protein<br />

dcm b1961 0.6512 0.0238 DNA cytosine methylase<br />

ddlA b0381 0.7805 0.0467 D-alanine-D-alanine ligase A<br />

degS b3235 2.0142 0.0342<br />

inner membrane serine protease required for the extracytoplasmic stress response<br />

mediated <strong>by</strong> sigmaE<br />

dkgA b3012 0.6653 0.0108 beta-keto ester reductase / 2,5-diketo-D-gluconate reductase A<br />

ebgC b3077 1.2066 0.0412 evolved beta-D-galactosidase, beta subunit; cryptic <strong>gene</strong><br />

essQ b1556 1.3096 0.0194 hypothetical protein<br />

fabZ b0180 1.3977 0.0405 beta-hydroxyacyl-ACP dehydratase<br />

fdnI b1476 0.8282 0.0127 formate dehydrogenase N, &gamma; subunit<br />

fimI b4315 0.6913 0.0188 fimbrial protein<br />

fiu b0805 0.7727 0.0214 putative outer membrane receptor for iron transport<br />

fixX b0044 0.8813 0.0500 putative ferredoxin possibly involved in anaerobic carnitine metabolism<br />

folK b0142 0.7003 0.0449 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase<br />

fruR b0080 1.5732 0.0110 FruR transcriptional dual regulator<br />

frwD b3953 1.3246 0.0112 PTS system fructose-like IIB component 2<br />

gadA b3517 0.1073 0.0024 glutamate decarboxylase A subunit<br />

gadC b1492 0.2366 0.0330 XasA GABA APC transporter<br />

galU b1236 0.5670 0.0482 UTP-glucose-1-phosphate uridylyltransferase<br />

glgP b3428 0.7249 0.0159 glycogen phosphorylase / glycogen-maltotetraose phosphorylase<br />

gntX b3413 1.4099 0.0310 gluconate periplasmic binding protein<br />

grxA b0849 0.5770 0.0229 oxidized glutaredoxin<br />

hcaT b2536 1.3120 0.0486 HcaT MFS transporter<br />

hdeA b3510 0.0575 0.0020 acid-resistance protein, possible chaperone<br />

hdeB b3509 0.0572 0.0013 10K-L protein, related to acid resistance protein <strong>of</strong> Shigella flexneri<br />

hflC b4175 1.6656 0.0464 regulator <strong>of</strong> FtsH protease<br />

hlyE b1182 0.4334 0.0228 hemolysin E<br />

hpt b0125 1.4604 0.0051 guanine phosphoribosyltransferase / hypoxanthine phosphoribosyltransferase<br />

hybE b2992 1.5741 0.0491 chaperone in Tat protein export<br />

ibpA b3687 4.8015 0.0454 small heat shock protein IbpA<br />

ibpB b3686 27.0211 0.0196 small heat shock protein IbpB<br />

ilvG_1 b3767 0.6880 0.0458 IlvG_1<br />

intB b4271 1.1609 0.0338 prophage P4 integrase<br />

intZ b2442 0.6336 0.0499 putative prophage integrase<br />

kefF b0046 0.7476 0.0460 regulator <strong>of</strong> KefC-mediated potassium transport<br />

lexA b4043 1.2491 0.0064 LexA transcriptional repressor<br />

mdtD b2077 0.7885 0.0485 YegB<br />

metR b3828 1.2459 0.0091 MetR-Homocysteine transcriptional activator<br />

mntH b2392 1.3722 0.0434 MntH manganese ion NRAMP transporter<br />

mtn b0159 1.8303 0.0211 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase monomer<br />

mviN b1069 1.2873 0.0435 putative virulence factor<br />

nudC b3996 0.8052 0.0060 putative NAD+ diphosphatase<br />

osmC b1482 0.7078 0.0028 osmotically inducible peroxidase OsmC<br />

pdxB b2320 1.2874 0.0306 erythronate-4-phosphate dehydrogenase<br />

pepD b0237 0.8060 0.0340 peptidase D<br />

phnI b4099 0.8943 0.0064 phosphonate metabolism<br />

phoA b0383 0.5971 0.0243 alkaline phosphatase<br />

proY b0402 0.7097 0.0303 ProY cryptic proline APC transporter<br />

rcsA b1951 0.6183 0.0022<br />

positive DNA-binding transcriptional regulator <strong>of</strong> capsular polysaccharide<br />

synthesis, activates its own <strong>expression</strong><br />

rfbA b2039 1.4182 0.0327 dTDP-glucose pyrophosphorylase<br />

rhaD b3902 1.1347 0.0373 rhamnulose-1-phosphate aldolase monomer<br />

rsxG b1631 1.0943 0.0407 member <strong>of</strong> SoxR-reducing complex<br />

rzpD b0556 1.2441 0.0411 bacteriophage lambda endopeptidase homolog<br />

serB b4388 0.6533 0.0326 phosphoserine phosphatase<br />

108


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

srmB b2576 0.6931 0.0163 SrmB, DEAD-box RNA helicase<br />

sufB b1683 0.7379 0.0307 component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator complex<br />

tdcC b3116 0.5550 0.0418 TdcC threonine STP transporter<br />

thiQ b0066 1.1434 0.0110 SfuC<br />

trpS b3384 0.7488 0.0006 tryptophanyl-tRNA synthetase<br />

ubiG b2232 0.7729 0.0299<br />

3-demethylubiquinone 3-methyltransferase / 2-octaprenyl-6-hydroxyphenol<br />

methylase<br />

ulaA b4193 0.8742 0.0352 eiisga<br />

wcaF b2054 1.2259 0.0176 putative transferase<br />

wza b2062 0.7309 0.0460<br />

Wza Outer Membrane Auxiliary (OMA) Protein, putative polysaccharide export<br />

protein<br />

xapR b2405 0.3692 0.0027 XapR transcriptional activator<br />

xylA b3565 0.8740 0.0471 xylose isomerase<br />

yaiY b0379 0.5364 0.0026 putative membrane protein<br />

ybbJ b0488 2.0666 0.0366 conserved protein<br />

ybdJ b0580 0.7815 0.0459 conserved hypothetical protein<br />

ybdO b0603 0.6554 0.0450 putative transcriptional regulator LYSR-type<br />

ybfC b0704 0.8179 0.0148 hypothetical protein<br />

ybfD b0706 0.4459 0.0407 conserved protein<br />

ybfH b0691 1.2496 0.0152 conserved hypothetical protein<br />

ybhA b0766 0.8134 0.0431 putative phosphatase<br />

yccV b0966 2.5767 0.0377 hemimethylated DNA-binding protein<br />

ycfL b1104 1.3666 0.0057 conserved hypothetical protein<br />

ycfR b1112 3.1414 0.0148 conserved hypothetical protein<br />

ycfZ b1121 0.6103 0.0092 homolog <strong>of</strong> virulence factor<br />

ydcL b1431 1.4454 0.0141 conserved hypothetical protein<br />

ydcT b1441 2.1704 0.0408 YdcS/YdcT/YdcV/YdcU ABC transporter<br />

yddE b1464 1.6330 0.0327 conserved protein<br />

yddL b1472 0.6888 0.0412 putative outer membrane porin protein<br />

ydeI b1536 0.2094 0.0105 conserved hypothetical protein<br />

ydiE b1705 1.3842 0.0087 conserved hypothetical protein<br />

ydiN b1691 0.7914 0.0208 YdiN MFS transporter<br />

yeaU b1800 0.8373 0.0483 putative tartrate dehydrogenase<br />

yeaY b1806 1.6602 0.0487 YeaY-outer membrane lipoprotein<br />

yeiC b2166 0.6387 0.0344 putative kinase<br />

yeiN b2165 0.7083 0.0244 conserved protein<br />

yejH b2184 0.6928 0.0353 putative ATP-dependent helicase<br />

yfdM b2356 0.8862 0.0233 hypothetical protein<br />

yfdN b2357 0.5394 0.0352 hypothetical protein<br />

yfdP b2359 0.8135 0.0108 hypothetical protein<br />

ygaZ b2682 1.2508 0.0420 hypothetical protein<br />

ygbE b2749 0.6796 0.0222 putative cytochrome oxidase subunit<br />

ygdQ b2832 0.6987 0.0374 putative transport protein<br />

ygdR b2833 1.8619 0.0313 conserved hypothetical protein<br />

ygjJ b3079 0.8702 0.0362 hypothetical protein<br />

yhdX b3269 0.8459 0.0481 YhdW/YhdX/YhdY/YhdZ ABC transporter<br />

yhhH b3483 1.2967 0.0413 hypothetical protein<br />

yhhJ b3485 1.4754 0.0452 YhiH/YhhJ ABC transporter<br />

yhiK b3489 0.7613 0.0013 hypothetical protein<br />

yhiM b3491 0.7525 0.0431 conserved inner membrane protein<br />

yijP b3955 0.8397 0.0421 hypothetical protein; related to invasion protein <strong>of</strong> pathogenic E. coli<br />

yjjX b4394 1.2584 0.0451 conserved hypothetical protein<br />

ypfI b2474 0.6593 0.0264 putative acyl-CoA N-acyltransferase<br />

yqeA b2874 0.6229 0.0368 putative carbamate kinase<br />

yqjI b3071 0.5697 0.0445 conserved hypothetical protein<br />

ytfM b4220 2.1209 0.0146 hypothetical protein<br />

b0671 1.2936 0.0166<br />

109


APPENDIX I<br />

Supplementary table – VII: LZ41 wild-type (A) Vs LZ54 wild-type (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

acrA b0463 0.6308 0.0443 AcrA Membrane Fusion Protein<br />

adiA b4117 1.5642 0.0083 Adi<br />

adk b0474 0.5809 0.0178 adenylate kinase<br />

agn43 b2000 1.4617 0.0017 outer membrane fluffing protein, sim. to adhesin<br />

apaH b0049 2.1825 0.0030 diadenosine tetraphosphatase<br />

appC b0978 1.6125 0.0146 cytochrome bd-II terminal oxidase subunit I<br />

apt b0469 0.3410 0.0071 adenine phosphoribosyltransferase<br />

argO b2923 0.5996 0.0187 arginine export protein<br />

argR b3237 0.8031 0.0265 ArgR transcriptional dual regulator<br />

aroA b0908 0.5593 0.0075 3-phosphoshikimate-1-carboxyvinyltransferase<br />

aroH b1704 0.3961 0.0044 2-dehydro-3-deoxyphosphoheptonate aldolase<br />

aroK b3390 0.7329 0.0170 shikimate kinase I<br />

aroL b0388 0.5122 0.0004 shikimate kinase II<br />

arsR b3501 1.5818 0.0001 ArsR transcriptional regulator<br />

artQ b0862 2.3631 0.0195 arginine ABC transporter<br />

asd b3433 0.4470 0.0376 aspartate semialdehyde dehydrogenase<br />

asnC b3743 2.1877 0.0338 AsnC transcriptional dual regulator<br />

aspC b0928 0.7245 0.0228 aspartate transaminase<br />

aspS b1866 1.7817 0.0499 aspartyl-tRNA synthetase<br />

astD b1746 1.3761 0.0106 succinylglutamic semialdehyde dehydrogenase<br />

astE b1744 1.5726 0.0411 succinylglutamate desuccinylase<br />

atoA b2222 1.7283 0.0293 AtoA / putative acetate CoA-transferase<br />

atpC b3731 1.4794 0.0280 ATP synthase, F1 complex, epsilon subunit<br />

atpI b3739 0.5296 0.0433 AtpI<br />

b0165 b0165 0.5418 0.0021 hypothetical protein<br />

b0373 b0373 0.5146 0.0463 hypothetical protein<br />

b0501 b0501 1.1869 0.0303 hypothetical protein<br />

b1354 b1354 1.2688 0.0397 hypothetical protein<br />

b1402 b1402 0.4643 0.0317 IS22 protein<br />

b1500 b1500 0.6253 0.0088 hypothetical protein; <strong>gene</strong> is in an operon associated with acid resistance<br />

b1578 b1578 0.4580 0.0067 hypothetical protein<br />

b2651 b2651 1.4453 0.0116 hypothetical protein<br />

b3007 b3007 0.6589 0.0484 hypothetical protein<br />

b3044 b3044 0.4584 0.0042 IS21 protein<br />

basS b4112 1.3828 0.0283 BasS-Phis<br />

bcp b2480 0.5107 0.0453 thiol peroxidase<br />

bcsC b3530 0.7130 0.0351 oxidase involved in cellulose synthesis<br />

betI b0313 0.5288 0.0174 BetI-choline<br />

bglF b3722 1.3763 0.0041 EIIBgl<br />

bglH b3720 1.9505 0.0053 putative receptor protein<br />

caiE b0035 1.6717 0.0488 caiE protein<br />

carB b0033 0.4703 0.0049 carbamoyl phosphate synthetase<br />

ccmB b2200 0.8787 0.0430 CcmABCDEFGH cytochrome c bio<strong>gene</strong>sis system<br />

cdd b2143 1.7025 0.0128 cytidine deaminase<br />

cheR b1884 1.5095 0.0383 chemotaxis protein methyltransferase<br />

cheW b1887 1.5265 0.0097 MCP-II<br />

cheY b1882 1.5736 0.0050 CheY-Pasp<br />

chiA b3338 1.7647 0.0006 Endochitinase<br />

citC b0618 1.5867 0.0360 citrate lyase ligase<br />

clcA b0155 0.5353 0.0200 EriC chloride ion ClC channel<br />

clpB b2592 3.6839 0.0280 ClpB chaperone<br />

110


APPENDIX I<br />

cmr b0842 0.3146 0.0056 MdfA/Cmr MFS multidrug transporter<br />

coaE b0103 0.4061 0.0235 dephospho-CoA kinase<br />

cobS b1992 0.7606 0.0094 cobalamin 5'-phosphate synthase / cobalamin synthase<br />

codA b0337 0.2755 0.0046 cytosine deaminase<br />

codB b0336 0.1651 0.0003 CodB cytosine NCS1 transporter<br />

corA b3816 0.2820 0.0025 CorA magnesium ion MIT transporter<br />

cpdA b3032 0.5229 0.0466 cAMP phosphodiesterase<br />

creB b4398 0.3404 0.0081 CreB- Phosphorylated transcriptional regulator<br />

crl b0240 0.3345 0.0017 Crl transcriptional regulator<br />

crr b2417 1.2769 0.0161 EIIBCMalX<br />

csgF b1038 0.5393 0.0369 curli assembly component<br />

cspB b1557 0.2269 0.0473 cold shock protein CspB<br />

cspF b1558 0.2144 0.0418 cold shock protein CspF<br />

cspG b0990 0.0764 0.0004 cold shock protein CspG<br />

cstA b0598 0.5763 0.0340 peptide transporter induced <strong>by</strong> carbon starvation<br />

cusC b0572 1.5999 0.0057 outer membrane factor <strong>of</strong> the CusCFBA copper efflux system<br />

cybB b1418 0.4129 0.0035 cytochrome b561<br />

cynR b0338 1.4489 0.0241 CynR-Cyanate transcriptional activator<br />

cysA b2422 1.4211 0.0004 sulfate ABC transporter<br />

cysG b3368 1.5439 0.0416<br />

uroporphyrinogen methyltransferase / 1,3-dimethyluroporphyrinogen III<br />

dehydrogenase / siroheme ferrochelatase<br />

cysM b2421 0.5164 0.0458 O-acetylserine (thiol)-lyase B<br />

cysP b2425 0.6509 0.0424 thiosulfate ABC transporter<br />

cysS b0526 0.5991 0.0153 cysteinyl-tRNA synthetase<br />

cytR b3934 0.5115 0.0315 CytR-cytidine<br />

dapA b2478 0.3715 0.0309 dihydrodipicolinate synthase<br />

dapF b3809 0.5113 0.0165 diaminopimelate epimerase<br />

ddpX b1488 1.7864 0.0151 D-Ala-D-Ala dipeptidase<br />

deaD b3162 0.4180 0.0153 CsdA, DEAD-box RNA helicase<br />

degS b3235 0.4224 0.0416<br />

inner membrane serine protease required for the extracytoplasmic stress response<br />

mediated <strong>by</strong> sigmaE<br />

deoA b4382 2.2452 0.0294 thymidine phosphorylase / uracil phosphorylase<br />

deoC b4381 2.9812 0.0289 deoxyribose-phosphate aldolase<br />

deoD b4384 1.5761 0.0146<br />

purine nucleoside phosphorylase / guanosine phosphorylase / deoxyguanosine<br />

phosphorylase / inosine phosphorylase / deoxyinosine phosphorylase / adenine<br />

phosphorylase / deoxyadenosine phosphorylase<br />

dgkA b4042 0.7702 0.0459 diacylglycerol kinase<br />

dnaB b4052 0.1732 0.0010 chromosome replication; chain elongation; part <strong>of</strong> primosome<br />

dnaJ b0015 2.4637 0.0141 chaperone with DnaK; heat shock protein<br />

dnaK b0014 2.8269 0.0266 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins<br />

dpiB b0619 0.6511 0.0237 DpiB<br />

dsbC b2893 0.4949 0.0056 DsbCoxidized<br />

dusA b4049 0.4059 0.0115 tRNA dihydrouridine synthase<br />

dusB b3260 0.8122 0.0209 tRNA dihydrouridine synthase<br />

dusC b2140 0.5406 0.0092 tRNA dihydrouridine synthase<br />

ecfB b2969 0.7627 0.0191 putative protein exporter (General Secretory Pathway)<br />

ecpD b0140 2.2895 0.0056 probable pilin chaperone similar to PapD<br />

edd b1851 1.2374 0.0468 phosphogluconate dehydratase<br />

elaC b2268 0.5434 0.0212 binuclear zinc phosphodiesterase monomer<br />

endA b2945 1.2107 0.0482 DNA-specific endonuclease I<br />

eno b2779 1.5546 0.0318 enolase<br />

entC b0593 1.4434 0.0295 isochorismate synthase, enterobactin specific<br />

entS b0591 0.4444 0.0291 YbdA MFS transporter<br />

era b2566 0.4194 0.0021 GTP-binding protein<br />

eutD b2458 1.7723 0.0307 putative phosphate acetyltransferase, ethanolamine utilization<br />

eutN b2456 1.2249 0.0189 putative detox protein, ethanolamine utilization<br />

evgA b2369 2.8597 0.0440 EvgA-Phosphorylated transcriptional regulator<br />

exbB b3006 0.4761 0.0222 ExbB protein; uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

exuR b3094 0.5125 0.0127 ExuR transcriptional repressor<br />

111


APPENDIX I<br />

fabB b2323 0.6336 0.0043 beta-ketoacyl-ACP synthase I / malonyl-ACP decarboxylase<br />

fadA b3845 1.7143 0.0296 3-ketoacyl-CoA thiolase<br />

fbaA b2925 1.6290 0.0164 fructose bisphosphate aldolase monomer<br />

fdhE b3891 0.5586 0.0161 protein that affects formate dehydrogenase-N activity<br />

fdnG b1474 1.3249 0.0138 formate dehydrogenase N, &alpha; subunit<br />

fdnI b1476 1.2886 0.0205 formate dehydrogenase N, &gamma; subunit<br />

fdx b2525 1.7242 0.0044 oxidized ferredoxin<br />

fecA b4291 1.5609 0.0011<br />

outer membrane receptor; citrate-dependent iron transport, outer membrane<br />

receptor<br />

fecB b4290 1.3416 0.0287 ferric dicitrate uptake system<br />

fecE b4287 1.6438 0.0310 ferric dicitrate uptake system<br />

ffh b2610 1.2699 0.0362 protein component <strong>of</strong> the signal recognition particle (SRP)<br />

fhuA b0150 0.3657 0.0280<br />

FhuA outer membrane protein receptor for ferrichrome, colicin M, and phages T1,<br />

T5, and phi80<br />

fhuE b1102 1.2073 0.0239 outer membrane receptor for ferric iron uptake<br />

fis b3261 0.6869 0.0371 Fis transcriptional dual regulator<br />

fixB b0042 1.4473 0.0371 probable flavoprotein subunit required for anaerobic carnitine metabolism<br />

fkpB b0028 0.6004 0.0250 peptidylprolyl isomerase<br />

fldA b0684 1.4242 0.0442 oxidized flavodoxin 1<br />

flgA b1072 4.8974 0.0024 flagellar biosynthesis; assembly <strong>of</strong> basal-body periplasmic P ring<br />

flgB b1073 3.8020 0.0007 flagellar basal-body rod protein FlgB<br />

flgC b1074 3.0031 0.0070 flagellar basal-body rod protein FlgC<br />

flgD b1075 2.2868 0.0061 flagellar biosynthesis, initiation <strong>of</strong> hook assembly<br />

flgE b1076 2.0251 0.0033 flagellar hook protein FlgE<br />

flgF b1077 3.8985 0.0053 flagellar basal-body rod protein FlgF<br />

flgG b1078 4.7678 0.0097 flagellar basal-body rod protein FlgG<br />

flgH b1079 4.1712 0.0007<br />

flagellar L-ring protein FlgH; basal-body outer-membrane L (lipopolysaccharide<br />

layer) ring protein<br />

flgI b1080 3.1896 0.0062 flagellar P-ring protein FlgI<br />

flgJ b1081 2.6426 0.0051 FlgJ<br />

flgM b1071 3.2776 0.0167 anti-FliA (anti-sigma) factor; also known as RflB protein<br />

flhD b1892 0.3694 0.0068 FlhD transcriptional dual regulator<br />

fliJ b1942 3.5076 0.0196 flagellar biosynthesis protein FliJ<br />

fliY b1920 1.4499 0.0446<br />

periplasmic cystine-binding protein; member <strong>of</strong> extracellular bacterial solutebinding<br />

protein family III<br />

folA b0048 0.2448 0.0312 dihydr<strong>of</strong>olate reductase, type I<br />

folD b0529 0.6301 0.0126<br />

methyleneTHF enzyme / methenyltetrahydr<strong>of</strong>olate cyclohydrolase /<br />

methylenetetrahydr<strong>of</strong>olate dehydrogenase-(NADP+)<br />

folE b2153 0.7792 0.0323 GTP cyclohydrolase I<br />

fre b3844 1.6941 0.0218 FMN reductase<br />

frlD b3374 1.3997 0.0269 fructoselysine 6-kinase<br />

frmA b0356 1.4216 0.0269 formaldehyde dehydrogenase, glutathione-dependent<br />

frsA b0239 0.3476 0.0375 fermentation/respiration switch protein<br />

fruA b2167 1.9402 0.0169 EIIFru<br />

fruB b2169 3.0732 0.0052 EIIFru<br />

fruK b2168 2.8047 0.0036 1-phosph<strong>of</strong>ructokinase monomer<br />

frvA b3900 1.6136 0.0067 EIIABCFrv<br />

ftsL b0083 0.6861 0.0288 essential cell division protein FtsL<br />

ftsY b3464 1.3341 0.0141 SRP receptor<br />

ftsZ b0095 1.2673 0.0362 essential cell division protein FtsZ<br />

fumB b4122 1.5703 0.0144 fumarase B monomer<br />

fxsA b4140 1.7993 0.0107 inner membrane protein; overproduction inhibits F exclusion <strong>of</strong> bacteriophage T7<br />

gabT b2662 1.3938 0.0210 4-aminobutyrate aminotransferase monomer<br />

galM b0756 0.4417 0.0141 aldose-1-epimerase<br />

galU b1236 0.9245 0.0435 UTP-glucose-1-phosphate uridylyltransferase<br />

gapA b1779 1.5277 0.0455 glyceraldehyde 3-phosphate dehydrogenase-A monomer<br />

gapC_1 b1417 0.3207 0.0054 split glyceraldehyde 3-phosphate dehydrogenase C<br />

gapC_2 b1416 0.3808 0.0072 glyceraldehyde 3-phosphate dehydrogenase C, interrupted<br />

gatA b2094 1.8580 0.0319 EIIGat<br />

gcvA b2808 0.6508 0.0371 GcvA transcriptional dual regulator<br />

112


APPENDIX I<br />

gcvH b2904 0.3188 0.0137 dihydrolipoyl-GcvH-protein<br />

gcvR b2479 0.2239 0.0056 GcvR-gly<br />

gcvT b2905 0.3352 0.0343 aminomethyltransferase<br />

gidA b3741 1.8465 0.0137 protein involved in a tRNA modification pathway<br />

gidB b3740 1.4613 0.0164<br />

protein with a methyltransferase fold and a possible role in chromosome<br />

replication<br />

glgS b3049 1.4156 0.0496 glycogen biosynthesis, rpoS dependent<br />

glmS b3729 0.4371 0.0445 L-glutamine:D-fructose-6-phosphate aminotransferase<br />

glmU b3730 0.2036 0.0015<br />

N-acetylglucosamine-1-phosphate uridyltransferase / glucosamine-1-phosphate<br />

acetyltransferase<br />

glnD b0167 1.5034 0.0024 uridylyltransferase / uridylyl-removing enzyme<br />

glnH b0811 3.3975 0.0027 glutamine ABC transporter<br />

glnL b3869 0.6764 0.0331 NtrB<br />

glnP b0810 2.5879 0.0108 glutamine ABC transporter<br />

glnQ b0809 2.8329 0.0290 glutamine ABC transporter<br />

glpD b3426 0.5911 0.0107 glycerol 3-phosphate dehydrogenase, aerobic<br />

glpG b3424 0.4628 0.0143 inner membrane-associated protein <strong>of</strong> glp regulon<br />

gltJ b0654 1.6394 0.0293 glutamate ABC transporter<br />

gltS b3653 0.4306 0.0171 glutamate GltS transporter<br />

glvB b3682 0.6799 0.0498 subunit <strong>of</strong> EIIBCGlv<br />

glyA b2551 0.4848 0.0252 glycine hydroxymethyltransferase<br />

gnd b2029 1.3868 0.0122 6-phosphogluconate dehydrogenase (decarboxylating)<br />

gntR b3438 1.6774 0.0056 GntR-gluconate<br />

gntY b3414 2.1327 0.0397<br />

predicted membrane-bound protein that is involved in high-affinity gluconate<br />

transport<br />

gph b3385 2.2255 0.0008 phosphoglycolate phosphatase<br />

gpt b0238 0.2560 0.0022<br />

xanthine phosphoribosyltransferase / guanine phosphoribosyltransferase /<br />

hypoxanthine phosphoribosyltransferase<br />

groL b4143 4.0315 0.0048 GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein<br />

grpE b2614 2.5774 0.0005 phage lambda replication; host DNA synthesis; heat shock protein; protein repair<br />

gshB b2947 0.5455 0.0014 glutathione synthetase subunit<br />

gspL b3333 1.6779 0.0357 putative protein secretion protein for export<br />

gssA b2988 1.2719 0.0207 glutathionylspermidine synthetase / glutathionylspermidine amidase<br />

guaB b2508 0.4094 0.0161 IMP dehydrogenase<br />

gutQ b2708 0.8036 0.0386 protein with a sugar isomerase domain<br />

gyrA b2231 2.0736 0.0147 DNA gyrase, subunit A<br />

gyrB b3699 2.3694 0.0125 DNA gyrase, subunit B<br />

hdeA b3510 1.5879 0.0430 acid-resistance protein, possible chaperone<br />

hdeB b3509 1.4411 0.0245 10K-L protein, related to acid resistance protein <strong>of</strong> Shigella flexneri<br />

hemC b3805 0.2280 0.0041 hydroxymethylbilane synthase<br />

hemD b3804 0.3594 0.0026 uroporphyrinogen III synthase<br />

hemN b3867 0.5050 0.0222 coproporphyrinogen III oxidase, anaerobic<br />

hisC b2021 0.4224 0.0011 histidine-phosphate aminotransferase<br />

hisD b2020 0.2929 0.0068 histidinal dehydrogenase / histidinol dehydrogenase<br />

hisS b2514 0.4605 0.0043 histidyl-tRNA synthetase<br />

holA b0640 1.5856 0.0127 DNA polymerase III, delta subunit<br />

holC b4259 0.3684 0.0138 DNA polymerase III, chi subunit<br />

holD b4372 1.2748 0.0169 DNA polymerase III, psi subunit<br />

holE b1842 0.3028 0.0133 DNA polymerase III, theta subunit<br />

hscA b2526 1.3123 0.0271 chaperone, member <strong>of</strong> Hsp70 protein family<br />

hslO b3401 2.2344 0.0459 molecular chaperone Hsp33<br />

hslR b3400 2.1711 0.0238 heat shock protein Hsp15<br />

hslU b3931 2.3896 0.0292 ATPase component <strong>of</strong> the HslVU protease<br />

htrA b0161 1.4630 0.0500 DegP<br />

htrL b3618 6.3708 0.0079 involved in lipopolysaccharide biosynthesis<br />

hupA b4000 1.7633 0.0170 DNA-binding protein HU-alpha (HU-2)<br />

hyaA b0972 3.0036 0.0427 hydrogenase I, HyaA subunit<br />

hycC b2723 1.5122 0.0284 HycC<br />

hypF b2712 1.3499 0.0196 hydrogenase maturation protein<br />

113


APPENDIX I<br />

ibpA b3687 2.4960 0.0181 small heat shock protein IbpA<br />

icdA b1136 0.4590 0.0372 Icd<br />

ilvB b3671 0.2982 0.0162 IlvB / putative 2-hydroxyglutarate synthase<br />

ilvD b3771 0.4038 0.0384 dihydroxy-acid dehydratase<br />

ilvE b3770 0.6301 0.0172 branched chain amino acid aminotransferase<br />

ilvG_1 b3767 0.1723 0.0016 IlvG_1<br />

ilvM b3769 0.2445 0.0021 acetohydroxybutanoate synthase II / acetolactate synthase II<br />

imp b0054 0.4662 0.0012 organic solvent tolerance<br />

inaA b2237 0.3959 0.0046 pH-inducible protein involved in stress response<br />

intR b1345 0.2726 0.0058 putative transposase<br />

iscA b2528 1.4419 0.0027 iron-sulfur cluster assembly protein<br />

iscR b2531 1.4496 0.0114 IscR transcriptional regulator<br />

iscS b2530 1.4231 0.0277 cysteine desulfurase monomer<br />

iscX b2524 1.5162 0.0325 protein with possible role in iron-sulfur cluster bio<strong>gene</strong>sis<br />

ispA b0421 0.1884 0.0089 geranyl diphosphate synthase / farnesyl diphosphate synthase<br />

ispB b3187 0.5571 0.0115 octaprenyl diphosphate synthase<br />

ispD b2747 0.5815 0.0136 4-diphosphocytidyl-2C-methyl-D-erythritol synthetase monomer<br />

ispG b2515 0.3474 0.0431 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase<br />

kdgT b3909 0.3451 0.0140 KdgT 2-keto-3-deoxygluconate transporter<br />

kdpA b0698 1.6937 0.0216 potassium ion P-type ATPase transporter<br />

kdpB b0697 0.8031 0.0119 potassium ion P-type ATPase transporter<br />

kdpD b0695 1.5142 0.0271 KdpD-Phis<br />

kdsC b3198 0.4227 0.0092 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase monomer<br />

kdtA b3633 0.4096 0.0361 KDO transferase<br />

lamB b4036 2.1449 0.0483 phage lambda receptor protein; maltose high-affinity receptor<br />

ldcA b1192 0.6533 0.0323 L,D-carboxypeptidase A<br />

lepA b2569 0.3884 0.0089 GTP-binding elongation factor, may be inner membrane protein<br />

leuA b0074 0.5502 0.0232 2-isopropylmalate synthase<br />

leuD b0071 0.8324 0.0343 isopropylmalate isomerase<br />

leuO b0076 0.4671 0.0383 LeuO transcriptional activator<br />

ligT b0147 0.3612 0.0043 hypothetical protein<br />

lipB b0630 1.8242 0.0342 lipoyl-protein ligase<br />

lolB b1209 0.4537 0.0046 outer membrane lipoprotein, localization <strong>of</strong> lipoproteins in the outer membrane<br />

lolC b1116 0.4315 0.0356 LolCDE ABC lipoprotein transporter<br />

lolD b1117 0.6023 0.0038 LolCDE ABC lipoprotein transporter<br />

lolE b1118 0.4199 0.0393 LolCDE ABC lipoprotein transporter<br />

lon b0439 2.0180 0.0071 DNA-binding, ATP-dependent protease La<br />

lpcA b0222 0.3721 0.0282 lipopolysaccharide core biosynthesis; phosphoheptose isomerase<br />

lpxK b0915 1.3126 0.0035 tetraacyldisaccharide 4'-kinase<br />

lrhA b2289 0.7251 0.0129 LrhA transcriptional repressor<br />

lspA b0027 0.5579 0.0203 prolipoprotein signal peptidase (SPase II)<br />

maa b0459 0.6307 0.0483 maltose acetyltransferase<br />

macB b0879 1.5831 0.0121 MacAB macrolide efflux transporter complex<br />

manA b1613 0.5844 0.0131 mannose-6-phosphate isomerase<br />

mdtK b1663 0.4735 0.0183 NorE multidrug efflux MATE transporter<br />

menD b2264 0.4174 0.0067<br />

putative 2-hydroxyglutarate synthase / SHCHC synthase / 2-oxoglutarate<br />

decarboxylase<br />

menF b2265 0.2973 0.0031 isochorismate synthase, menaquinone-specific<br />

mepA b2328 1.3493 0.0164 murein DD-endopeptidase, penicillin-insensitive<br />

metB b3939 0.4626 0.0078 O-succinylhomoserine lyase / O-succinylhomoserine(thiol)-lyase<br />

metL b3940 1.7369 0.0443 aspartate kinase II / homoserine dehydrogenase II<br />

mfd b1114 0.8365 0.0468 transcription-repair coupling factor; mutation frequency decline<br />

mhpD b0350 1.8046 0.0472 2-keto-4-pentenoate hydratase<br />

mhpE b0352 1.4561 0.0483 4-hydroxy-2-ketovalerate aldolase<br />

miaA b4171 0.7647 0.0368 delta(2)-isopentenylpyrophosphate tRNA-adenosine transferase<br />

minC b1176 0.2576 0.0099<br />

cell division inhibitor <strong>of</strong> the MinC-MinD-MinE and DicB-MinC systems that<br />

regulate septum placement<br />

membrane ATPase <strong>of</strong> the MinC-MinD-MinE system that regulates septum<br />

minD b1175 0.3669 0.0070 placement<br />

114


APPENDIX I<br />

minE b1174 0.3218 0.0180<br />

cell division topological specificity factor and inhibitory component <strong>of</strong> the MinC-<br />

MinD-MinE system that regulates septum placement<br />

mioC b3742 2.8032 0.0061 flavoprotein involved in biotin synthesis<br />

mltC b2963 0.3174 0.0208 membrane-bound lytic murein transglycosylase C<br />

mngB b0732 1.4808 0.0136 alpha-mannosidase<br />

moaA b0781 0.3113 0.0250 molybdopterin biosynthesis, protein A<br />

modE b0761 0.5883 0.0400 Molybdate-responsive transcription factor monomer<br />

mokC b0018 1.6023 0.0201 regulatory peptide whose translation enables hokC (gef) <strong>expression</strong><br />

mraW b0082 0.6100 0.0309 S-adenosyl-dependent methyltransferase<br />

mrdB b0634 0.6931 0.0113 rod shape-determining membrane protein; sensitivity to radiation and drugs<br />

mreB b3251 0.4151 0.0130 rod shape-determining protein<br />

mreC b3250 0.5547 0.0187 rod shape-determining protein<br />

mreD b3249 0.4030 0.0041 rod shape-determining protein<br />

msbB b1855 0.2631 0.0138 myristoyl acyltransferase<br />

mukE b0923 0.2778 0.0005 protein involved in chromosome partitioning<br />

mukF b0922 0.2472 0.0062 Ca2+-binding protein involved in chromosome partitioning<br />

mutY b2961 0.2826 0.0046 adenine glycosylase; G.C --> T.A transversions<br />

nadA b0750 1.2867 0.0026 quinolinate synthetase A<br />

nagZ b1107 0.3709 0.0144 &beta;-N-acetylglucosaminidase<br />

nanR b3226 0.6046 0.0191 NanR transcriptional regulator<br />

narG b1224 1.4419 0.0422 nitrate reductase A, &alpha; subunit<br />

narP b2193 0.4244 0.0046 NarP-Phosphorylated transcriptional regulator<br />

ndh b1109 0.2794 0.0021 NADH cupric reductase / NADH dehydrogenase II<br />

ndk b2518 0.5490 0.0297<br />

nucleoside diphosphate kinase / UDP kinase / CDP kinase / dUDP kinase / dCDP<br />

kinase / dTDP kinase / dADP kinase / dGDP kinase / GDP kinase<br />

nhaA b0019 2.7531 0.0189 sodium/proton NhaA transporter<br />

nhaR b0020 1.8006 0.0051 NhaR-Na+ transcriptional activator<br />

nirD b3366 1.2750 0.0385 nitrite reductase, small subunit<br />

nlpB b2477 0.3204 0.0188 lipoprotein-34<br />

nlpC b1708 0.8276 0.0132 NlpC-putative lipoprotein hydrolase<br />

nlpD b2742 0.4725 0.0091 NlpD putative outer membrane lipoprotein<br />

npr b3206 1.1115 0.0239<br />

phosphocarrier protein HPr-like NPr, nitrogen related, exchanges phosphate with<br />

Enzyme I, Hpr<br />

nth b1633 2.1070 0.0198 endonuclease III; specific for apurinic and/or apyrimidinic sites<br />

nudF b3034 0.4112 0.0010 hypothetical protein<br />

nudG b1759 0.6794 0.0394 CTP pyrophosphohydrolase<br />

nudH b2830 0.4781 0.0025 putative invasion protein<br />

nuoA b2288 1.6603 0.0436 NADH dehydrogenase I<br />

nuoB b2287 2.1552 0.0017 NADH dehydrogenase I<br />

nuoC b2286 1.5429 0.0056 NADH dehydrogenase I<br />

nuoE b2285 1.4073 0.0195 NADH dehydrogenase I<br />

nuoF b2284 1.6783 0.0075 NADH dehydrogenase I<br />

nusB b0416 0.5649 0.0227 transcription termination; L factor<br />

nusG b3982 0.1716 0.0023 component in transcription antitermination<br />

ogrK b2082 1.8738 0.0121 OgrK transcriptional regulator<br />

ompX b0814 1.3900 0.0297 outer membrane protein X<br />

osmB b1283 1.9992 0.0416 OsmB osmotically inducible lipoprotein<br />

oxyR b3961 3.1506 0.0058 OxyR transcriptional dual regulator<br />

paaJ b1397 1.4298 0.0499 putative beta-keto-thiolase <strong>of</strong> phenylacetate degradation<br />

pabA b3360 1.4655 0.0359<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

pabC b1096 0.3015 0.0413<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

pagP b0622 2.7254 0.0221 PagP monomer<br />

panB b0134 0.5034 0.0001 3-methyl-2-oxobutanoate hydroxymethyltransferase monomer<br />

panF b3258 0.6070 0.0178 PanF sodium/pantothenate SSS transporter<br />

parC b3019 0.3991 0.0037 Topoisomerase IV subunit A<br />

pcnB b0143 0.5626 0.0040 poly(A) polymerase I<br />

pdxH b1638 0.5820 0.0297 pyridoxine 5'-phosphate oxidase / pyridoxamine 5'-phosphate oxidase<br />

pepB b2523 1.8383 0.0128 aminopeptidase (AP)<br />

115


APPENDIX I<br />

pepP b2908 1.2182 0.0368 proline aminopeptidase P II<br />

pepQ b3847 2.4602 0.0335 proline dipeptidase<br />

pfkB b1723 1.4328 0.0085 6-phosph<strong>of</strong>ructokinase-2 monomer<br />

pflA b0902 2.1225 0.0090 pyruvate formate-lyase activating enzyme<br />

pgaC b1022 1.4003 0.0250 predicted N-glycosyltransferase<br />

pgi b4025 0.7116 0.0462 phosphoglucose isomerase<br />

pgpA b0418 0.5727 0.0094 phosphatidylglycerophosphatase A<br />

pheP b0576 0.4252 0.0250 PheP phenylalanine APC transporter<br />

phoE b0241 1.3013 0.0094 PhoE<br />

phoH b1020 1.4888 0.0191<br />

PhoB-dependent, ATP-binding pho regulon component; may be helicase; induced<br />

<strong>by</strong> P starvation<br />

phoP b1130 0.4417 0.0115 PhoP-Phosphorylated transcriptional dual regulator<br />

phoQ b1129 0.6685 0.0013 PhoQ-Phis<br />

pitB b2987 1.3798 0.0445 PitB<br />

plsC b3018 0.3763 0.0024 1-acylglycerol-3-phosphate acyltransferase<br />

pmbA b4235 0.5564 0.0213<br />

protease involved in Microcin B17 maturation and in sensitivity to the DNA<br />

gyrase inhibitor LetD<br />

pmrD b2259 0.4652 0.0050 polymyxin resistance protein<br />

pncB b0931 0.2923 0.0110 nicotinate phosphoribosyltransferase<br />

pnp b3164 0.2968 0.0110 polynucleotide phosphorylase<br />

polB b0060 4.3621 0.0499 DNA polymerase II<br />

potB b1125 0.5130 0.0375 putrescine/spermidine ABC transporter<br />

potC b1124 0.5813 0.0046 putrescine/spermidine ABC transporter<br />

poxA b4155 0.5427 0.0338 putative regulator <strong>of</strong> pyruvate oxidase<br />

ppiD b0441 0.6513 0.0198 peptidyl-prolyl cis-trans isomerase<br />

ppk b2501 0.3301 0.0114 polyphosphate kinase<br />

ppsA b1702 0.7593 0.0328 phosphoenolpyruvate synthase<br />

priC b0467 0.5875 0.0232 primosomal replication protein N''<br />

prmC b1212 0.7663 0.0275 protein-(glutamine-N5) methyltransferase<br />

proP b4111 0.4204 0.0214 ProP proline/betaine MFS transporter<br />

proQ b1831 0.5181 0.0394 protein that affects osmo<strong>regulation</strong> <strong>of</strong> ProP transporter<br />

proV b2677 0.3005 0.0108 proline ABC transporter<br />

proW b2678 0.3934 0.0291 proline ABC transporter<br />

psd b4160 0.5710 0.0213 phosphatidylserine decarboxylase, proenzyme<br />

pspB b1305 1.6459 0.0420<br />

stimulates PspC-mediated transcriptional activation <strong>of</strong> the psp operon; antitoxin <strong>of</strong><br />

a PspC-PspB toxin-antitoxin pair<br />

pssA b2585 0.1873 0.0040 phosphatidylserine synthase<br />

purA b4177 0.5024 0.0178 adenylosuccinate synthase<br />

purB b1131 0.6679 0.0119<br />

5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase /<br />

adenylosuccinate lyase<br />

purC b2476 0.1510 0.0007 phosphoribosylaminoimidazole-succinocarboxamide synthase<br />

purE b0523 0.3132 0.0136 N5-carboxyaminoimidazole ribonucleotide mutase<br />

purF b2312 0.2208 0.0011 amidophosphoribosyl transferase<br />

purK b0522 0.2617 0.0039 N5-carboxyaminoimidazole ribonucleotide synthase monomer<br />

purM b2499 0.0976 0.0007 phosphoribosylformylglycinamide cyclo-ligase<br />

purN b2500 0.3565 0.0063 phosphoribosylglycinamide formyltransferase<br />

purR b1658 0.1999 0.0032 PurR transcriptional repressor<br />

purT b1849 0.5923 0.0436 GAR transformylase 2<br />

purU b1232 0.4050 0.0031 formyltetrahydr<strong>of</strong>olate deformylase<br />

puuD b1298 0.6547 0.0166 probable amidotransferase subunit<br />

pyrB b4245 0.4134 0.0108 aspartate carbamoyltransferase, PyrB subunit<br />

pyrC b1062 0.6009 0.0278 dihydroorotase<br />

pyrD b0945 0.3694 0.0012 dihydroorotate oxidase<br />

radA b4389 0.5088 0.0089 DNA recombination protein<br />

rbfA b3167 0.7704 0.0239 ribosome-binding factor A<br />

rbsB b3751 2.1321 0.0323 ribose ABC transporter<br />

rcsB b2217 0.5589 0.0202 RcsB transcriptional activator<br />

rcsC b2218 0.6588 0.0017 RcsC-Phis<br />

rdgC b0393 0.4658 0.0035 nonspecific DNA binding protein; nucleoid component<br />

116


APPENDIX I<br />

recA b2699 6.1477 0.0006<br />

DNA strand exchange and renaturation, DNA-dependent ATPase, DNA- and<br />

ATP-dependent coprotease<br />

recF b3700 1.5026 0.0018 ssDNA and dsDNA binding, ATP binding<br />

recN b2616 5.2322 0.0003 protein used in recombination and DNA repair<br />

recX b2698 3.3785 0.0128 inhibitor <strong>of</strong> RecA<br />

relA b2784 0.6144 0.0009 GDP pyrophosphokinase / GTP pyrophosphokinase<br />

rfaE b3052 1.6731 0.0393 putative kinase<br />

rfaH b3842 0.6886 0.0257 RfaH transcriptional regulator<br />

rfaI b3627 3.7837 0.0015 UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-D-galactosyltransferase<br />

rfaJ b3626 3.0420 0.0174 UDP-D-glucose:(galactosyl)lipopolysaccharide glucosyltransferase<br />

rfaK b3623 3.1584 0.0170 lipopolysaccharide core biosynthesis; probably hexose transferase<br />

rfaS b3629 2.8794 0.0068 lipopolysaccharide core biosynthesis<br />

rfaZ b3624 3.4532 0.0385 protein involved in KdoIII attachment during lipopolysaccharide core biosynthesis<br />

rfbB b2041 0.7441 0.0376 RmlB<br />

rhlB b3780 0.5316 0.0049 ATP-dependent RNA helicase <strong>of</strong> the RNA degradosome<br />

rhlE b0797 0.2790 0.0010 DEAD-box-containing ATP-dependent RNA helicase family member<br />

rhsD b0497 0.5670 0.0166 RhsD protein in rhs element<br />

ribB b3041 0.4644 0.0229 3,4-dihydroxy-2-butanone 4-phosphate synthase<br />

ribC b1662 0.6318 0.0401 rib<strong>of</strong>lavin synthase<br />

ribF b0025 0.1259 0.0103 rib<strong>of</strong>lavin kinase / FMN adenylyltransferase<br />

rihA b0651 1.8484 0.0409 ribonucleoside hydrolase 1 (pyrimidine-specific)<br />

rimJ b1066 0.4103 0.0066<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rluC b1086 0.3153 0.0041 23S rRNA pseudouridine synthase<br />

rluD b2594 0.7043 0.0136 23S rRNA pseudouridine synthase<br />

rluE b1135 1.6545 0.0240 23S rRNA pseudouridine synthase<br />

rnc b2567 0.2112 0.0002 RNase III, ds RNA<br />

rng b3247 0.7647 0.0261 ribonuclease G (RNAse G) monomer<br />

rnhA b0214 0.3725 0.0125 RNase HI, degrades RNA <strong>of</strong> DNA-RNA hybrids, participates in DNA replication<br />

rnr b4179 0.5088 0.0147 RNAse R<br />

rplY b2185 1.4198 0.0156 50S ribosomal subunit protein L25<br />

rpmE b3936 1.9883 0.0287 50S ribosomal subunit protein L31<br />

rpoA b3295 1.7187 0.0281 RNA polymerase, alpha subunit<br />

rpoH b3461 1.5408 0.0047 sigma32 factor<br />

rpsJ b3321 1.7179 0.0451 30S ribosomal subunit protein S10<br />

rpsL b3342 1.3159 0.0319 30S ribosomal subunit protein S12<br />

rpsU b3065 2.0799 0.0248 30S ribosomal subunit protein S21<br />

rspA b1581 2.2521 0.0444 starvation sensing protein RspA<br />

rspB b1580 1.2583 0.0486 putative dehydrogenase RspB<br />

rssA b1234 0.2763 0.0088 hypothetical protein<br />

rsuA b2183 0.3324 0.0011 16S rRNA pseudouridine synthase<br />

rsxE b1632 1.6861 0.0192 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

sdaC b2796 0.5269 0.0174 SdaC serine STP transporter<br />

sdhA b0723 1.8472 0.0183 succinate dehydrogenase flavoprotein<br />

sdhB b0724 2.4021 0.0348 succinate dehydrogenase iron-sulfur protein<br />

secE b3981 0.1598 0.0033 Sec Protein Secretion Complex<br />

secF b0409 0.8540 0.0394 Sec Protein Secretion Complex<br />

secG b3175 0.3039 0.0132 Sec Protein Secretion Complex<br />

selA b3591 0.7449 0.0144 selenocysteine synthase monomer<br />

sgbH b3581 1.2423 0.0155 3-keto-L-gulonate 6-phosphate decarboxylase<br />

sieB b1353 0.8425 0.0185 phage superinfection exclusion protein<br />

slt b4392 0.6966 0.0171 soluble lytic murein transglycosylase<br />

slyA b1642 0.4284 0.0138 SlyA transcriptional activator<br />

slyB b1641 0.4100 0.0358 putative outer membrane protein<br />

slyD b3349 1.3580 0.0393 FKBP-type rotamase, peptidyl prolyl cis-trans isomerase<br />

smf b4473 0.6389 0.0144 hypothetical protein<br />

smg b3284 0.3104 0.0016 hypothetical protein<br />

smpA b2617 3.0746 0.0330 SmpA small membrane protein A<br />

smtA b0921 0.1732 0.0009 S-adenosylmethionine-dependent methyltransferase<br />

117


APPENDIX I<br />

speG b1584 0.4151 0.0001 spermidine acetyltransferase<br />

spr b2175 0.1856 0.0008 putative lipoprotein<br />

spy b1743 1.8051 0.0064 periplasmic protein related to spheroblast formation<br />

srmB b2576 0.1828 0.0018 SrmB, DEAD-box RNA helicase<br />

sscR b2765 0.2846 0.0014 putative 6-pyruvoyl tetrahydrobiopterin synthase<br />

sspA b3229 1.7853 0.0360 regulator <strong>of</strong> transcription; stringent starvation protein A<br />

sspB b3228 1.6995 0.0121 SspB monomer<br />

sthA b3962 1.9483 0.0152 soluble pyridine nucleotide transhydrogenase<br />

sucA b0726 1.7723 0.0282 subunit <strong>of</strong> E1(0) component <strong>of</strong> 2-oxoglutarate dehydrogenase<br />

suhB b2533 0.6030 0.0333 inositol monophosphatase<br />

sulA b0958 0.4776 0.0294 suppressor <strong>of</strong> lon; inhibits cell division and ftsZ ring formation<br />

syd b2793 0.7172 0.0401 interacts with secY<br />

tdcD b3115 1.3690 0.0028 propionate kinase / acetate kinase C<br />

tdcE b3114 1.8820 0.0225 2-ketobutyrate formate-lyase / pyruvate formate-lyase 4<br />

tdh b3616 1.6683 0.0198 threonine dehydrogenase<br />

tesA b0494 0.4861 0.0342 lysophospholipase L1 / thioesterase I<br />

thiI b0423 0.3635 0.0002 ThiI protein<br />

thyA b2827 1.6662 0.0186 thymidylate synthase<br />

tpiA b3919 1.1555 0.0049 triose phosphate isomerase monomer<br />

tra5-5 b2089 0.5946 0.0481<br />

treB b4240 1.9360 0.0274 EIITre<br />

treC b4239 1.8400 0.0022 trehalose-6-phosphate hydrolase<br />

trkA b3290 1.6751 0.0358 TrkA<br />

trkG b1363 1.7115 0.0118 TrkG potassium ion Trk Transporter<br />

trmD b2607 1.4999 0.0322 tRNA (guanine-1-)-methyltransferase<br />

trpB b1261 0.8425 0.0438 tryptophan synthase, beta subunit<br />

trpD b1263 0.5060 0.0140 anthranilate synthase component II<br />

trpE b1264 0.4037 0.0115 anthranilate synthase component I<br />

trpL b1265 0.7864 0.0299 trp operon leader peptide<br />

trpR b4393 1.7569 0.0049 TrpR transcriptional repressor<br />

trpS b3384 2.1106 0.0124 tryptophanyl-tRNA synthetase<br />

tsgA b3364 0.6442 0.0017 YhfC MFS transporter<br />

tsr b4355 0.6068 0.0399 MCP-I<br />

tsx b0411 0.1946 0.0016 nucleoside channel; receptor <strong>of</strong> phage T6 and colicin K<br />

ttk b3641 0.4174 0.0019 Ttk transcriptional regulator<br />

ubiC b4039 0.2098 0.0001 chorismate pyruvate lyase<br />

ubiF b0662 1.5458 0.0334 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase<br />

ubiG b2232 0.7780 0.0016<br />

3-demethylubiquinone 3-methyltransferase / 2-octaprenyl-6-hydroxyphenol<br />

methylase<br />

uhpB b3668 0.5983 0.0403 UhpB-Phis<br />

uidA b1617 1.2711 0.0362 beta-glucuronidase<br />

ulaE b4197 0.7571 0.0368 L-xylulose 5-phosphate 3-epimerase<br />

ulaF b4198 0.7998 0.0198 L-ribulose 5-phosphate 4-epimerase<br />

ung b2580 0.6029 0.0221 uracil-DNA-glycosylase<br />

upp b2498 0.4553 0.0208 uracil phosphoribosyltransferase<br />

uvrB b0779 1.9034 0.0153 DNA repair; excision nuclease subunit B<br />

vacJ b2346 0.6153 0.0168 putative lipoprotein<br />

visC b2906 1.7240 0.0071 hypothetical protein<br />

waaP b3630 1.9894 0.0370 lipopolysaccharide core biosynthesis; phosphorylation <strong>of</strong> core heptose<br />

wbbI b2034 1.6114 0.0023 hypothetical protein; not required for colanic acid biosynthesis<br />

wbbK b2032 1.3531 0.0045 putative transferase<br />

wcaA b2059 1.5321 0.0226 putative regulator<br />

wcaB b2058 1.4575 0.0374 putative transferase<br />

wcaD b2056 1.6890 0.0022 putative colanic acid polymerase<br />

wcaJ b2047 1.6790 0.0013 putative colanic acid biosynthsis UDP-glucose lipid carrier transferase<br />

wza b2062 1.3425 0.0424<br />

Wza Outer Membrane Auxiliary (OMA) Protein, putative polysaccharide export<br />

protein<br />

xapR b2405 0.7902 0.0250 XapR transcriptional activator<br />

xerD b2894 0.4150 0.0016 site-specific recombinase<br />

118


APPENDIX I<br />

xseB b0422 0.1805 0.0061 exonuclease VII, small subunit<br />

xylR b3569 0.5246 0.0295 XylR-Xylose transcriptional activator<br />

yabP b0056 0.4221 0.0292 conserved hypothetical protein<br />

yafK b0224 0.1376 0.0369<br />

conserved protein; in enteroaggregative E. coli, YafK is required for development<br />

<strong>of</strong> bi<strong>of</strong>ilms<br />

yagA b0267 1.6600 0.0302 hypothetical protein<br />

yagI b0272 0.3762 0.0042 putative regulator<br />

yagT b0286 1.5660 0.0376 putative oxidoreductase, Fe-S subunit<br />

yagU b0287 1.2317 0.0268 conserved protein<br />

ybaJ b0461 0.2544 0.0048 conserved hypothetical protein<br />

ybaN b0468 0.3530 0.0019 hypothetical protein<br />

ybaO b0447 1.2709 0.0229 putative LRP-like transcriptional regulator<br />

ybaV b0442 0.5407 0.0434 conserved hypothetical protein<br />

ybbO b0493 0.6285 0.0137 putative oxidoreductase<br />

ybcJ b0528 0.5730 0.0490 putative RNA-binding protein<br />

ybcK b0544 1.1512 0.0052 hypothetical protein<br />

ybeA b0636 0.4138 0.0056 conserved hypothetical protein<br />

ybeB b0637 0.4743 0.0070 conserved hypothetical protein<br />

ybeD b0631 2.5488 0.0424 conserved hypothetical protein<br />

ybeY b0659 3.2204 0.0213 conserved hypothetical protein<br />

ybeZ b0660 3.8440 0.0151 putative ATP-binding protein<br />

ybfF b0686 0.4315 0.0108 putative enzyme<br />

ybhK b0780 0.2522 0.0010 putative structural protein<br />

ybhO b0789 1.6209 0.0479 cardiolipin synthase 2<br />

ybiR b0818 0.5665 0.0479 YbiR<br />

ybjC b0850 0.5750 0.0491 conserved hypothetical protein; <strong>gene</strong> is within soxRS regulon<br />

ycaL b0909 0.5299 0.0354 putative heat shock protein<br />

ycbG b0956 0.5827 0.0116 putative dehydrogenase<br />

ycbK b0926 0.4469 0.0152 conserved hypothetical protein<br />

ycbQ b0938 1.9263 0.0170 putative fimbrial-like protein<br />

ycbR b0939 1.8020 0.0084 putative chaperone<br />

yccA b0970 0.4983 0.0427<br />

putative carrier/transport protein; substrate or modulator <strong>of</strong> FtsH-mediated<br />

proteolysis<br />

yccF b0961 0.5456 0.0466 conserved hypothetical protein<br />

yccJ b1003 1.1693 0.0345 hypothetical protein<br />

ycdF b1005 0.5798 0.0023 hypothetical protein<br />

ycdZ b1036 0.8246 0.0257 putative transport protein<br />

yceB b1063 1.4666 0.0413 conserved hypothetical protein<br />

yceG b1097 0.2704 0.0009 putative thymidylate kinase (EC 2.7.4.9)<br />

yceH b1067 0.4580 0.0122 conserved hypothetical protein<br />

yceO b1058 0.6506 0.0348 hypothetical protein<br />

ycfJ b1110 0.4082 0.0338 hypothetical protein<br />

ycfP b1108 0.4708 0.0147 putative hydrolase<br />

ycfR b1112 0.3787 0.0147 conserved hypothetical protein<br />

ycfT b1115 1.5947 0.0302 putative transport protein<br />

ycgH_2 b1170 1.9107 0.0317 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgL b1179 0.3430 0.0036 conserved hypothetical protein<br />

ycgM b1180 0.4324 0.0364 putative isomerase<br />

ycgN b1181 0.2587 0.0108 conserved hypothetical protein<br />

ycgR b1194 1.3756 0.0420 protein involved in flagellar function<br />

ycgZ b1164 0.4255 0.0168 hypothetical protein<br />

ychF b1203 1.6270 0.0442 putative GTP-binding protein<br />

ychJ b1233 0.3905 0.0170 conserved hypothetical protein<br />

ychQ b1213 0.6472 0.0161 hypothetical protein<br />

yciS b1279 0.4349 0.0229 conserved hypothetical protein<br />

ycjD b1289 1.2011 0.0454 conserved hypothetical protein<br />

ycjG b1325 0.4835 0.0125 L-Ala-D/L-Glu epimerase, a muconate lactonizing enzyme<br />

ycjR b1314 1.8315 0.0473 putative epimerase/isomerase<br />

ycjT b1316 1.1203 0.0476 putative enzyme<br />

119


APPENDIX I<br />

ycjX b1321 4.0841 0.0141 putative EC 2.1 enzyme<br />

ydaO b1344 0.2434 0.0148 conserved protein<br />

ydbA_1 b1401 0.7691 0.0006 hypothetical protein product <strong>of</strong> fragment 1 <strong>of</strong> a split CDS<br />

ydbA_2 b1405 0.7077 0.0491 hypothetical protein product <strong>of</strong> fragment 2 <strong>of</strong> a split CDS<br />

ydcT b1441 0.4358 0.0233 YdcS/YdcT/YdcV/YdcU ABC transporter<br />

ydcX b1445 2.3184 0.0377 hypothetical protein<br />

yddE b1464 0.7336 0.0245 conserved protein<br />

ydeA b1528 0.2041 0.0058 YdeA MFS transporter<br />

ydeJ b1537 1.4392 0.0057 conserved protein<br />

ydeK b1510 0.4875 0.0351 YdeK<br />

ydfN b1547 1.3671 0.0077 hypothetical protein<br />

ydfT b1559 1.3152 0.0336 hypothetical protein<br />

ydfX b1568 1.3846 0.0254 hypothetical protein<br />

ydgH b1604 0.4280 0.0237 conserved hypothetical protein<br />

ydgT b1625 0.1702 0.0097 conserved hypothetical protein<br />

ydhA b1639 0.6550 0.0304 conserved hypothetical protein<br />

ydhH b1640 0.4726 0.0304 conserved hypothetical protein<br />

ydhI b1643 0.3978 0.0137 hypothetical protein<br />

ydiA b1703 0.3178 0.0056 conserved protein<br />

ydiO b1695 1.6655 0.0206 putative acyl-CoA dehydrogenase<br />

ydiR b1698 1.8979 0.0320 putative subunit <strong>of</strong> YdiQ-YdiR flavoprotein<br />

ydjG b1771 1.3397 0.0169 putative oxidoreductase<br />

yeaD b1780 1.7584 0.0268 conserved hypothetical protein<br />

yeaE b1781 0.4205 0.0018 putative oxidoreductase, NAD(P)-linked<br />

yeaZ b1807 0.4660 0.0019 hypothetical protein<br />

yebC b1864 1.6986 0.0245 conserved protein<br />

yebF b1847 2.0516 0.0108 conserved hypothetical protein<br />

yebG b1848 2.3442 0.0088 hypothetical protein; <strong>gene</strong> is part <strong>of</strong> SOS regulon<br />

yebK b1853 0.5355 0.0044 hypothetical protein<br />

yebN b1821 0.4945 0.0468 putative membrane protein, terpenoid synthase-like<br />

yebR b1832 0.2435 0.0027 conserved hypothetical protein<br />

yebY b1839 0.4488 0.0070 conserved hypothetical protein<br />

yebZ b1840 0.5229 0.0048 putative resistance protein<br />

yecD b1867 0.4582 0.0236 putative enzyme<br />

yecN b1869 0.1959 0.0051 putative membrane protein<br />

yecO b1870 0.2973 0.0060 putative methyltransferase<br />

yecP b1871 0.4271 0.0274 putative enzyme<br />

yedF b1930 1.6425 0.0395 conserved hypothetical protein; might bind RNA<br />

yedI b1958 0.5069 0.0041 hypothetical protein<br />

yedK b1931 1.5169 0.0377 conserved hypothetical protein<br />

yedR b1963 0.5416 0.0326 hypothetical protein<br />

yedS_2 b1965 1.4927 0.0201 putative outer membrane protein<br />

yeeE b2013 0.2863 0.0317 putative transport system permease protein<br />

yeeN b1983 9.6166 0.0005 conserved protein<br />

yeeP b1999 0.6937 0.0431 putative histone<br />

yeeT b2003 1.9457 0.0049 hypothetical protein<br />

yeeZ b2016 0.8883 0.0272 putative enzyme <strong>of</strong> sugar metabolism<br />

yegD b2069 0.2637 0.0019 actin family protein<br />

yegR b2085 1.5686 0.0058 hypothetical protein<br />

yegW b2101 0.6534 0.0191 putative transcriptional regulator<br />

yegX b2102 0.4954 0.0096 putative hydrolase<br />

yegZ b2083 1.3932 0.0173 hypothetical protein<br />

yehM b2120 1.2804 0.0220 conserved hypothetical protein<br />

yeiG b2154 1.0945 0.0217 putative esterase (EC 3.1.1.-).<br />

yeiR b2173 0.5560 0.0087 putative enzyme<br />

yeiU b2174 0.2626 0.0007 putative permease<br />

yfaD b2244 1.4122 0.0462 hypothetical protein<br />

yfaH b2238 1.2445 0.0457 hypothetical protein<br />

120


APPENDIX I<br />

yfaV b2246 1.1332 0.0162 YfaV<br />

yfbP b2275 1.5584 0.0337 hypothetical protein<br />

yfcE b2300 1.5089 0.0198 putative metallo-dependent phosphatase<br />

yfcF b2301 1.2969 0.0213 putative glutathione S-transferase<br />

yfdK b2354 1.7437 0.0090 hypothetical protein<br />

yfdS b2362 1.4456 0.0350 hypothetical protein<br />

yfeA b2395 0.4562 0.0281 putative membrane protein<br />

yfeR b2409 0.9066 0.0367 putative transcriptional regulator LYSR-type<br />

yfgA b2516 0.3313 0.0004 putative membrane protein<br />

yfgB b2517 0.5090 0.0150 putative pyruvate formate lyase activating enzyme 2<br />

yfgM b2513 0.5801 0.0186 conserved protein<br />

yfhG b2555 0.2721 0.0038 conserved protein<br />

yfhL b2562 0.2394 0.0380 putative ferredoxin<br />

yfiC b2575 0.0971 0.0043 putative enzyme<br />

yfiF b2581 0.3560 0.0086 hypothetical protein<br />

yfiH b2593 0.6179 0.0045 conserved hypothetical protein<br />

yfjG b2619 1.8649 0.0277 toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

yfjH b2623 0.8041 0.0238 putative histone<br />

yfjM b2629 0.7850 0.0144 hypothetical protein<br />

ygaH b2683 0.2149 0.0002 putative transport protein<br />

ygaZ b2682 0.2232 0.0059 hypothetical protein<br />

ygcG b2778 1.3701 0.0023 putative membrane protein<br />

ygcL b2760 1.1770 0.0296<br />

hypothetical protein with possible relationship to novobiocin and deoxycholate<br />

resistance<br />

ygdD b2807 0.3655 0.0005 conserved hypothetical protein<br />

ygdK b2811 0.5579 0.0386 conserved hypothetical protein<br />

ygeA b2840 0.6668 0.0082 putative resistance protein<br />

ygeW b2870 1.5976 0.0306 putative carbamoyl transferase<br />

ygfS b2886 1.6634 0.0453 putative oxidoreductase, Fe-S subunit<br />

ygfZ b2898 0.4766 0.0063 conserved protein<br />

yggD b2929 0.6247 0.0483 putative transcriptional regulator<br />

yggH b2960 0.3658 0.0154 tRNA (m7G46) methyltransferase<br />

yggJ b2946 0.5829 0.0022 conserved hypothetical protein<br />

yggL b2959 0.3754 0.0018 conserved hypothetical protein<br />

yggN b2958 0.4816 0.0155 conserved hypothetical protein<br />

yggR b2950 1.3249 0.0011 putative protein transport<br />

yggT b2952 0.6371 0.0193 putative resistance protein<br />

yggU b2953 0.6630 0.0123 conserved hypothetical protein<br />

yggX b2962 0.2253 0.0002<br />

conserved hypothetical protein with role in oxidation-resistance <strong>of</strong> iron-sulfur<br />

clusters<br />

yghQ b2983 1.1911 0.0240 putative serine protease<br />

ygiD b3039 1.3052 0.0295 putative enzyme with dioxygenase domain<br />

ygiR b3015 0.5716 0.0207<br />

ygjD b3064 0.5170 0.0195 putative O-sialoglycoprotein endopeptidase<br />

ygjK b3080 1.6347 0.0393 putative isomerase<br />

ygjO b3084 0.2990 0.0067 hypothetical methyltransferase<br />

ygjR b3087 0.7899 0.0217 putative NAD(P)-binding dehydrogenase<br />

yhaC b3121 1.3252 0.0082 conserved protein<br />

yhaL b3107 1.5740 0.0103 hypothetical protein<br />

yhbY b3180 1.3778 0.0003 possible RNA-binding protein<br />

yhcB b3233 0.3045 0.0076 conserved hypothetical protein<br />

yhcD b3216 1.2268 0.0167 putative outer membrane protein<br />

yhcM b3232 0.5048 0.0277 hypothetical protein<br />

yhdA b3252 0.2359 0.0129 conserved protein<br />

yhdJ b3262 1.4149 0.0321 cell cycle-regulated methyltransferase<br />

yheN b3345 0.7700 0.0372 conserved hypothetical protein<br />

yheO b3346 0.6517 0.0156 hypothetical protein<br />

yhfK b3358 1.2451 0.0042 hypothetical protein<br />

yhfP b3372 1.6321 0.0166<br />

121


APPENDIX I<br />

yhfY b3382 1.4063 0.0453 conserved protein<br />

yhhF b3465 0.5337 0.0473 putative methyltransferase<br />

yhhQ b3471 0.5279 0.0413 hypothetical protein; <strong>gene</strong> is a predicted member <strong>of</strong> the purine regulon<br />

yhhW b3439 1.2975 0.0352 conserved hypothetical protein<br />

yhiQ b3497 1.2301 0.0328 putative methyltransferase<br />

yhjE b3523 1.3547 0.0178 YhjE MFS transporter<br />

yhjW b3546 0.4600 0.0499 putative transmembrane protein<br />

yhjY b3548 1.4042 0.0366 putative lipase<br />

yiaU b3585 1.7518 0.0059 putative transcriptional regulator LYSR-type<br />

yibJ b3595 1.6482 0.0413 hypothetical protein<br />

yibK b3606 0.6207 0.0426 hypothetical protein<br />

yicE b3654 0.1109 0.0096 YicE NCS2 tranporter<br />

yidB b3698 0.6946 0.0443 conserved hypothetical protein<br />

yieG b3714 0.1975 0.0106 putative membrane / transport protein<br />

yieH b3715 0.3625 0.0303 putative enzyme with a phophatase-like domain<br />

yieK b3718 1.6885 0.0200 putative 6-phosphogluconolactonase<br />

yifK b3795 0.5430 0.0211 YifK APC transporter<br />

yihI b3866 0.2921 0.0024 conserved protein<br />

yihL b3872 1.4923 0.0255 YihL transcriptional regulator<br />

yihO b3876 1.6352 0.0233 YihO GPH transporter<br />

yihU b3882 1.3139 0.0204 putative dehydrogenase<br />

yjaH b4001 0.7337 0.0240 conserved protein<br />

yjbE b4026 1.7450 0.0047 conserved hypothetical protein<br />

yjdA b4109 0.1906 0.0022 hypothetical protein<br />

yjeB b4178 0.2074 0.0020 conserved protein with a Winged helix domain<br />

yjeH b4141 0.5607 0.0389 YjeH APC transporter<br />

yjeK b4146 0.3898 0.0150 hypothetical protein<br />

yjgA b4234 0.4405 0.0253 putative transport protein (ABC superfamily, atp_bind)<br />

yjgP b4261 0.3739 0.0266 putative transmembrane protein possibly involved in transport<br />

yjiA b4352 1.5128 0.0062 P-loop guanosine triphosphatase<br />

yjjW b4379 1.3791 0.0400 putative activating enzyme<br />

ykfG b0247 1.6946 0.0353 putative DNA repair protein<br />

ykgE b0306 0.7957 0.0470 putative dehydrogenase subunit<br />

ykgH b0310 1.6076 0.0086 conserved protein<br />

ylaC b0458 3.0304 0.0296 putative membrane protein<br />

ylbE b0519 1.2920 0.0327 conserved protein<br />

yliI b0837 1.4805 0.0023 putative dehydrogenase<br />

ymcD b0987 1.4309 0.0262 hypothetical protein<br />

ymjA b1295 0.3256 0.0039 hypothetical protein<br />

yncD b1451 1.8939 0.0328 Probable TonB-dependent receptor<br />

yneG b1523 1.1789 0.0050 conserved hypothetical protein<br />

ynfB b1583 0.3934 0.0061 conserved hypothetical protein<br />

ynfD b1586 2.2054 0.0346 conserved hypothetical protein<br />

ynfN b1551 0.8465 0.0196 hypothetical protein<br />

ynhG b1678 1.3503 0.0343 putative ATP synthase subunit<br />

yoaB b1809 0.6240 0.0129 conserved protein<br />

yobA b1841 0.3019 0.0058 hypothetical protein<br />

yobF b1824 2.0754 0.0274 hypothetical protein<br />

ypdF b2385 1.4856 0.0415 putative peptidase<br />

ypfJ b2475 0.2824 0.0036 conserved protein<br />

ypjC b2650 1.8240 0.0458 hypothetical protein<br />

ypjE b2613 1.5857 0.0110<br />

yqaA b2689 0.4979 0.0431 putative integral membrane protein<br />

yqaB b2690 0.4069 0.0160 putative phosphoglucomutase that contains a phophatase-like domain<br />

yqcD b2794 0.6900 0.0288 conserved hypothetical protein<br />

yqfA b2899 0.6159 0.0239 putative oxidoreductase<br />

yqfB b2900 0.4738 0.0088 conserved hypothetical protein<br />

yqiA b3031 0.5976 0.0359 putative hydrolase<br />

122


APPENDIX I<br />

yqiB b3033 0.4189 0.0462 putative enzyme<br />

yqiH b3047 2.4661 0.0276 putative membrane protein<br />

yqjC b3097 1.5209 0.0227 conserved protein<br />

yqjD b3098 1.5220 0.0102 conserved hypothetical protein<br />

yraI b3143 1.3222 0.0262 putative chaperone<br />

yraM b3147 0.5303 0.0388 putative glycosylase<br />

yrbH b3197 0.5469 0.0155 arabinose 5-phosphate isomerase monomer<br />

yrbL b3207 0.2776 0.0169 conserved hypothetical protein; transcription is regulated <strong>by</strong> Mg2+<br />

yrdD b3283 0.4003 0.0038 putative DNA topoisomerase<br />

ytfK b4217 0.6795 0.0081 hypothetical protein<br />

zipA b2412 0.3991 0.0357 essential cell division protein ZipA<br />

zitB b0752 1.9751 0.0090 ZitB zinc CDF transporter<br />

znuA b1857 0.5007 0.0149 ZnuA/ZnuB/ZnuC ABC transporter<br />

znuC b1858 1.5621 0.0156 ZnuA/ZnuB/ZnuC ABC transporter<br />

Supplementary table – VIII: LZ41 fis::cm (A) Vs LZ54 fis::cm (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aaeB b3240 1.2701 0.0129 hypothetical protein<br />

adk b0474 0.5852 0.0267 adenylate kinase<br />

adrA b0385 1.5751 0.0281 putative membrane protein<br />

agaB b3138 1.6067 0.0201 EIIAga<br />

agaD b3140 2.4760 0.0490 EIIAga<br />

agn43 b2000 1.9466 0.0365 outer membrane fluffing protein, sim. to adhesin<br />

allC b0516 2.6899 0.0373 allantoate amidohydrolase<br />

alpA b2624 0.5764 0.0288 AlpA transcriptional activator<br />

alr b4053 0.2726 0.0082 alanine racemase, minor<br />

alsK b4084 1.8614 0.0254 putative D-allose kinase<br />

apaH b0049 1.3196 0.0053 diadenosine tetraphosphatase<br />

appC b0978 1.8506 0.0232 cytochrome bd-II terminal oxidase subunit I<br />

aqpZ b0875 0.4831 0.0077 AqpZ - water MIP channel<br />

aroA b0908 0.6666 0.0280 3-phosphoshikimate-1-carboxyvinyltransferase<br />

aroB b3389 0.6970 0.0352 3-dehydroquinate synthase<br />

arsR b3501 2.0062 0.0043 ArsR transcriptional regulator<br />

artI b0863 2.0420 0.0102 arginine ABC transporter<br />

artP b0864 1.6630 0.0391 arginine ABC transporter<br />

ascB b2716 0.4567 0.0314 6-phospho-beta-glucosidase; cryptic<br />

ascF b2715 0.3701 0.0083 EIIAsc<br />

ascG b2714 0.2203 0.0292 AscG transcriptional regulator<br />

asd b3433 0.3109 0.0249 aspartate semialdehyde dehydrogenase<br />

astE b1744 1.9337 0.0209 succinylglutamate desuccinylase<br />

atpB b3738 0.5641 0.0218 ATP synthase, F0 complex, a subunit<br />

atpC b3731 1.8372 0.0366 ATP synthase, F1 complex, epsilon subunit<br />

atpI b3739 0.5233 0.0310 AtpI<br />

b0165 b0165 0.4909 0.0269 hypothetical protein<br />

b0255 b0255 0.3208 0.0410 hypothetical protein<br />

b1172 b1172 2.5087 0.0177 conserved hypothetical protein<br />

b1364 b1364 1.8486 0.0389 hypothetical protein<br />

b1402 b1402 0.6370 0.0207 IS22 protein<br />

b2084 b2084 2.3089 0.0387 hypothetical protein<br />

b2680 b2680 0.6069 0.0111 YgaY MFS transporter<br />

b3808 b3808 0.4513 0.0034 hypothetical protein<br />

b4283 b4283 0.3477 0.0343 IS911 protein<br />

b4339 b4339 0.4301 0.0234 hypothetical protein<br />

123


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

bax b3570 0.4668 0.0105 putative ATP-binding protein<br />

bcp b2480 0.3972 0.0258 thiol peroxidase<br />

bcsG b3538 1.5125 0.0251 putative membrane protein<br />

bdm b1481 0.4571 0.0254 hypothetical protein<br />

betI b0313 0.4422 0.0145 BetI-choline<br />

bglF b3722 2.3222 0.0326 EIIBgl<br />

btuD b1709 0.4855 0.0190 vitamin B12 transport system<br />

caiC b0037 2.6932 0.0083 carnitine-CoA ligase / crotonobetaine-CoA ligase<br />

caiT b0040 1.9407 0.0255 CaiT carnitine BCCT transporter<br />

carA b0032 0.1987 0.0003 carbamoyl phosphate synthetase<br />

carB b0033 0.5195 0.0297 carbamoyl phosphate synthetase<br />

cbpM b0999 0.7011 0.0474 chaperone-modulator protein CbpM<br />

cdaR b0162 0.2974 0.0285 SdaR transcriptional regulator<br />

chaA b1216 1.8253 0.0435 ChaA calcium CaCA transporter<br />

cheW b1887 1.4429 0.0031 MCP-II<br />

cheY b1882 1.4736 0.0153 CheY-Pasp<br />

citD b0617 2.1690 0.0098 subunit <strong>of</strong> acyl carrier protein<br />

citE b0616 1.3927 0.0367 subunit <strong>of</strong> citryl-ACP lyase<br />

citF b0615 1.5300 0.0418 subunit <strong>of</strong> citrate-ACP transferase<br />

clcA b0155 0.5515 0.0298 EriC chloride ion ClC channel<br />

clpB b2592 1.6744 0.0098 ClpB chaperone<br />

clpS b0881 0.5757 0.0045 specificity factor for ClpA-ClpP chaperone-protease complex<br />

cmr b0842 0.3828 0.0352 MdfA/Cmr MFS multidrug transporter<br />

coaA b3974 0.2063 0.0077 pantothenate kinase monomer<br />

cobC b0638 2.5183 0.0233 alpha-ribazole-5'-P phosphatase<br />

cobT b1991 0.6766 0.0163 dimethylbenzimidazole phosphoribosyltransferase<br />

cpsG b2048 1.7548 0.0421 phosphomannomutase<br />

cpxR b3912 0.3442 0.0296 CpxR-Phosphorylated transcriptional dual regulator<br />

creA b4397 0.2676 0.0054 hypothetical protein<br />

creB b4398 0.1607 0.0018 CreB- Phosphorylated transcriptional regulator<br />

creC b4399 0.4234 0.0038 CreC-Phis<br />

crl b0240 0.2018 0.0046 Crl transcriptional regulator<br />

csgA b1042 1.4150 0.0203 curlin, major subunit<br />

csgC b1043 0.4527 0.0035 putative curli production protein<br />

csgD b1040 0.5255 0.0417 CsgD transcriptional activator<br />

csiE b2535 0.1601 0.0201 hypothetical protein<br />

cspA b3556 0.1189 0.0043 cold shock protein CspA<br />

cspB b1557 0.0902 0.0121 cold shock protein CspB<br />

cspF b1558 0.0878 0.0007 cold shock protein CspF<br />

cspG b0990 0.1566 0.0211 cold shock protein CspG<br />

cusR b0571 0.2240 0.0067 CusR transcriptional activator<br />

cusS b0570 0.3579 0.0313 putative 2-component sensor protein<br />

cutE b0657 2.6030 0.0037 apolipoprotein N-acyltransferase<br />

cvpA b2313 0.1480 0.0030 membrane protein required for colicin V production<br />

cyaY b3807 0.6324 0.0031 iron-binding frataxin homolog<br />

cysE b3607 0.5219 0.0143 cysteine synthase<br />

cysM b2421 0.3365 0.0109 O-acetylserine (thiol)-lyase B<br />

cytR b3934 0.2132 0.0070 CytR-cytidine<br />

dam b3387 1.5263 0.0296 DNA adenine methylase<br />

dapF b3809 0.3456 0.0309 diaminopimelate epimerase<br />

dcm b1961 0.3666 0.0421 DNA cytosine methylase<br />

dcuS b4125 0.5027 0.0194 DcuS-Phis349<br />

degQ b3234 0.4658 0.0158 serine endoprotease<br />

degS b3235 0.3105 0.0028<br />

inner membrane serine protease required for the extracytoplasmic stress response<br />

mediated <strong>by</strong> sigmaE<br />

deoR b0840 0.2578 0.0132 DeoR transcriptional repressor<br />

dgkA b4042 0.4758 0.0169 diacylglycerol kinase<br />

124


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value<br />

Function<br />

dgoA 3871635-3871018 : '2-dehydro-3-deoxyphosphogalactonate aldolase / dgoD<br />

3871021-3869873 : galactonate dehydratase<br />

dgoA b3692 1.8315 0.0260<br />

dgt b0160 0.1774 0.0119 deoxyguanosinetriphosphate triphosphohydrolase<br />

dhaK b1200 0.4352 0.0455 dihydroxyacetone kinase subunit K<br />

dhaR b1201 0.2678 0.0011 putative 2-component regulator<br />

diaA b3149 0.2334 0.0190 DiaA protein<br />

dinB b0231 1.7171 0.0272 DNA polymerase IV (Y-family DNA polymerase; translesion DNA synthesis)<br />

dmsA b0894 2.2635 0.0076 dimethyl sulfoxide reductase, chain A<br />

dnaB b4052 0.1982 0.0057 chromosome replication; chain elongation; part <strong>of</strong> primosome<br />

dnaG b3066 2.1643 0.0067 DNA biosynthesis; DNA primase<br />

dnaJ b0015 2.9351 0.0192 chaperone with DnaK; heat shock protein<br />

dsbC b2893 0.4666 0.0342 DsbCoxidized<br />

dusB b3260 0.2969 0.0469 tRNA dihydrouridine synthase<br />

dxr b0173 1.4221 0.0086 DXP reductoisomerase<br />

dxs b0420 0.3652 0.0190 1-deoxyxylulose-5-phosphate synthase<br />

ecfB b2969 0.5313 0.0451 putative protein exporter (General Secretory Pathway)<br />

ecfI b3688 0.3510 0.0497 conserved hypothetical protein with possible extracytoplasmic function<br />

oxaloacetate decarboxylase / 2-keto-3-deoxy-6-phosphogluconate aldolase / 2-<br />

eda b1850 1.7908 0.0038 keto-4-hydroxyglutarate aldolase<br />

elaC b2268 0.6163 0.0010 binuclear zinc phosphodiesterase monomer<br />

emrE b0543 1.6186 0.0068 EmrE SMR transporter<br />

epd b2927 0.5294 0.0315 erythrose 4-phosphate dehydrogenase<br />

eutB b2441 1.2809 0.0329 ethanolamine ammonia-lyase, probable regulatory subunit<br />

eutH b2452 1.4972 0.0336 putative transport protein, ethanolamine utilization<br />

eutT b2459 1.3095 0.0136 putative cobalamine adenosyltransferase, ethanolamine utilization<br />

evgA b2369 0.3168 0.0144 EvgA-Phosphorylated transcriptional regulator<br />

exoX b1844 0.5678 0.0038 exonuclease X<br />

exuR b3094 0.3228 0.0132 ExuR transcriptional repressor<br />

enoyl-ACP reductase (NAD[P]H) / enoyl-ACP reductase (NADPH) / enoyl-ACP<br />

fabI b1288 1.6863 0.0303 reductase (NADH)<br />

fadJ b2341 0.3121 0.0367 FadJ monomer<br />

fdnI b1476 1.7767 0.0053 formate dehydrogenase N, &gamma; subunit<br />

fhiA b0229 1.5449 0.0317 flagellar biosynthesis<br />

fhuB b0153 2.1649 0.0409 ferrichrome uptake system<br />

fhuF b4367 1.7515 0.0482 acts in reduction <strong>of</strong> ferrioxamine B iron<br />

stationary-phase protein with possible role in p-aminobenzoate or folate<br />

fic b3361 1.4568 0.0439 biosynthesis<br />

fimE b4313 1.7756 0.0279 regulator for fimA<br />

fixB b0042 2.0297 0.0368 probable flavoprotein subunit required for anaerobic carnitine metabolism<br />

flgF b1077 2.2351 0.0239 flagellar basal-body rod protein FlgF<br />

flgG b1078 1.9647 0.0136 flagellar basal-body rod protein FlgG<br />

flgI b1080 1.7273 0.0119 flagellar P-ring protein FlgI<br />

flgJ b1081 2.1703 0.0020 FlgJ<br />

flgN b1070 2.3245 0.0287 flagellar biosynthesis protein FlgN<br />

flhB b1880 1.8348 0.0063 flagellar biosynthesis protein FlhB<br />

flhC b1891 0.1181 0.0079 FlhC transcriptional regulator<br />

flhD b1892 0.0774 0.0260 FlhD transcriptional dual regulator<br />

fliC b1923 0.5536 0.0223 flagellar biosynthesis; flagellin, filament structural protein<br />

fliD b1924 0.3745 0.0118 flagellar cap protein FliD; filament capping protein; enables filament assembly<br />

flagellar motor switch protein FliG; component <strong>of</strong> motor switching and<br />

fliG b1939 1.9682 0.0326 energizing, enabling rotation and determining its direction<br />

fliI b1941 2.4306 0.0107 flagellum-specific ATP synthase FliI<br />

fliK b1943 2.1579 0.0307 flagellar hook-length control protein FliK<br />

fliR b1950 5.8099 0.0221 flagellar biosynthesis protein FliR<br />

fliS b1925 0.5073 0.0341 flagellar biosynthesis protein FliS<br />

fnr b1334 3.9209 0.0118 FNR transcriptional dual regulator<br />

focA b0904 0.6551 0.0243 FocA formate FNT transporter<br />

focB b2492 0.2494 0.0129 FocB formate FNT transporter<br />

125


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

folA b0048 0.2106 0.0098 dihydr<strong>of</strong>olate reductase, type I<br />

frdD b4151 2.4605 0.0058 fumarate reductase membrane protein<br />

frlA b3370 1.6878 0.0011 YhfM methione APC transporter<br />

frlB b3371 1.7603 0.0228 fructoselysine 6-phosphate deglycase monomer<br />

frlR b3375 0.5910 0.0107 putative transcriptional regulator<br />

frmA b0356 1.7397 0.0295 formaldehyde dehydrogenase, glutathione-dependent<br />

frmB b0355 2.7771 0.0194 putative S-formylglutathione hydrolase<br />

frsA b0239 0.3854 0.0052 fermentation/respiration switch protein<br />

fruR b0080 0.2985 0.0085 FruR transcriptional dual regulator<br />

frwD b3953 1.4822 0.0450 PTS system fructose-like IIB component 2<br />

fryA b2383 1.3141 0.0080 putative PTS system enzyme IIA component, enzyme I<br />

fsaB b3946 1.4734 0.0059 fructose 6-phosphate aldolase 2<br />

ftsB b2748 0.2075 0.0061 essential cell division protein FtsB<br />

ftsQ b0093 1.2917 0.0493 essential cell division protein FtsQ<br />

ftsW b0089 1.9956 0.0151 essential cell division protein FtsW<br />

fxsA b4140 1.9361 0.0366 inner membrane protein; overproduction inhibits F exclusion <strong>of</strong> bacteriophage T7<br />

gadE b3512 1.2316 0.0070 GadE transcriptional activator<br />

gadW b3515 1.9617 0.0376 GadWtranscriptional repressor<br />

gadX b3516 2.3498 0.0110 GadX transcriptional activator<br />

galE b0759 1.3965 0.0349 UDP-glucose 4-epimerase monomer<br />

galM b0756 0.5556 0.0412 aldose-1-epimerase<br />

galR b2837 0.3381 0.0120 GalR-galactose<br />

gatY b2096 0.2247 0.0190 tagatose-1,6-bisphosphate aldolase 2<br />

gcvH b2904 0.1838 0.0232 dihydrolipoyl-GcvH-protein<br />

gcvR b2479 0.2803 0.0150 GcvR-gly<br />

gcvT b2905 0.1397 0.0379 aminomethyltransferase<br />

glcD b2979 1.4604 0.0131 glycolate oxidase subunit D<br />

glf b2036 1.4061 0.0231 UDP-galactopyranose mutase<br />

glgA b3429 2.0868 0.0462 glycogen synthase<br />

glmS b3729 0.6548 0.0257 L-glutamine:D-fructose-6-phosphate aminotransferase<br />

glnD b0167 1.4223 0.0065 uridylyltransferase / uridylyl-removing enzyme<br />

glnE b3053 0.7644 0.0097<br />

glutamine synthetase adenylyltransferase / glutamine synthetase deadenylylating<br />

enzyme<br />

gloA b1651 1.7203 0.0236 glyoxalase I<br />

glpD b3426 0.6000 0.0106 glycerol 3-phosphate dehydrogenase, aerobic<br />

glpE b3425 0.3290 0.0046 thiosulfate sulfurtransferase<br />

glpF b3927 0.5645 0.0474 GlpF - glycerol MIP channel<br />

glpG b3424 0.2077 0.0184 inner membrane-associated protein <strong>of</strong> glp regulon<br />

gltF b3214 1.8806 0.0235 regulator <strong>of</strong> gltBDF operon, induction <strong>of</strong> Ntr enzymes<br />

gltL b0652 1.8842 0.0056 glutamate ABC transporter<br />

gltP b4077 0.7136 0.0418 GltP glutamate/aspartate DAACS transporter<br />

glyA b2551 0.3875 0.0034 glycine hydroxymethyltransferase<br />

gntY b3414 2.7979 0.0384<br />

predicted membrane-bound protein that is involved in high-affinity gluconate<br />

transport<br />

gpp b3779 0.4360 0.0260 guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase<br />

groL b4143 2.3507 0.0471 GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein<br />

grpE b2614 2.3641 0.0303 phage lambda replication; host DNA synthesis; heat shock protein; protein repair<br />

grxC b3610 0.4843 0.0071 oxidized glutaredoxin 3<br />

gshB b2947 0.5134 0.0198 glutathione synthetase subunit<br />

gspE b3326 1.8012 0.0127 putative protein secretion protein for export<br />

gspH b3329 1.2960 0.0067 putative protein secretion protein for export<br />

gspI b3330 1.3340 0.0008 putative protein secretion protein for export<br />

gspJ b3331 2.1075 0.0087 putative protein secretion protein for export<br />

gssA b2988 1.7232 0.0036 glutathionylspermidine synthetase / glutathionylspermidine amidase<br />

guaA b2507 0.7222 0.0199 GMP synthase / GMP synthase (ammonia dependent)<br />

gyrB b3699 2.5880 0.0017 DNA gyrase, subunit B<br />

hcaB b2541 1.2806 0.0246 3-phenylpropionate-2',3'-dihydrodiol dehydrogenase<br />

126


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

hcaD b2542 1.6383 0.0207 ferredoxin NAD+ reductase<br />

hcaE b2538 0.5174 0.0278 3-phenylpropionate dioxygenase, alpha subunit<br />

hcr b0872 2.8116 0.0329 NADH oxidoreductase<br />

hdeD b3511 2.0630 0.0226 protein involved in acid resistance<br />

hdfR b4480 0.3225 0.0184 transcriptional regulator<br />

hemC b3805 0.4388 0.0311 hydroxymethylbilane synthase<br />

hemG b3850 0.4767 0.0075 protoporphyrinogen oxidase<br />

hemH b0475 1.6086 0.0151 ferrochelatase<br />

hemN b3867 0.4698 0.0211 coproporphyrinogen III oxidase, anaerobic<br />

hflD b1132 0.4773 0.0130 membrane protein in operon with purB<br />

hha b0460 0.3786 0.0126 haemolysin <strong>expression</strong> modulating protein<br />

hipB b1508 0.0870 0.0061 HipB transcriptional activator<br />

hmp b2552 1.8564 0.0046 nitric oxide dioxygenase / dihydropteridine reductase 2<br />

h<strong>of</strong>N b3394 0.3123 0.0307 conserved protein<br />

holA b0640 2.0348 0.0021 DNA polymerase III, delta subunit<br />

holB b1099 1.5205 0.0029 DNA polymerase III, delta prime subunit<br />

holC b4259 0.5840 0.0321 DNA polymerase III, chi subunit<br />

holE b1842 0.2431 0.0003 DNA polymerase III, theta subunit<br />

hscC b0650 1.6203 0.0217<br />

Hsc62; an Hsp70-family ATPase that negatively regulates sigma70 / nonchaperonin<br />

molecular chaperone ATPase<br />

hslU b3931 4.1300 0.0123 ATPase component <strong>of</strong> the HslVU protease<br />

htpG b0473 1.8306 0.0130 HtpG monomer<br />

htrL b3618 6.9782 0.0063 involved in lipopolysaccharide biosynthesis<br />

hyaA b0972 2.2684 0.0027 hydrogenase I, HyaA subunit<br />

hybF b2991 1.6921 0.0285 protein involved with the maturation <strong>of</strong> hydrogenases 1 and 2<br />

hycE b2721 2.0488 0.0454 formate hydrogenlyase complex<br />

iaaA b0828 0.1133 0.0019 beta cleavage product <strong>of</strong> IaaA<br />

ibpA b3687 4.2244 0.0016 small heat shock protein IbpA<br />

ibpB b3686 7.6875 0.0014 small heat shock protein IbpB<br />

icdA b1136 0.3462 0.0100 Icd<br />

iclR b4018 0.2325 0.0125 IclR-PEP<br />

idnR b4264 0.2909 0.0338 IdnR-5-ketogluconate<br />

idnT b4265 0.3169 0.0249 IdnT idonate Gnt tranporter<br />

ihfB b0912 1.9863 0.0061 IHF transcriptional dual regulator<br />

ilvA b3772 0.4362 0.0424 threonine dehydratase (biosynthetic)<br />

inaA b2237 0.2907 0.0071 pH-inducible protein involved in stress response<br />

insA_5 b1894 0.3935 0.0446<br />

insA_5 1977239-1976964 : IS1 protein InsA / insA_1 20508-20233 : IS1 protein<br />

InsA / insA_6 3581506-3581781 : IS1 protein InsA<br />

intR b1345 0.2551 0.0239 putative transposase<br />

intS b2349 1.9457 0.0169 putative prophage Sf6-like integrase<br />

iscU b2529 1.8083 0.0053 scaffold protein involved in iron-sulfur cluster assembly<br />

ispA b0421 0.1813 0.0151 geranyl diphosphate synthase / farnesyl diphosphate synthase<br />

ispD b2747 0.4908 0.0411 4-diphosphocytidyl-2C-methyl-D-erythritol synthetase monomer<br />

katE b1732 1.7021 0.0305 hydroperoxidase II<br />

kdtA b3633 0.3601 0.0028 KDO transferase<br />

kduD b2842 1.5255 0.0331 2-deoxy-D-gluconate 3-dehydrogenase<br />

kefG b3351 1.3584 0.0057 KefG<br />

ldcA b1192 1.7002 0.0372 L,D-carboxypeptidase A<br />

leuB b0073 1.7972 0.0055 3-isopropylmalate dehydrogenase<br />

leuC b0072 1.6773 0.0000 isopropylmalate isomerase<br />

leuD b0071 2.0207 0.0112 isopropylmalate isomerase<br />

ligT b0147 0.1852 0.0026 hypothetical protein<br />

lipB b0630 2.1877 0.0000 lipoyl-protein ligase<br />

livH b3457 1.9033 0.0131 leucine ABC transporter<br />

livM b3456 1.6094 0.0498 leucine ABC transporter<br />

lolA b0891 0.7885 0.0361<br />

periplasmic chaperone, effects translocation <strong>of</strong> lipoproteins from inner membrane<br />

to outer<br />

127


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

lolB b1209 0.4806 0.0227 outer membrane lipoprotein, localization <strong>of</strong> lipoproteins in the outer membrane<br />

lolE b1118 0.4575 0.0420 LolCDE ABC lipoprotein transporter<br />

lon b0439 2.6981 0.0091 DNA-binding, ATP-dependent protease La<br />

lpcA b0222 0.2400 0.0125 lipopolysaccharide core biosynthesis; phosphoheptose isomerase<br />

lrp b0889 0.4179 0.0402 Lrp-Leucine transcriptional activator<br />

lsrG b1518 1.4543 0.0022 conserved hypothetical protein<br />

lysA b2838 1.7920 0.0487 diaminopimelate decarboxylase<br />

macB b0879 2.0724 0.0127 MacAB macrolide efflux transporter complex<br />

malT b3418 0.1905 0.0107 MalT-MalK<br />

malY b1622 0.4203 0.0185 bifunctional: repressor <strong>of</strong> maltose regulon / cystathionine beta-lyase<br />

mdl b0449 2.7100 0.0423 MdlB<br />

mdoC b1047 0.1432 0.0145 protein required for succinyl modification <strong>of</strong> osmoregulated periplasmic glucans<br />

mdoH b1049 1.6043 0.0230<br />

membrane glycosyltransferase; synthesis <strong>of</strong> membrane-derived oligosaccharide<br />

(MDO)<br />

mdtF b3514 1.8716 0.0244 YhiV<br />

mdtN b4082 2.2488 0.0020 putative membrane protein<br />

mdtO b4081 1.5951 0.0435 YjcQ<br />

menD b2264 0.3726 0.0138<br />

putative 2-hydroxyglutarate synthase / SHCHC synthase / 2-oxoglutarate<br />

decarboxylase<br />

menF b2265 0.3477 0.0276 isochorismate synthase, menaquinone-specific<br />

mfd b1114 0.5650 0.0126 transcription-repair coupling factor; mutation frequency decline<br />

mhpF b0351 1.8446 0.0238 acetaldehyde dehydrogenase 2<br />

minC b1176 0.2414 0.0115<br />

cell division inhibitor <strong>of</strong> the MinC-MinD-MinE and DicB-MinC systems that<br />

regulate septum placement<br />

minD b1175 0.4152 0.0065<br />

membrane ATPase <strong>of</strong> the MinC-MinD-MinE system that regulates septum<br />

placement<br />

minE b1174 0.3703 0.0160<br />

cell division topological specificity factor and inhibitory component <strong>of</strong> the MinC-<br />

MinD-MinE system that regulates septum placement<br />

mioC b3742 1.6938 0.0341 flavoprotein involved in biotin synthesis<br />

mltC b2963 0.4421 0.0091 membrane-bound lytic murein transglycosylase C<br />

mmuP b0260 0.3741 0.0038 MmuP APC transporter<br />

mnmC b2324 0.5136 0.0357 bifunctional enzyme catalyzing the formation <strong>of</strong> mnm5s2U in tRNA<br />

mntH b2392 0.3161 0.0066 MntH manganese ion NRAMP transporter<br />

moaA b0781 0.2797 0.0039 molybdopterin biosynthesis, protein A<br />

mobA b3857 0.2268 0.0063 molybdopterin guanine dinucleotide synthase<br />

mobB b3856 0.7633 0.0125 molybdopterin-guanine dinucleotide biosynthesis protein B<br />

modE b0761 0.3788 0.0052 Molybdate-responsive transcription factor monomer<br />

moeB b0826 2.0014 0.0025 molybdopterin biosynthesis<br />

mpaA b1326 0.4207 0.0207 murein peptide amidase A<br />

mrr b4351 0.4108 0.0084 restriction <strong>of</strong> methylated adenine<br />

msbB b1855 0.2154 0.0023 myristoyl acyltransferase<br />

mtlD b3600 0.3066 0.0272 mannitol-1-phosphate 5-dehydrogenase<br />

mukE b0923 0.3600 0.0166 protein involved in chromosome partitioning<br />

mukF b0922 0.2126 0.0048 Ca2+-binding protein involved in chromosome partitioning<br />

murI b3967 2.6898 0.0094 glutamate racemase<br />

murP b2429 0.3862 0.0083 MurP<br />

mutY b2961 0.3526 0.0252 adenine glycosylase; G.C --> T.A transversions<br />

mviM b1068 0.7293 0.0284 putative virulence factor<br />

nadD b0639 2.8386 0.0006 nicotinate-mononucleotide adenylyltransferase<br />

nadR b4390 0.5652 0.0094 NadR transcriptional repressor / NMN adenylyltransferase<br />

nanR b3226 0.2529 0.0184 NanR transcriptional regulator<br />

narQ b2469 1.8665 0.0482 NarQ-Phis<br />

narV b1465 1.9002 0.0087 nitrate reductase Z, &gamma; subunit<br />

nfnB b0578 0.7030 0.0451 dihydropteridine reductase<br />

nfrB b0569 0.4153 0.0012 bacteriophage N4 receptor, outer membrane protein<br />

nhaA b0019 1.9281 0.0447 sodium/proton NhaA transporter<br />

nhaR b0020 2.4259 0.0270 NhaR-Na+ transcriptional activator<br />

nikA b3476 2.3805 0.0063 nickel ABC transporter<br />

128


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

nikR b3481 1.4287 0.0386 NikR-Ni<br />

nirB b3365 1.6021 0.0034 nitrite reductase, large subunit<br />

nth b1633 2.2184 0.0022 endonuclease III; specific for apurinic and/or apyrimidinic sites<br />

nudD b2051 1.8515 0.0395 GDP-mannose mannosyl hydrolase<br />

nudF b3034 0.3009 0.0092 hypothetical protein<br />

nuoL b2278 2.3112 0.0467 NADH dehydrogenase I<br />

osmC b1482 1.9756 0.0398 osmotically inducible peroxidase OsmC<br />

osmE b1739 1.3600 0.0369 OsmE-osmotically inducible protein<br />

pabB b1812 0.1391 0.0082<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

panE b0425 0.4718 0.0353 2-dehydropantoate reductase<br />

parC b3019 0.5366 0.0439 Topoisomerase IV subunit A<br />

pbpG b2134 0.2733 0.0252 penicillin-binding protein 7<br />

pepB b2523 2.0445 0.0308 aminopeptidase (AP)<br />

pflA b0902 2.2414 0.0213 pyruvate formate-lyase activating enzyme<br />

pgsA b1912 0.5084 0.0407 phosphatidylglycerophosphate synthase<br />

phnE b4104 1.3120 0.0044 alkylphosphonate ABC transporter<br />

phnG b4101 2.1147 0.0227 phosphonate metabolism<br />

phnK b4097 1.6222 0.0319 PhnK<br />

phoH b1020 1.3684 0.0361<br />

PhoB-dependent, ATP-binding pho regulon component; may be helicase; induced<br />

<strong>by</strong> P starvation<br />

pitA b3493 0.6222 0.0296 PitA<br />

pitB b2987 1.2746 0.0137 PitB<br />

plsB b4041 1.6234 0.0168 glycerol-3-phosphate acyltransferase<br />

plsC b3018 0.3811 0.0229 1-acylglycerol-3-phosphate acyltransferase<br />

plsX b1090 0.3719 0.0337 glycerolphosphate auxotrophy in plsB background<br />

pmrF b2254 1.6010 0.0321 undecaprenyl phosphate-L-Ara4FN transferase<br />

pncB b0931 0.2520 0.0142 nicotinate phosphoribosyltransferase<br />

polB b0060 3.1483 0.0221 DNA polymerase II<br />

ppk b2501 0.2034 0.0093 polyphosphate kinase<br />

prmC b1212 1.4586 0.0477 protein-(glutamine-N5) methyltransferase<br />

proS b0194 1.7249 0.0261 prolyl-tRNA synthetase<br />

proV b2677 0.4042 0.0250 proline ABC transporter<br />

pspF b1303 0.1755 0.0002 PspF transcriptional activator<br />

pstB b3725 0.6518 0.0392 phosphate ABC transporter<br />

ptsA b3947 1.8352 0.0003 PEP-protein phosphotransferase system enzyme I<br />

purB b1131 0.7366 0.0390<br />

5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase /<br />

adenylosuccinate lyase<br />

purC b2476 0.2064 0.0057 phosphoribosylaminoimidazole-succinocarboxamide synthase<br />

purE b0523 0.1169 0.0008 N5-carboxyaminoimidazole ribonucleotide mutase<br />

purF b2312 0.1474 0.0009 amidophosphoribosyl transferase<br />

purH b4006 0.4496 0.0475 AICAR transformylase / IMP cyclohydrolase<br />

purK b0522 0.1805 0.0075 N5-carboxyaminoimidazole ribonucleotide synthase monomer<br />

purM b2499 0.2023 0.0208 phosphoribosylformylglycinamide cyclo-ligase<br />

purN b2500 0.3009 0.0412 phosphoribosylglycinamide formyltransferase<br />

purR b1658 0.2390 0.0090 PurR transcriptional repressor<br />

purT b1849 0.1801 0.0082 GAR transformylase 2<br />

puuA b1297 0.1427 0.0155 putative glutamine synthetase (EC 6.3.1.2)<br />

pykA b1854 1.4726 0.0128 pyruvate kinase II monomer<br />

pykF b1676 1.2394 0.0301 pyruvate kinase I monomer<br />

pyrB b4245 0.4807 0.0207 aspartate carbamoyltransferase, PyrB subunit<br />

pyrI b4244 0.6993 0.0415 aspartate carbamoyltransferase, PyrI subunit<br />

qseB b3025 0.2860 0.0050 putative 2-component transcriptional regulator<br />

racR b1356 0.3752 0.0040 hypothetical protein<br />

rbsK b3752 0.7165 0.0029 ribokinase<br />

rcsA b1951 3.6667 0.0186<br />

positive DNA-binding transcriptional regulator <strong>of</strong> capsular polysaccharide<br />

synthesis, activates its own <strong>expression</strong><br />

rcsD b2216 0.4726 0.0181 putative 2-component sensor protein<br />

129


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rdoA b3859 0.5228 0.0406 cytoplasmic protein <strong>of</strong> low abundance<br />

recA b2699 3.2066 0.0263<br />

DNA strand exchange and renaturation, DNA-dependent ATPase, DNA- and<br />

ATP-dependent coprotease<br />

recD b2819 2.0842 0.0351<br />

DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit, ssDNA<br />

endonuclease<br />

recE b1350 1.9766 0.0078 exonuclease VIII, ds DNA exonuclease, 5' --> 3' specific<br />

recN b2616 5.3559 0.0008 protein used in recombination and DNA repair<br />

recT b1349 1.3586 0.0348 recombinase, DNA renaturation<br />

rfaB b3628 2.5413 0.0011 UDP-D-galactose:(glucosyl)lipopolysaccharide-1,6-D-galactosyltransferase<br />

rfaG b3631 3.0643 0.0002 lipopolysaccharide core biosynthesis; glucosyltransferase I<br />

rfaI b3627 4.1170 0.0163 UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-D-galactosyltransferase<br />

rfaJ b3626 4.3983 0.0081 UDP-D-glucose:(galactosyl)lipopolysaccharide glucosyltransferase<br />

rfaK b3623 3.1484 0.0132 lipopolysaccharide core biosynthesis; probably hexose transferase<br />

rfaQ b3632 2.4984 0.0107 lipopolysaccharide core biosynthesis<br />

rfaS b3629 3.0101 0.0025 lipopolysaccharide core biosynthesis<br />

rfaY b3625 4.7308 0.0194 lipopolysaccharide core biosynthesis<br />

rfaZ b3624 4.3286 0.0096 protein involved in KdoIII attachment during lipopolysaccharide core biosynthesis<br />

rfc b2035 1.8291 0.0009 O-antigen polymerase<br />

rfe b3784 0.2683 0.0097 undecaprenyl-phosphate &alpha;-N-acetylglucosaminyl transferase<br />

rffA b3791 1.6016 0.0227 TDP-4-oxo-6-deoxy-D-glucose transaminase<br />

rffT b3792.1 2.4442 0.0046 4-acetamido-4,6-dideoxy-D-galactose transferase<br />

rhaA b3903 2.4561 0.0417 L-rhamnose isomerase / L-lyxose isomerase<br />

rho b3783 0.5828 0.0440 transcription termination factor Rho monomer; polarity suppressor<br />

rhsD b0497 0.1966 0.0113 RhsD protein in rhs element<br />

rhtC b3823 0.4390 0.0253 RhtC threonine Rht Transporter<br />

ribB b3041 0.6220 0.0498 3,4-dihydroxy-2-butanone 4-phosphate synthase<br />

ribF b0025 0.1784 0.0073 rib<strong>of</strong>lavin kinase / FMN adenylyltransferase<br />

rimJ b1066 0.4039 0.0138<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rimK b0852 1.5209 0.0253 ribosomal protein S6 modification protein<br />

rimL b1427 0.5475 0.0053<br />

acetylation <strong>of</strong> N-terminal serine <strong>of</strong> 30S ribosomal subunit protein L7; acetyl<br />

transferase<br />

rlmB b4180 1.7133 0.0062 23S rRNA methyltransferase monomer<br />

rlpB b0641 1.9134 0.0175 rare lipoprotein RlpB<br />

rmuC b3832 0.4993 0.0038 conserved protein<br />

rph b3643 1.1124 0.0148 RNase PH monomer<br />

rplS b2606 2.4571 0.0178 50S ribosomal subunit protein L19<br />

rplT b1716 2.5117 0.0282 50S ribosomal subunit protein L20, and regulator<br />

rpoD b3067 3.0416 0.0132 sigma70 factor<br />

rpoE b2573 0.6493 0.0378 sigmaE<br />

rpoZ b3649 0.5481 0.0118 RNA polymerase, omega subunit<br />

rpsQ b3311 1.9759 0.0388 30S ribosomal subunit protein S17<br />

rrmJ b3179 1.3369 0.0240 23S rRNA m2U2552 methyltransferase<br />

rseA b2572 0.3836 0.0167 anti-sigma factor that inhibits sigmaE<br />

rseB b2571 0.5258 0.0112<br />

negative regulator <strong>of</strong> sigmaE; interacts with RseA and stimulates binding <strong>of</strong> RseA<br />

to sigmaE<br />

rseC b2570 0.4367 0.0061 protein involved in reduction <strong>of</strong> the SoxR iron-sulfur cluster<br />

rspA b1581 1.7883 0.0421 starvation sensing protein RspA<br />

rspB b1580 1.8606 0.0395 putative dehydrogenase RspB<br />

rsxD b1630 1.4943 0.0285 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

rsxE b1632 2.6850 0.0103 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

rsxG b1631 3.0731 0.0067 member <strong>of</strong> SoxR-reducing complex<br />

sapB b1293 1.7823 0.0146 peptide uptake ABC transporter<br />

secG b3175 0.5156 0.0209 Sec Protein Secretion Complex<br />

seqA b0687 0.3340 0.0283 SeqA, negative modulator <strong>of</strong> initiation <strong>of</strong> replication<br />

serB b4388 0.3970 0.0271 phosphoserine phosphatase<br />

setC b3659 1.3102 0.0144 YicK MFS Transporter<br />

sfmC b0531 2.1401 0.0045 putative chaperone<br />

130


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

sgcE b4301 1.6837 0.0317 putative epimerase<br />

sgcX b4305 0.3168 0.0116 SgcB<br />

slt b4392 0.5759 0.0147 soluble lytic murein transglycosylase<br />

slyA b1642 0.4451 0.0416 SlyA transcriptional activator<br />

smf b4473 0.3130 0.0254 hypothetical protein<br />

smg b3284 0.1539 0.0006 hypothetical protein<br />

smpA b2617 1.8755 0.0132 SmpA small membrane protein A<br />

smtA b0921 0.1256 0.0007 S-adenosylmethionine-dependent methyltransferase<br />

sohB b1272 1.8038 0.0119 putative protease<br />

speA b2938 2.2897 0.0138 arginine decarboxylase, biosynthetic<br />

speD b0120 1.2622 0.0360 adenosylmethionine decarboxylase, proenzyme<br />

spr b2175 0.1527 0.0041 putative lipoprotein<br />

spy b1743 1.6568 0.0122 periplasmic protein related to spheroblast formation<br />

srmB b2576 0.3930 0.0324 SrmB, DEAD-box RNA helicase<br />

sscR b2765 0.3470 0.0259 putative 6-pyruvoyl tetrahydrobiopterin synthase<br />

sspA b3229 1.7662 0.0298 regulator <strong>of</strong> transcription; stringent starvation protein A<br />

ssuD b0935 2.1101 0.0410 alkanesulfonate monooxygenase<br />

sucB b0727 1.7606 0.0413 SucB-lipoate<br />

sucD b0729 2.0786 0.0326 succinyl-CoA synthetase, alpha subunit<br />

sufE b1679 1.4500 0.0180 sulfur acceptor that activates SufS cysteine desulfurase<br />

sufS b1680 1.9117 0.0189 L-selenocysteine lyase (and L-cysteine desulfurase) monomer<br />

sulA b0958 0.4846 0.0244 suppressor <strong>of</strong> lon; inhibits cell division and ftsZ ring formation<br />

surE b2744 0.6982 0.0147 phosphatase with broad substrate specificity / 3'-nucleotidase / 5'-nucleotidase<br />

talB b0008 0.7356 0.0361 transaldolase B<br />

tatE b0627 1.3041 0.0170 TatABCE protein export complex<br />

tdcF b3113 2.0890 0.0324 hypothetical protein<br />

thyA b2827 1.5495 0.0232 thymidylate synthase<br />

tolC b3035 0.4953 0.0287 TolC outer membrane channel<br />

torZ b1872 0.5113 0.0085 trimethylamine N-oxide reductase III, TorZ subunit<br />

trmE b3706 1.6715 0.0450 GTP-binding protein with a role in modification <strong>of</strong> tRNA<br />

trpE b1264 0.2196 0.0041 anthranilate synthase component I<br />

trpH b1266 1.2995 0.0096 putative enzyme<br />

trpR b4393 1.8827 0.0116 TrpR transcriptional repressor<br />

truD b2745 0.5425 0.0108 tRNA pseudouridine 13 synthase<br />

trxA b3781 0.6949 0.0406 oxidized thioredoxin<br />

ubiC b4039 0.1951 0.0166 chorismate pyruvate lyase<br />

ugpC b3450 1.3303 0.0342 glycerol-3-P ABC transporter / tranport<br />

ulaB b4194 1.8991 0.0096 eiisga<br />

umuC b1184 1.4019 0.0198 SOS muta<strong>gene</strong>sis and repair<br />

uup b0949 1.5046 0.0356 Uup<br />

uvrA b4058 3.2580 0.0017 excision nuclease subunit A<br />

uvrB b0779 1.5440 0.0191 DNA repair; excision nuclease subunit B<br />

valS b4258 1.3789 0.0229 valyl-tRNA synthetase<br />

vsr b1960 0.4472 0.0407<br />

DNA mismatch endonuclease <strong>of</strong> the very short patch (VSP) mismatch repair<br />

pathway<br />

waaP b3630 2.8880 0.0034 lipopolysaccharide core biosynthesis; phosphorylation <strong>of</strong> core heptose<br />

wbbI b2034 2.0928 0.0325 hypothetical protein; not required for colanic acid biosynthesis<br />

wbbK b2032 1.5888 0.0445 putative transferase<br />

wcaI b2050 1.4786 0.0422 putative colanic biosynthesis glycosyl transferase<br />

wecB b3786 1.9582 0.0212 UDP-N-acetylglucosamine-2-epimerase<br />

xerD b2894 0.2913 0.0334 site-specific recombinase<br />

xseB b0422 0.1745 0.0055 exonuclease VII, small subunit<br />

yabP b0056 0.5265 0.0390 conserved hypothetical protein<br />

yacC b0122 0.1421 0.0092 conserved hypothetical protein<br />

yadE b0130 1.9353 0.0038 conserved hypothetical protein<br />

yadF b0126 0.5334 0.0299 carbonic anhydrase<br />

yadH b0128 0.5583 0.0088 YadG/YadH ABC transporter<br />

131


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yadL b0137 2.6672 0.0200 putative adhesin-like protein<br />

yaeI b0164 1.6713 0.0162 conserved protein<br />

yaeR b0187 0.3976 0.0325 putative enzyme<br />

yafJ b0223 0.1911 0.0015 putative amidotransferase<br />

yafK b0224 0.2183 0.0034<br />

conserved protein; in enteroaggregative E. coli, YafK is required for development<br />

<strong>of</strong> bi<strong>of</strong>ilms<br />

yafQ b0225 0.3068 0.0158 conserved hypothetical protein<br />

yafS b0213 1.5738 0.0014 putative methyltransferase<br />

yagB b0266 0.1046 0.0003 hypothetical protein<br />

yagN b0280 0.2692 0.0237 hypothetical protein<br />

yahF b0320 1.8661 0.0118 putative oxidoreductase subunit<br />

yahJ b0324 1.4514 0.0167 putative deaminase<br />

yajC b0407 0.5517 0.0123 Sec Protein Secretion Complex<br />

yajI b0412 0.6979 0.0356 conserved hypothetical protein<br />

ybaJ b0461 0.1803 0.0125 conserved hypothetical protein<br />

ybaK b0481 1.4925 0.0073 conserved hypothetical protein<br />

ybaN b0468 0.4393 0.0017 hypothetical protein<br />

ybaQ b0483 0.1888 0.0099 conserved protein with a DNA-binding domain<br />

ybaY b0453 2.1228 0.0458 glycoprotein/polysaccharide metabolism<br />

ybbB b0503 0.6974 0.0351 tRNA 2-selenouridine synthase<br />

ybdJ b0580 0.3651 0.0026 conserved hypothetical protein<br />

ybeD b0631 3.2155 0.0247 conserved hypothetical protein<br />

ybeX b0658 2.4451 0.0016 putative transport protein<br />

ybeY b0659 3.1107 0.0068 conserved hypothetical protein<br />

ybeZ b0660 3.0813 0.0018 putative ATP-binding protein<br />

ybfF b0686 0.4851 0.0234 putative enzyme<br />

ybfH b0691 2.0652 0.0161 conserved hypothetical protein<br />

ybgA b0707 1.5050 0.0370 conserved protein<br />

ybgC b0736 0.5182 0.0269 Tol-Pal Cell Envelope Complex<br />

ybgI b0710 0.5520 0.0236 conserved protein, putative hydrolase-oxidase monomer<br />

ybgS b0753 1.6386 0.0415 putative homeobox protein<br />

ybhI b0770 1.6162 0.0084 YbhI DASS Transporter<br />

ybiF b0813 0.4910 0.0351 Threonine and Homoserine Exporter<br />

ybiH b0796 0.1350 0.0012 hypothetical protein<br />

ybjJ b0845 1.8338 0.0024 putative DEOR-type transcriptional regulator<br />

ybjN b0853 0.4973 0.0357 putative sensory transduction regulator<br />

ybjO b0858 0.7793 0.0239 putative membrane protein<br />

ybjS b0868 0.5267 0.0068 putative nucleotide di-P-sugar epimerase or dehydratase<br />

ycaK b0901 2.4091 0.0338 YcaK<br />

ycaL b0909 0.4133 0.0127 putative heat shock protein<br />

ycbB b0925 0.4752 0.0426 putative amidase<br />

ycbK b0926 0.2670 0.0090 conserved hypothetical protein<br />

ycbQ b0938 1.6913 0.0497 putative fimbrial-like protein<br />

ycbW b0946 0.8124 0.0000 conserved hypothetical protein<br />

yccM b0992 1.6258 0.0274 hypothetical protein<br />

yccR b0959 0.4415 0.0330 conserved protein<br />

yccV b0966 1.9670 0.0301 hemimethylated DNA-binding protein<br />

yceA b1055 0.5663 0.0415 hypothetical protein<br />

yceH b1067 0.5404 0.0358 conserved hypothetical protein<br />

ycfH b1100 2.0582 0.0168 putative hydrolase<br />

ycfJ b1110 0.6676 0.0447 hypothetical protein<br />

ycfP b1108 0.5438 0.0176 putative hydrolase<br />

ycfQ b1111 2.2543 0.0293 hypothetical protein<br />

ycfX b1119 0.5776 0.0347 putative sugar kinase, ROK family protein<br />

ycgG b1168 2.7312 0.0499 conserved protein<br />

ycgL b1179 0.3957 0.0211 conserved hypothetical protein<br />

ycgM b1180 0.3111 0.0120 putative isomerase<br />

132


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ycgN b1181 0.2615 0.0009 conserved hypothetical protein<br />

ycgZ b1164 0.3437 0.0011 hypothetical protein<br />

ychH b1205 0.3360 0.0075 conserved hypothetical protein<br />

yciI b1251 1.8595 0.0266 conserved hypothetical protein<br />

yciQ b1268 2.0023 0.0382 putative membrane protein<br />

ycjD b1289 1.8598 0.0220 conserved hypothetical protein<br />

ycjF b1322 4.5462 0.0002 putative membrane protein<br />

ycjR b1314 2.8426 0.0026 putative epimerase/isomerase<br />

ycjX b1321 5.2223 0.0078 putative EC 2.1 enzyme<br />

ycjZ b1328 0.3330 0.0288 putative transcriptional regulator LYSR-type<br />

ydaC b1347 2.1926 0.0196 hypothetical protein<br />

ydaL b1340 0.4087 0.0084 hypothetical protein<br />

ydaO b1344 0.3090 0.0329 conserved protein<br />

ydbK b1378 1.5381 0.0088 putative pyruvate synthase<br />

ydcD b1457 0.2425 0.0233 hypothetical protein<br />

ydcF b1414 0.3249 0.0248 conserved hypothetical protein<br />

ydcP b1435 0.5182 0.0437 putative collagenase<br />

ydcQ b1438 0.6588 0.0380 hypothetical protein<br />

ydcV b1443 2.3103 0.0430 YdcS/YdcT/YdcV/YdcU ABC transporter<br />

ydcX b1445 1.7926 0.0407 hypothetical protein<br />

ydcZ b1447 0.6629 0.0339 putative transport protein<br />

ydeI b1536 1.4337 0.0167 conserved hypothetical protein<br />

ydeK b1510 0.5430 0.0356 YdeK<br />

ydeP b1501 1.2063 0.0190 acid resistance protein<br />

ydfH b1540 0.4468 0.0056 hypothetical protein<br />

ydfX b1568 1.9527 0.0006 hypothetical protein<br />

ydgK b1626 0.2396 0.0104 putative oxidoreductase<br />

ydgT b1625 0.1619 0.0070 conserved hypothetical protein<br />

ydhA b1639 0.3471 0.0143 conserved hypothetical protein<br />

ydhC b1660 0.5332 0.0469 YdhC drug MFS transporter<br />

ydhF b1647 0.6866 0.0318 putative oxidoreductase, NAD(P)-linked<br />

ydhH b1640 0.5178 0.0331 conserved hypothetical protein<br />

ydhI b1643 0.3395 0.0016 hypothetical protein<br />

ydhX b1671 1.4069 0.0177 putative oxidoreductase, Fe-S subunit<br />

ydiA b1703 0.4230 0.0097 conserved protein<br />

ydiF b1694 2.3786 0.0350 putative enzyme / putative acetate CoA-transferase<br />

ydiU b1706 0.3937 0.0051 conserved protein<br />

ydjA b1765 0.2828 0.0032 conserved protein<br />

ydjE b1769 1.5337 0.0078 YdjE MFS transporter<br />

ydjG b1771 1.5063 0.0105 putative oxidoreductase<br />

ydjI b1773 1.8655 0.0163 putative aldolase<br />

yeaB b1813 0.3894 0.0148 conserved hypothetical protein, MutT-like<br />

yeaD b1780 1.6695 0.0155 conserved hypothetical protein<br />

yeaN b1791 1.5049 0.0207 YeaN<br />

yeaQ b1795 2.2111 0.0082 conserved hypothetical protein<br />

yebF b1847 1.6698 0.0283 conserved hypothetical protein<br />

yebK b1853 0.2495 0.0033 hypothetical protein<br />

yebQ b1828 1.8190 0.0400 YebQ<br />

yebR b1832 0.3530 0.0270 conserved hypothetical protein<br />

yebW b1837 0.4682 0.0099 hypothetical protein<br />

yecD b1867 0.2234 0.0222 putative enzyme<br />

yecN b1869 0.3102 0.0188 putative membrane protein<br />

yecP b1871 0.3399 0.0218 putative enzyme<br />

yecT b1877 1.0931 0.0431 hypothetical protein<br />

yedA b1959 0.5288 0.0316 putative transmembrane subunit<br />

yedR b1963 1.5955 0.0146 hypothetical protein<br />

133


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yedS_1 b1964 2.2882 0.0042 putative outer membrane protein<br />

yedS_2 b1965 1.7587 0.0236 putative outer membrane protein<br />

yedV b1968 1.8495 0.0385 putative 2-component sensor protein<br />

yeeI b1976 0.0966 0.0010 conserved hypothetical protein<br />

yeeN b1983 4.9594 0.0148 conserved protein<br />

yeeR b2001 2.6686 0.0487 hypothetical protein<br />

yeeT b2003 2.3201 0.0034 hypothetical protein<br />

yeeV b2005 1.3165 0.0457 toxin <strong>of</strong> the YeeV-YeeU toxin-antitoxin pair<br />

yegK b2072 1.7271 0.0442 conserved hypothetical protein<br />

yegS b2086 2.0901 0.0070 conserved protein<br />

yegZ b2083 2.2403 0.0450 hypothetical protein<br />

yeiB b2152 0.3697 0.0315 putative flavoprotein<br />

yeiE b2157 0.3697 0.0245 LYSR-type transcriptional regulator<br />

yeiH b2158 0.4992 0.0227 putative membrane protein<br />

yeiS b2145 0.4582 0.0020 hypothetical protein<br />

yeiU b2174 0.4647 0.0046 putative permease<br />

yejO b2190 0.7784 0.0168 putative outer membrane protein<br />

yfbE b2253 2.0569 0.0265 UDP-L-Ara4O C-4" transaminase<br />

yfbN b2273 2.3173 0.0063 conserved hypothetical protein<br />

yfbP b2275 1.8398 0.0323 hypothetical protein<br />

yfbS b2292 1.5779 0.0333 putative transport protein<br />

yfdG b2350 0.2271 0.0070 hypothetical protein<br />

yfdT b2363 1.6042 0.0163 hypothetical protein<br />

yfdY b2377 0.3177 0.0340 hypothetical protein<br />

yfdZ b2379 0.4370 0.0356 putative aminotransferase<br />

yfeT b2427 0.3878 0.0370 conserved protein<br />

yffP b2447 0.5387 0.0462 hypothetical protein<br />

yfgA b2516 0.3806 0.0060 putative membrane protein<br />

yfgB b2517 0.5726 0.0383 putative pyruvate formate lyase activating enzyme 2<br />

yfgC b2494 0.5296 0.0021 conserved protein<br />

yfgJ b2510 2.4079 0.0095 putative cytochrome<br />

yfhG b2555 0.2458 0.0032 conserved protein<br />

yfhL b2562 0.2615 0.0411 putative ferredoxin<br />

yfhR b2534 1.6968 0.0195 putative methylase or hydrolase<br />

yfiC b2575 0.1195 0.0045 putative enzyme<br />

yfiR b2603 0.4114 0.0278 conserved protein<br />

yfjD b4461 1.6322 0.0139 putative membrane protein, hemolysin-like<br />

yfjG b2619 1.8502 0.0087 toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

yfjL b2628 0.1625 0.0098 hypothetical protein<br />

yfjO b2631 0.5072 0.0379 hypothetical protein<br />

yfjS b2636 1.9190 0.0123 inner membrane lipoprotein YfjS<br />

yfjU b2638 0.5267 0.0020 hypothetical protein<br />

ygaD b2700 0.4320 0.0264 conserved protein<br />

ygaH b2683 0.4552 0.0216 putative transport protein<br />

ygbE b2749 0.1583 0.0105 putative cytochrome oxidase subunit<br />

ygcF b2777 2.5383 0.0021 hypothetical protein<br />

ygdI b2809 2.2634 0.0305 hypothetical protein<br />

ygdK b2811 0.3282 0.0174 conserved hypothetical protein<br />

ygdR b2833 0.4614 0.0075 conserved hypothetical protein<br />

ygeG b2851 1.7509 0.0180 conserved hypothetical protein<br />

ygeK b2855 2.0910 0.0188 putative 2-component transcriptional regulator<br />

ygeW b2870 1.8672 0.0031 putative carbamoyl transferase<br />

ygfH b2920 1.5120 0.0087 propionyl-CoA:succinate CoA transferase<br />

ygfS b2886 1.9879 0.0229 putative oxidoreductase, Fe-S subunit<br />

yggH b2960 0.4393 0.0186 tRNA (m7G46) methyltransferase<br />

yggJ b2946 0.5103 0.0052 conserved hypothetical protein<br />

134


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value<br />

yggX b2962 0.2130 0.0026<br />

Function<br />

conserved hypothetical protein with role in oxidation-resistance <strong>of</strong> iron-sulfur<br />

clusters<br />

yghQ b2983 1.5927 0.0325 putative serine protease<br />

yghS b2985 2.5090 0.0044 conserved protein<br />

ygiA b3036 0.4378 0.0239 hypothetical protein<br />

ygiF b3054 0.4550 0.0096 conserved hypothetical protein<br />

ygiH b3059 0.3702 0.0081 putative membrane protein<br />

ygiU b3022 0.2603 0.0069 putative cyanide hydratase<br />

ygjG b3073 1.9440 0.0152 putrescine:2-oxoglutaric acid aminotransferase<br />

ygjN b3083 0.4759 0.0137 conserved hypothetical protein<br />

ygjR b3087 0.4817 0.0398 putative NAD(P)-binding dehydrogenase<br />

yhaK b3106 0.6327 0.0013 conserved hypothetical protein<br />

yhbP b3154 0.2861 0.0046 conserved protein<br />

yhcA b3215 1.7828 0.0096 putative chaperone<br />

yhcB b3233 0.4240 0.0252 conserved hypothetical protein<br />

yhcD b3216 2.5320 0.0410 putative outer membrane protein<br />

yhcM b3232 0.2725 0.0003 hypothetical protein<br />

yhdA b3252 0.1678 0.0074 conserved protein<br />

yhdJ b3262 1.4106 0.0325 cell cycle-regulated methyltransferase<br />

yheN b3345 0.6302 0.0272 conserved hypothetical protein<br />

yheO b3346 0.5020 0.0092 hypothetical protein<br />

yhfG b3362 1.9518 0.0284 conserved hypothetical protein<br />

yhfX b3381 1.9848 0.0205 conserved protein<br />

yhhK b3459 0.4123 0.0018 putative acyltransferase<br />

yhhM b3467 0.3265 0.0159 putative receptor<br />

yhhN b3468 0.4588 0.0073 putative enzyme<br />

yhhS b3473 0.3667 0.0188 YhhS MFS transporter<br />

yhhT b3474 0.5527 0.0461 hypothetical protein<br />

yhiL b3490 2.2476 0.0051 hypothetical protein<br />

yhiP b3496 1.3365 0.0190 YhiP peptide POT transporter<br />

yhiS b3504 1.6910 0.0222 conserved protein<br />

yhjA b3518 2.6298 0.0076 putative cytochrome C peroxidase (EC 1.11.1)<br />

yhjC b3521 0.2139 0.0092 putative transcriptional regulator LYSR-type<br />

yhjR b3535 0.2767 0.0243 hypothetical protein<br />

yiaJ b3574 0.3464 0.0228 YiaJ transcriptional repressor<br />

yiaV b3586 2.4422 0.0226 putative membrane protein<br />

yibA b3594 2.4261 0.0343 putative lyase<br />

yicE b3654 0.0934 0.0007 YicE NCS2 tranporter<br />

yidI b3677 0.5721 0.0151 hypothetical protein<br />

yieO b3754 0.5670 0.0417 YieO drug MFS transporter<br />

yifE b3764 1.7605 0.0381 hypothetical protein<br />

yigA b3810 0.4061 0.0291 conserved hypothetical protein<br />

yigL b3826 1.9789 0.0325 conserved protein with a phosphatase-like domain<br />

yihI b3866 0.3969 0.0382 conserved protein<br />

yihN b3874 1.3163 0.0362 YihN MFS transporter<br />

yihW b3884 0.5544 0.0009 putative DEOR-type transcriptional regulator<br />

yihX b3885 0.1479 0.0070 putative phosphatase<br />

yjbE b4026 2.1742 0.0103 conserved hypothetical protein<br />

yjbJ b4045 0.8546 0.0153 highly abundant nonessential protein<br />

yjbQ b4056 0.3680 0.0272 conserved hypothetical protein<br />

yjdA b4109 0.1308 0.0055 hypothetical protein<br />

yjeB b4178 0.1691 0.0045 conserved protein with a Winged helix domain<br />

yjeK b4146 0.2195 0.0017 hypothetical protein<br />

yjeS b4166 5.5584 0.0055 conserved ferredoxin-like protein<br />

yjfY b4199 2.3690 0.0232 conserved hypothetical protein<br />

yjfZ b4204 1.7639 0.0428 hypothetical protein<br />

yjgK b4252 0.7295 0.0143 conserved hypothetical protein<br />

135


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yjhQ b4307 1.4246 0.0099 hypothetical protein<br />

yjiP b4338 2.4980 0.0122 hypothetical protein<br />

yjjK b4391 1.7150 0.0293 YjjK<br />

yjjV b4378 0.5588 0.0453 putative hydrolase<br />

ykfA b0253 0.6499 0.0241 putative GTP-binding protein<br />

ykfI b0245 1.4478 0.0135 toxin <strong>of</strong> the YkfI-YafW toxin-antitoxin pair<br />

ymdB b1045 0.3716 0.0228 conserved protein<br />

ymfE b1138 0.3125 0.0102 hypothetical protein<br />

ymfL b1147 2.2281 0.0426 hypothetical protein<br />

ymjA b1295 0.2117 0.0004 hypothetical protein<br />

ynaE b1375 0.3494 0.0151 hypothetical protein<br />

ynaI b1330 2.3789 0.0357 YnaI<br />

yncA b1448 0.2369 0.0176 putative N-acetyltransferase<br />

yncI b1458 0.3663 0.0269 conserved protein<br />

yneE b1520 0.3459 0.0204 conserved hypothetical protein<br />

yneH b1524 0.2425 0.0072 putative glutaminase<br />

yoaB b1809 0.7879 0.0038 conserved protein<br />

yoaG b1796 1.8050 0.0152 hypothetical protein<br />

yoaH b1811 0.4847 0.0212 conserved hypothetical protein<br />

yobA b1841 0.4374 0.0151 hypothetical protein<br />

yodA b1973 1.4017 0.0256 cadmium-induced metal binding protein<br />

ypdA b2380 0.4128 0.0202 putative sensor protein<br />

yphA b2543 0.5045 0.0317 hypothetical protein<br />

ypjA b2647 1.4597 0.0449 putative outer membrane protein<br />

ypjF b2646 2.1806 0.0102 member <strong>of</strong> the YeeV, YkfI, YpjF family <strong>of</strong> toxin proteins<br />

yqaA b2689 0.3480 0.0062 putative integral membrane protein<br />

yqeI b2847 0.2786 0.0052 putative sensory transducer<br />

yqgE b2948 0.4450 0.0370 conserved protein<br />

yqgF b2949 0.3997 0.0078 possible Holliday junction resolvase<br />

yqiA b3031 0.4262 0.0079 putative hydrolase<br />

yqiB b3033 0.3117 0.0078 putative enzyme<br />

yqiJ b3050 1.4637 0.0242 putative oxidoreductase<br />

yqjC b3097 1.4751 0.0229 conserved protein<br />

yqjK b3100 1.6055 0.0133 conserved hypothetical protein<br />

yraM b3147 0.3549 0.0084 putative glycosylase<br />

yraN b3148 0.3605 0.0169 conserved hypothetical protein<br />

yrbL b3207 0.3337 0.0259 conserved hypothetical protein; transcription is regulated <strong>by</strong> Mg2+<br />

yrdD b3283 0.1449 0.0047 putative DNA topoisomerase<br />

ytfA b4205 0.8018 0.0308 hypothetical protein<br />

ytfG b4211 1.9267 0.0219 putative oxidoreductase<br />

ytfN b4221 0.6361 0.0427 conserved protein<br />

ytfP b4222 0.5980 0.0212 conserved hypothetical protein<br />

ytjB b4387 0.5868 0.0341 membrane protein<br />

zapA b2910 0.1619 0.0022 ZapA protein, localizes to the cytokinetic ring<br />

zipA b2412 0.2297 0.0272 essential cell division protein ZipA<br />

zitB b0752 2.0419 0.0407 ZitB zinc CDF transporter<br />

znuA b1857 0.4717 0.0485 ZnuA/ZnuB/ZnuC ABC transporter<br />

zur b4046 0.3387 0.0049 Zur transcriptional regulator<br />

Supplementary table – IX: LZ41 hns-205::Tn10 (A) Vs LZ54 hns-205::Tn10 (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

acpS b2563 1.5407 0.0218 holo-[acyl-carrier-protein] synthase<br />

136


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

acrE b3265 0.1990 0.0005 transmembrane protein affects septum formation and cell membrane permeability<br />

acrF b3266 0.4401 0.0079 AcrEF-TolC Drug Efflux Transport System<br />

ade b3665 0.4857 0.0346 cryptic adenine deaminase monomer<br />

agaA b3135 1.3368 0.0175 AgaA<br />

agp b1002 1.7053 0.0169 3-phytase / glucose-1-phosphatase<br />

allD b0517 0.8448 0.0140 ureidoglycolate dehydrogenase<br />

alsK b4084 2.0491 0.0034 putative D-allose kinase<br />

amn b1982 0.6066 0.0233 AMP nucleosidase<br />

ampH b0376 0.6290 0.0473 putative enzyme<br />

apt b0469 0.4031 0.0012 adenine phosphoribosyltransferase<br />

arcB b3210 1.3746 0.0005 ArcB-Phis292<br />

argE b3957 0.4469 0.0206 acetylornithine deacetylase<br />

argP b2916 1.8354 0.0114 ArgP transcriptional activator<br />

argR b3237 0.8272 0.0077 ArgR transcriptional dual regulator<br />

aroG b0754 0.4066 0.0018 2-dehydro-3-deoxyphosphoheptonate aldolase<br />

aroL b0388 0.6991 0.0407 shikimate kinase II<br />

aroM b0390 1.2587 0.0066 protein <strong>of</strong> aro operon, regulated <strong>by</strong> aroR<br />

arsR b3501 2.1332 0.0342 ArsR transcriptional regulator<br />

artJ b0860 1.4705 0.0115 arginine ABC transporter<br />

ascF b2715 0.6756 0.0021 EIIAsc<br />

asd b3433 0.3715 0.0107 aspartate semialdehyde dehydrogenase<br />

asr b1597 1.4676 0.0477 acid shock protein<br />

atoC b2220 1.4762 0.0173 AtoC-Pasp<br />

b0165 b0165 0.5609 0.0062 hypothetical protein<br />

b0255 b0255 0.4577 0.0292 hypothetical protein<br />

b0501 b0501 1.7323 0.0252 hypothetical protein<br />

b0582 b0582 1.6254 0.0305 IS186 protein<br />

b0609 b0609 1.7352 0.0238 hypothetical protein<br />

b1052 b1052 0.6634 0.0425 hypothetical protein<br />

b1144 b1144 2.3356 0.0306 hypothetical protein<br />

b1371 b1371 1.3289 0.0228 hypothetical protein<br />

b1402 b1402 0.5199 0.0099 IS22 protein<br />

b1578 b1578 0.3596 0.0018 hypothetical protein<br />

b3004 b3004 1.5667 0.0459 hypothetical protein<br />

b3044 b3044 0.4341 0.0020 IS21 protein<br />

b3975 b3975 0.6083 0.0012 hypothetical protein<br />

bcp b2480 0.4248 0.0031 thiol peroxidase<br />

bcsB b3532 1.3097 0.0175 cellulose biosynthesis protein<br />

bcsZ b3531 1.5108 0.0233 endo-1,4-D-glucanase<br />

bfd b3337 1.5485 0.0247 bacteri<strong>of</strong>erritin-associated ferredoxin<br />

bglJ b4366 0.6250 0.0347 BglJ transcriptional regulator<br />

bisC b3551 0.7735 0.0310 biotin sulfoxide reductase / methionine-S-sulfoxide reductase<br />

bolA b0435 1.2797 0.0184 BolA transcriptional regulator<br />

borD b0557 0.3304 0.0257 bacteriophage lambda Bor protein homolog<br />

btuB b3966 2.9792 0.0085<br />

outer membrane receptor for transport <strong>of</strong> vitamin B12, E colicins, and<br />

bacteriophage BF23<br />

btuF b0158 1.6355 0.0409 periplasmic vitamin B12 binding protein<br />

cadA b4131 1.5715 0.0317 lysine decarboxylase<br />

caiD b0036 1.4534 0.0482 crotonobetainyl-CoA hydratase / carnitine racemase<br />

carA b0032 0.2101 0.0070 carbamoyl phosphate synthetase<br />

ccmA b2201 1.6431 0.0142 CcmABCDEFGH cytochrome c bio<strong>gene</strong>sis system<br />

cfa b1661 0.6266 0.0211 cyclopropane fatty acid synthase<br />

cheY b1882 1.3741 0.0165 CheY-Pasp<br />

citX b0614 1.6215 0.0232 holo-ACP synthase<br />

clpA b0882 1.3076 0.0196 ATP-binding component <strong>of</strong> serine protease<br />

clpB b2592 1.7953 0.0255 ClpB chaperone<br />

cmr b0842 0.6968 0.0355 MdfA/Cmr MFS multidrug transporter<br />

137


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

cobC b0638 2.3925 0.0065 alpha-ribazole-5'-P phosphatase<br />

codA b0337 0.3324 0.0112 cytosine deaminase<br />

codB b0336 0.3778 0.0284 CodB cytosine NCS1 transporter<br />

corA b3816 0.6187 0.0409 CorA magnesium ion MIT transporter<br />

cpdA b3032 0.6411 0.0141 cAMP phosphodiesterase<br />

cpsB b2049 4.1414 0.0042 mannose-1-phosphate guanylyltransferase-(GDP)<br />

cpsG b2048 3.9546 0.0014 phosphomannomutase<br />

cpxP b3913 2.3448 0.0199<br />

regulator <strong>of</strong> the Cpx response and possible chaperone involved in resistance to<br />

extracytoplasmic stress<br />

creB b4398 0.3912 0.0063 CreB- Phosphorylated transcriptional regulator<br />

crl b0240 0.3398 0.0058 Crl transcriptional regulator<br />

csgA b1042 1.1757 0.0491 curlin, major subunit<br />

csgD b1040 0.3335 0.0298 CsgD transcriptional activator<br />

csgE b1039 0.3294 0.0116 curli production assembly/transport component<br />

csgG b1037 0.6373 0.0467 curli production component<br />

cspA b3556 0.1595 0.0272 cold shock protein CspA<br />

cspB b1557 0.0804 0.0020 cold shock protein CspB<br />

cspF b1558 0.1563 0.0010 cold shock protein CspF<br />

cspI b1552 0.4222 0.0364 cold shock protein CspI<br />

cvpA b2313 0.4563 0.0323 membrane protein required for colicin V production<br />

cyaY b3807 0.7207 0.0274 iron-binding frataxin homolog<br />

cybB b1418 0.4149 0.0121 cytochrome b561<br />

cybC b4236 0.5877 0.0172 cytochrome b562 (soluble)<br />

cynR b0338 1.4730 0.0246 CynR-Cyanate transcriptional activator<br />

cyoA b0432 1.6203 0.0356 cytochrome bo terminal oxidase subunit II<br />

cyoD b0429 1.2541 0.0388 cytochrome bo terminal oxidase subunit IV<br />

cyoE b0428 1.7729 0.0214 heme O synthase<br />

cysJ b2764 0.8120 0.0324 sulfite reductase flavoprotein subunit<br />

cysM b2421 0.7167 0.0338 O-acetylserine (thiol)-lyase B<br />

cytR b3934 0.3074 0.0076 CytR-cytidine<br />

dapA b2478 0.5629 0.0328 dihydrodipicolinate synthase<br />

dapF b3809 0.5061 0.0428 diaminopimelate epimerase<br />

dcm b1961 0.8273 0.0436 DNA cytosine methylase<br />

dcrB b3472 2.0849 0.0233 conserved protein involved in bacteriophage adsorption<br />

ddpA b1487 1.5696 0.0361 YddS<br />

ddpC b1485 2.0675 0.0310 YddQ<br />

degS b3235 0.4723 0.0130<br />

inner membrane serine protease required for the extracytoplasmic stress response<br />

mediated <strong>by</strong> sigmaE<br />

dfp b3639 0.4912 0.0038 P-pantothenate cysteine ligase / P-pantothenoylcysteine decarboxylase<br />

dnaB b4052 0.2288 0.0030 chromosome replication; chain elongation; part <strong>of</strong> primosome<br />

dnaG b3066 2.0680 0.0024 DNA biosynthesis; DNA primase<br />

dppC b3542 1.7014 0.0194 dipeptide ABC transporter<br />

dppF b3540 1.6050 0.0225 dipeptide ABC transporter<br />

dsbB b1185 0.7021 0.0043 dsbB protein<br />

dsbC b2893 0.5304 0.0070 DsbCoxidized<br />

dtd b3887 0.6855 0.0317 D-Tyr-tRNATyr deacylase<br />

dxr b0173 1.5005 0.0195 DXP reductoisomerase<br />

eda b1850 1.6768 0.0060<br />

oxaloacetate decarboxylase / 2-keto-3-deoxy-6-phosphogluconate aldolase / 2-<br />

keto-4-hydroxyglutarate aldolase<br />

elaA b2267 0.7645 0.0471 hypothetical protein<br />

elaC b2268 0.6841 0.0220 binuclear zinc phosphodiesterase monomer<br />

emrE b0543 1.4396 0.0395 EmrE SMR transporter<br />

entD b0583 0.7069 0.0132 phosphopantetheinyl transferase<br />

entE b0594 0.5193 0.0155 enterobactin synthase multienzyme complex<br />

envR b3264 0.6510 0.0447 EnvR transcriptional regulator<br />

epd b2927 0.4460 0.0015 erythrose 4-phosphate dehydrogenase<br />

eutN b2456 1.0929 0.0134 putative detox protein, ethanolamine utilization<br />

138


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value<br />

Function<br />

beta-hydroxyacyl-ACP dehydrase / beta-hydroxydecanoyl-ACP dehydrase / trans-<br />

2-decenoyl-ACP isomerase<br />

fabA b0954 1.3210 0.0488<br />

fabB b2323 0.5971 0.0302 beta-ketoacyl-ACP synthase I / malonyl-ACP decarboxylase<br />

fadE b0221 1.6673 0.0495 acyl-CoA dehydrogenase<br />

fdnI b1476 1.9523 0.0061 formate dehydrogenase N, &gamma; subunit<br />

involved in protein transport; multicopy suppressor <strong>of</strong> dominant negative ftsH<br />

fdrA b0518 1.2709 0.0284 mutants<br />

outer membrane receptor; citrate-dependent iron transport, outer membrane<br />

fecA b4291 1.7276 0.0273 receptor<br />

fecI b4293 3.0790 0.0101 sigma19 factor<br />

fhuC b0151 0.5705 0.0007 ferrichrome uptake system<br />

fldA b0684 1.1793 0.0126 oxidized flavodoxin 1<br />

flgJ b1081 1.5509 0.0122 FlgJ<br />

flhD b1892 0.3498 0.0204 FlhD transcriptional dual regulator<br />

fliK b1943 1.5668 0.0293 flagellar hook-length control protein FliK<br />

periplasmic cystine-binding protein; member <strong>of</strong> extracellular bacterial solutebinding<br />

fliY b1920 0.5595 0.0124<br />

protein family III<br />

fmt b3288 1.4785 0.0271 10-formyltetrahydr<strong>of</strong>olate:L-methionyl-tRNA(fMet) N-formyltransferase<br />

fnr b1334 2.6607 0.0164 FNR transcriptional dual regulator<br />

folB b3058 0.5634 0.0051 dihydroneopterin aldolase<br />

methyleneTHF enzyme / methenyltetrahydr<strong>of</strong>olate cyclohydrolase /<br />

folD b0529 0.6659 0.0470 methylenetetrahydr<strong>of</strong>olate dehydrogenase-(NADP+)<br />

fre b3844 1.6805 0.0020 FMN reductase<br />

frlR b3375 0.7577 0.0058 putative transcriptional regulator<br />

frmA b0356 1.5071 0.0219 formaldehyde dehydrogenase, glutathione-dependent<br />

frsA b0239 0.4360 0.0232 fermentation/respiration switch protein<br />

fruR b0080 0.6025 0.0156 FruR transcriptional dual regulator<br />

frvA b3900 1.5012 0.0441 EIIABCFrv<br />

frwB b3950 2.0264 0.0163 EIIBCFrw<br />

frwC b3949 1.7660 0.0430 EIIBCFrw<br />

ftsB b2748 0.3995 0.0032 essential cell division protein FtsB<br />

fumB b4122 1.5288 0.0433 fumarase B monomer<br />

fur b0683 1.5727 0.0358 Fur transcriptional dual regulator<br />

gadX b3516 0.5996 0.0010 GadX transcriptional activator<br />

UDP-glucose-hexose-1-phosphate uridylyltransferase / galactose-1-phosphate<br />

galT b0758 1.5496 0.0183 uridylyltransferase<br />

galU b1236 1.1283 0.0373 UTP-glucose-1-phosphate uridylyltransferase<br />

gapC_1 b1417 0.6328 0.0268 split glyceraldehyde 3-phosphate dehydrogenase C<br />

gapC_2 b1416 0.7832 0.0228 glyceraldehyde 3-phosphate dehydrogenase C, interrupted<br />

gatC b2092 0.5533 0.0229 EIIGat<br />

gatD b2091 0.5303 0.0482 galactitol-1-phosphate dehydrogenase<br />

gatY b2096 0.2303 0.0083 tagatose-1,6-bisphosphate aldolase 2<br />

gatZ b2095 0.3772 0.0024 tagatose-1,6-bisphosphate aldolase 2<br />

gcvH b2904 0.1767 0.0186 dihydrolipoyl-GcvH-protein<br />

gcvR b2479 0.2386 0.0003 GcvR-gly<br />

glcA b2975 1.2470 0.0468 YghK transporter<br />

glf b2036 1.4291 0.0266 UDP-galactopyranose mutase<br />

N-acetylglucosamine-1-phosphate uridyltransferase / glucosamine-1-phosphate<br />

glmU b3730 0.2684 0.0006 acetyltransferase<br />

glnD b0167 1.5254 0.0066 uridylyltransferase / uridylyl-removing enzyme<br />

glpB b2242 1.6094 0.0343 glycerol-3-phosphate-dehydrogenase, anaerobic<br />

glpD b3426 0.6947 0.0391 glycerol 3-phosphate dehydrogenase, aerobic<br />

gltI b0655 2.1460 0.0238 putative periplasmic binding transport protein<br />

gltJ b0654 1.8439 0.0084 glutamate ABC transporter<br />

gltL b0652 2.3251 0.0499 glutamate ABC transporter<br />

glyA b2551 0.6522 0.0151 glycine hydroxymethyltransferase<br />

glyQ b3560 0.7048 0.0451 glycine-tRNA synthetase, alpha subunit<br />

gntU b4476 1.5662 0.0354 GntU gluconate Gnt transporter<br />

gntY b3414 2.5638 0.0235 predicted membrane-bound protein that is involved in high-affinity gluconate<br />

139


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value Function<br />

transport<br />

gpt b0238 0.6101 0.0011<br />

xanthine phosphoribosyltransferase / guanine phosphoribosyltransferase /<br />

hypoxanthine phosphoribosyltransferase<br />

greA b3181 2.0067 0.0017<br />

transcription elongation factor; stimulates the mRNA cleavage activity <strong>of</strong> RNA<br />

polymerase<br />

grxA b0849 1.5161 0.0008 oxidized glutaredoxin<br />

grxB b1064 0.6716 0.0024 oxidized glutaredoxin 2<br />

gspC b3324 0.6446 0.0495 putative protein secretion protein for export<br />

gspD b3325 0.6169 0.0078 putative protein secretion protein for export<br />

gspG b3328 1.3373 0.0380 putative protein secretion protein for export<br />

gspJ b3331 1.5637 0.0307 putative protein secretion protein for export<br />

gspM b3334 1.6029 0.0266 putative protein secretion protein<br />

gst b1635 0.4622 0.0007 glutathione transferase<br />

guaB b2508 0.4105 0.0135 IMP dehydrogenase<br />

gudX b2788 2.0225 0.0315 putative glucarate dehydratase<br />

gyrB b3699 2.0935 0.0014 DNA gyrase, subunit B<br />

hcaC b2540 0.6918 0.0184 ferredoxin, 3-phenylpropionate dioxygenase system<br />

hcaT b2536 0.7188 0.0131 HcaT MFS transporter<br />

hcr b0872 1.7460 0.0357 NADH oxidoreductase<br />

hdeA b3510 0.6336 0.0024 acid-resistance protein, possible chaperone<br />

hdfR b4480 0.5965 0.0480 transcriptional regulator<br />

hemA b1210 2.4332 0.0162 glutamyl-tRNA reductase<br />

hemC b3805 0.3060 0.0013 hydroxymethylbilane synthase<br />

hemD b3804 0.4619 0.0020 uroporphyrinogen III synthase<br />

hemG b3850 0.6070 0.0126 protoporphyrinogen oxidase<br />

hemH b0475 1.6618 0.0431 ferrochelatase<br />

hflD b1132 0.5428 0.0224 membrane protein in operon with purB<br />

hflX b4173 0.6818 0.0118 putative GTPase; possible regulator <strong>of</strong> HflKC<br />

hfq b4172 0.5741 0.0397<br />

RNA-binding protein that affects many cellular processes; homolog <strong>of</strong><br />

mammalian Sm/Sm-like proteins<br />

hha b0460 0.3066 0.0051 haemolysin <strong>expression</strong> modulating protein<br />

hisC b2021 0.5274 0.0366 histidine-phosphate aminotransferase<br />

hisD b2020 0.4683 0.0485 histidinal dehydrogenase / histidinol dehydrogenase<br />

hisF b2025 0.8078 0.0189 imidazole glycerol phosphate synthase, HisF subunit<br />

hisS b2514 0.6173 0.0477 histidyl-tRNA synthetase<br />

hns b1237 0.5055 0.0012 H-NS transcriptional dual regulator<br />

h<strong>of</strong>O b3393 2.0366 0.0008 conserved hypothetical protein<br />

holA b0640 1.8168 0.0002 DNA polymerase III, delta subunit<br />

holC b4259 0.2779 0.0200 DNA polymerase III, chi subunit<br />

holE b1842 0.2376 0.0017 DNA polymerase III, theta subunit<br />

hslR b3400 1.6952 0.0251 heat shock protein Hsp15<br />

htrA b0161 1.3676 0.0489 DegP<br />

htrL b3618 3.3010 0.0333 involved in lipopolysaccharide biosynthesis<br />

hycH b2718 1.3428 0.0378 processing <strong>of</strong> large subunit (HycE) <strong>of</strong> hydrogenase 3 (part <strong>of</strong> the FHL complex)<br />

hypF b2712 1.5597 0.0001 hydrogenase maturation protein<br />

ibpA b3687 1.9972 0.0407 small heat shock protein IbpA<br />

iclR b4018 0.3761 0.0272 IclR-PEP<br />

idnD b4267 0.6061 0.0334 L-idonate 5-dehydrogenase<br />

idnO b4266 0.6120 0.0319 5-keto-D-gluconate 5-reductase / putative acetoin dehydrogenase<br />

ilvG_1 b3767 0.3376 0.0394 IlvG_1<br />

ilvM b3769 0.3697 0.0001 acetohydroxybutanoate synthase II / acetolactate synthase II<br />

imp b0054 0.6460 0.0370 organic solvent tolerance<br />

infA b0884 1.9363 0.0438 protein chain initiation factor IF-1<br />

intR b1345 0.5249 0.0341 putative transposase<br />

intZ b2442 0.7707 0.0220 putative prophage integrase<br />

iscR b2531 3.2160 0.0490 IscR transcriptional regulator<br />

iscU b2529 2.3333 0.0037 scaffold protein involved in iron-sulfur cluster assembly<br />

140


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

iscX b2524 1.9429 0.0374 protein with possible role in iron-sulfur cluster bio<strong>gene</strong>sis<br />

ispA b0421 0.2156 0.0032 geranyl diphosphate synthase / farnesyl diphosphate synthase<br />

ispG b2515 0.4793 0.0372 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase<br />

kdpA b0698 1.4635 0.0082 potassium ion P-type ATPase transporter<br />

kdtA b3633 0.5128 0.0192 KDO transferase<br />

kefC b0047 1.4900 0.0328 KefC potassium CPA2 transporter<br />

lctD b3605 1.5950 0.0088 L-Lactate:Quinone Oxidoreductase<br />

leuA b0074 0.5604 0.0386 2-isopropylmalate synthase<br />

leuO b0076 0.4172 0.0372 LeuO transcriptional activator<br />

ligT b0147 0.3631 0.0028 hypothetical protein<br />

lipB b0630 1.7073 0.0027 lipoyl-protein ligase<br />

lolB b1209 0.5077 0.0232 outer membrane lipoprotein, localization <strong>of</strong> lipoproteins in the outer membrane<br />

lon b0439 1.7720 0.0416 DNA-binding, ATP-dependent protease La<br />

lpcA b0222 0.5206 0.0283 lipopolysaccharide core biosynthesis; phosphoheptose isomerase<br />

lpxP b2378 1.5961 0.0222 palmitoleoyl acyltransferase<br />

maa b0459 0.4667 0.0368 maltose acetyltransferase<br />

malP b3417 1.6906 0.0124 maltodextrin phosphorylase monomer<br />

malT b3418 0.4985 0.0239 MalT-MalK<br />

marA b1531 0.5442 0.0225 MarA transcriptional activator<br />

mazE b2783 0.8900 0.0434 antitoxin <strong>of</strong> the MazEF "addiction module"<br />

mcrA b1159 0.4973 0.0172 restriction <strong>of</strong> DNA at 5-methylcytosine residues<br />

mcrB b4346 1.3712 0.0144 MrcB subunit <strong>of</strong> 5-methylcytosine restriction system<br />

mdaB b3028 0.5909 0.0179 NADPH quinone reductase<br />

mdoG b1048 1.3670 0.0155 periplasmic glucan (MDO) biosynthesis protein<br />

mdtF b3514 2.2727 0.0041 YhiV<br />

mdtK b1663 0.4631 0.0216 NorE multidrug efflux MATE transporter<br />

mdtN b4082 1.4199 0.0116 putative membrane protein<br />

menF b2265 0.3329 0.0082 isochorismate synthase, menaquinone-specific<br />

metC b3008 1.3616 0.0383 L-cysteine desulfhydrase / cystathionine-beta-lyase<br />

mgrB b1826 0.6490 0.0364 hypothetical protein; product <strong>of</strong> a <strong>gene</strong> induced <strong>by</strong> low magnesium<br />

minC b1176 0.1945 0.0010<br />

cell division inhibitor <strong>of</strong> the MinC-MinD-MinE and DicB-MinC systems that<br />

regulate septum placement<br />

minD b1175 0.3435 0.0101<br />

membrane ATPase <strong>of</strong> the MinC-MinD-MinE system that regulates septum<br />

placement<br />

minE b1174 0.3672 0.0145<br />

cell division topological specificity factor and inhibitory component <strong>of</strong> the MinC-<br />

MinD-MinE system that regulates septum placement<br />

mltC b2963 0.5062 0.0384 membrane-bound lytic murein transglycosylase C<br />

mnmC b2324 0.5470 0.0326 bifunctional enzyme catalyzing the formation <strong>of</strong> mnm5s2U in tRNA<br />

mobA b3857 0.6706 0.0302 molybdopterin guanine dinucleotide synthase<br />

motB b1889 0.7051 0.0060<br />

MotB protein, enables flagellar motor rotation, linking torque machinery to cell<br />

wall<br />

mreB b3251 0.5301 0.0235 rod shape-determining protein<br />

msbB b1855 0.3370 0.0177 myristoyl acyltransferase<br />

msrB b1778 1.0943 0.0060<br />

methionine sulfoxide reductase B / protein-methionine-S-oxide reductase /<br />

methionine sulfoxide reductase<br />

mtlD b3600 0.4275 0.0087 mannitol-1-phosphate 5-dehydrogenase<br />

mukE b0923 0.4201 0.0052 protein involved in chromosome partitioning<br />

mukF b0922 0.2947 0.0054 Ca2+-binding protein involved in chromosome partitioning<br />

murC b0091 1.5288 0.0169 UDP-N-acetylmuramate-alanine ligase<br />

murI b3967 2.4431 0.0020 glutamate racemase<br />

mutM b3635 1.4678 0.0408 formamidopyrimidine DNA glycosylase<br />

mutY b2961 0.3818 0.0326 adenine glycosylase; G.C --> T.A transversions<br />

nadD b0639 2.2259 0.0009 nicotinate-mononucleotide adenylyltransferase<br />

nadE b1740 0.7970 0.0374 NAD+ synthase, glutamine dependent / NAD+ synthase, NH3-dependent<br />

nadK b2615 1.2935 0.0461 NAD kinase monomer<br />

nagZ b1107 0.5177 0.0214 &beta;-N-acetylglucosaminidase<br />

nanR b3226 0.3753 0.0253 NanR transcriptional regulator<br />

napC b2202 1.5349 0.0131 cytochrome c protein<br />

141


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

narI b1227 1.4294 0.0314 nitrate reductase A, &gamma; subunit<br />

narP b2193 0.5047 0.0363 NarP-Phosphorylated transcriptional regulator<br />

narX b1222 0.7241 0.0227 NarX-Phis<br />

ndh b1109 0.3534 0.0481 NADH cupric reductase / NADH dehydrogenase II<br />

nfo b2159 0.7313 0.0447 endonuclease IV<br />

nhaA b0019 1.6748 0.0323 sodium/proton NhaA transporter<br />

nhaB b1186 0.7111 0.0329 NhaB sodium/proton transporter<br />

nhaR b0020 1.5626 0.0364 NhaR-Na+ transcriptional activator<br />

nirD b3366 1.2931 0.0487 nitrite reductase, small subunit<br />

nlpB b2477 0.4282 0.0017 lipoprotein-34<br />

nlpD b2742 0.5889 0.0384 NlpD putative outer membrane lipoprotein<br />

nmpC b0553 0.2798 0.0066 outer membrane porin protein; locus <strong>of</strong> qsr prophage<br />

nrdH b2673 1.5595 0.0197 glutaredoxin-like protein; hydrogen donor<br />

nrfB b4071 1.4551 0.0140 nitrite reductase complex<br />

nrfG b4076 0.7857 0.0445 maturation <strong>of</strong> formate-dependent nitrite reductase complex<br />

nth b1633 2.1800 0.0177 endonuclease III; specific for apurinic and/or apyrimidinic sites<br />

nudF b3034 0.5025 0.0228 hypothetical protein<br />

nudH b2830 0.4636 0.0223 putative invasion protein<br />

nuoA b2288 1.6995 0.0472 NADH dehydrogenase I<br />

nuoB b2287 1.5197 0.0379 NADH dehydrogenase I<br />

nuoE b2285 1.4198 0.0304 NADH dehydrogenase I<br />

nuoF b2284 1.4220 0.0317 NADH dehydrogenase I<br />

nusG b3982 0.2852 0.0347 component in transcription antitermination<br />

ompX b0814 1.4445 0.0493 outer membrane protein X<br />

osmB b1283 3.4496 0.0098 OsmB osmotically inducible lipoprotein<br />

pabA b3360 1.6781 0.0002<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

pabB b1812 0.5495 0.0354<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

pabC b1096 0.3442 0.0019<br />

para-aminobenzoate synthase multi-enzyme complex / para-aminobenzoate<br />

synthase<br />

panB b0134 0.7353 0.0027 3-methyl-2-oxobutanoate hydroxymethyltransferase monomer<br />

panE b0425 0.5460 0.0418 2-dehydropantoate reductase<br />

parC b3019 0.4320 0.0075 Topoisomerase IV subunit A<br />

pcnB b0143 0.6795 0.0070 poly(A) polymerase I<br />

pdxA b0052 1.3711 0.0238 PdxA dehydrogenase/decarboxylase<br />

pdxK b2418 1.2254 0.0374 pyridoxamine kinase / hydroxymethylpyrimidine kinase / pyridoxal kinase<br />

pepA b4260 0.3097 0.0122 aminopeptidase A/I<br />

pepB b2523 2.2644 0.0239 aminopeptidase (AP)<br />

pepP b2908 1.3593 0.0065 proline aminopeptidase P II<br />

pepT b1127 0.6833 0.0395 peptidase T<br />

pgm b0688 1.5303 0.0417 phosphoglucomutase<br />

pgpB b1278 0.4697 0.0419 phosphatidylglycerophosphatase B<br />

pheA b2599 0.6656 0.0384 chorismate mutase / prephenate dehydratase<br />

pheT b1713 0.7457 0.0492 phenylalanyl-tRNA synthetase &beta;-chain<br />

phoP b1130 0.6028 0.0020 PhoP-Phosphorylated transcriptional dual regulator<br />

pitB b2987 0.4848 0.0403 PitB<br />

plsC b3018 0.4674 0.0213 1-acylglycerol-3-phosphate acyltransferase<br />

pmbA b4235 0.4596 0.0021<br />

protease involved in Microcin B17 maturation and in sensitivity to the DNA<br />

gyrase inhibitor LetD<br />

pmrF b2254 0.5087 0.0075 undecaprenyl phosphate-L-Ara4FN transferase<br />

pncA b1768 1.5147 0.0154 pyrazinamidase / nicotinamidase<br />

polB b0060 3.0331 0.0022 DNA polymerase II<br />

poxA b4155 0.4978 0.0301 putative regulator <strong>of</strong> pyruvate oxidase<br />

pphB b2734 1.5408 0.0047<br />

protein phosphatase 2 / protein-tyrosine-phosphatase / phosphoprotein<br />

phosphatase<br />

ppk b2501 0.3409 0.0076 polyphosphate kinase<br />

pppA b2972 0.8174 0.0270 prepilin peptidase<br />

142


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

pqqL b1494 2.4892 0.0097 putative zinc peptidase<br />

prkB b3355 0.6558 0.0194 probable phosphoribulokinase<br />

prmA b3259 1.1549 0.0237 methylation <strong>of</strong> 50S ribosomal subunit protein L11<br />

proB b0242 0.4436 0.0305 gamma-glutamyl kinase-GP-reductase multienzyme complex<br />

proQ b1831 0.4270 0.0085 protein that affects osmo<strong>regulation</strong> <strong>of</strong> ProP transporter<br />

prpR b0330 1.3979 0.0217 PrpR transcriptional regulator<br />

pspE b1308 1.3420 0.0120 thiosulfate sulfurtransferase<br />

pssA b2585 0.3090 0.0108 phosphatidylserine synthase<br />

ptsA b3947 1.4554 0.0198 PEP-protein phosphotransferase system enzyme I<br />

purA b4177 0.5294 0.0086 adenylosuccinate synthase<br />

purC b2476 0.1639 0.0003 phosphoribosylaminoimidazole-succinocarboxamide synthase<br />

purE b0523 0.2509 0.0013 N5-carboxyaminoimidazole ribonucleotide mutase<br />

purF b2312 0.2414 0.0192 amidophosphoribosyl transferase<br />

purM b2499 0.1577 0.0004 phosphoribosylformylglycinamide cyclo-ligase<br />

purN b2500 0.5155 0.0120 phosphoribosylglycinamide formyltransferase<br />

purR b1658 0.3655 0.0001 PurR transcriptional repressor<br />

purT b1849 0.6975 0.0250 GAR transformylase 2<br />

purU b1232 0.4724 0.0343 formyltetrahydr<strong>of</strong>olate deformylase<br />

puuC b1300 1.2759 0.0124 aldehyde dehydrogenase<br />

pykA b1854 1.2788 0.0072 pyruvate kinase II monomer<br />

pykF b1676 0.6019 0.0200 pyruvate kinase I monomer<br />

pyrC b1062 0.5738 0.0154 dihydroorotase<br />

pyrF b1281 0.3505 0.0074 orotidine-5'-phosphate-decarboxylase<br />

qseB b3025 0.5963 0.0366 putative 2-component transcriptional regulator<br />

radC b3638 0.7993 0.0107 hypothetical protein<br />

rarA b0892 1.3775 0.0153 recombination factor<br />

rbsA b3749 1.3686 0.0067 ribose ABC transporter<br />

rdoA b3859 0.3650 0.0037 cytoplasmic protein <strong>of</strong> low abundance<br />

recB b2820 1.3049 0.0003<br />

RecB; DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit,<br />

ssDNA endonuclease<br />

recF b3700 1.8782 0.0203 ssDNA and dsDNA binding, ATP binding<br />

recN b2616 3.2489 0.0013 protein used in recombination and DNA repair<br />

rfaJ b3626 2.9390 0.0359 UDP-D-glucose:(galactosyl)lipopolysaccharide glucosyltransferase<br />

rfaK b3623 2.5429 0.0162 lipopolysaccharide core biosynthesis; probably hexose transferase<br />

rfaS b3629 2.4712 0.0160 lipopolysaccharide core biosynthesis<br />

rfaY b3625 2.7443 0.0257 lipopolysaccharide core biosynthesis<br />

rfaZ b3624 2.8758 0.0135 protein involved in KdoIII attachment during lipopolysaccharide core biosynthesis<br />

rfbX b2037 1.5328 0.0192 RfbX lipopolysaccharide PST transporter<br />

rfc b2035 2.1537 0.0085 O-antigen polymerase<br />

rfe b3784 0.2504 0.0025 undecaprenyl-phosphate &alpha;-N-acetylglucosaminyl transferase<br />

rffC b3790 1.8384 0.0174 TDP-fucosamine acetyltransferase<br />

rhaR b3906 1.5371 0.0023 RhaR-L-rhamnose transcriptional activator<br />

rhlE b0797 0.5998 0.0306 DEAD-box-containing ATP-dependent RNA helicase family member<br />

rhsD b0497 0.3038 0.0094 RhsD protein in rhs element<br />

ribB b3041 0.4756 0.0036 3,4-dihydroxy-2-butanone 4-phosphate synthase<br />

ribC b1662 0.6034 0.0484 rib<strong>of</strong>lavin synthase<br />

ribF b0025 0.2311 0.0048 rib<strong>of</strong>lavin kinase / FMN adenylyltransferase<br />

rimI b4373 1.2616 0.0232<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S18 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rimJ b1066 0.3654 0.0033<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rluE b1135 1.5925 0.0139 23S rRNA pseudouridine synthase<br />

rnc b2567 0.3545 0.0116 RNase III, ds RNA<br />

rpmA b3185 1.2009 0.0086 50S ribosomal subunit protein L27<br />

rpmB b3637 0.7069 0.0448 50S ribosomal subunit protein L28<br />

rpmF b1089 1.3157 0.0137 50S ribosomal subunit protein L32<br />

rpoD b3067 2.3387 0.0271 sigma70 factor<br />

143


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rpoE b2573 0.6299 0.0405 sigmaE<br />

rpoH b3461 1.4151 0.0363 sigma32 factor<br />

rseA b2572 0.4158 0.0006 anti-sigma factor that inhibits sigmaE<br />

rseB b2571 0.5185 0.0085<br />

negative regulator <strong>of</strong> sigmaE; interacts with RseA and stimulates binding <strong>of</strong> RseA<br />

to sigmaE<br />

rssA b1234 0.5582 0.0116 hypothetical protein<br />

rssB b1235 0.6895 0.0442 RssB-P<br />

rsxA b1627 1.9291 0.0099 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

rsxB b1628 1.6538 0.0104 member <strong>of</strong> SoxR-reducing complex<br />

rsxC b1629 2.0272 0.0303 member <strong>of</strong> SoxR-reducing complex<br />

rsxD b1630 1.5930 0.0439 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

rsxE b1632 2.2544 0.0002 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

rsxG b1631 2.4324 0.0084 member <strong>of</strong> SoxR-reducing complex<br />

rtn b2176 1.1293 0.0298 hypothetical protein<br />

sanA b2144 0.4376 0.0187 vancomycin sensitivity<br />

sbcD b0398 1.3094 0.0159 ATP-dependent dsDNA exonuclease<br />

sdaB b2797 1.2729 0.0279 L-threonine deaminase II / L-serine deaminase 2<br />

sdhA b0723 2.4428 0.0087 succinate dehydrogenase flavoprotein<br />

sdhB b0724 1.8201 0.0024 succinate dehydrogenase iron-sulfur protein<br />

sdhC b0721 2.3445 0.0253 succinate dehydrogenase membrane protein<br />

sdhD b0722 1.9449 0.0060 succinate dehydrogenase membrane protein<br />

sdiA b1916 0.5260 0.0202 SdiA transcriptional activator<br />

secE b3981 0.2013 0.0210 Sec Protein Secretion Complex<br />

secG b3175 0.5355 0.0233 Sec Protein Secretion Complex<br />

sfsB b3188 1.4450 0.0295 Nlp transcriptional regulator<br />

shiA b1981 0.3314 0.0445 ShiA shikimate MFS transporter<br />

skp b0178 1.3482 0.0022 periplasmic chaperone<br />

smg b3284 0.4759 0.0018 hypothetical protein<br />

smpA b2617 2.0368 0.0327 SmpA small membrane protein A<br />

smtA b0921 0.1981 0.0013 S-adenosylmethionine-dependent methyltransferase<br />

sodC b1646 0.5884 0.0295 superoxide dismutase precursor (Cu-Zn)<br />

speC b2965 1.1224 0.0484 ornithine decarboxylase, biosynthetic<br />

speG b1584 0.4098 0.0187 spermidine acetyltransferase<br />

spr b2175 0.3174 0.0244 putative lipoprotein<br />

spy b1743 1.6823 0.0465 periplasmic protein related to spheroblast formation<br />

sra b1480 0.5126 0.0007<br />

30S ribosomal subunit protein S22; sub-stoichiometric stationary phase ribosomal<br />

component<br />

srlR b2707 0.4372 0.0018 GutR-sorbitol<br />

srmB b2576 0.2487 0.0347 SrmB, DEAD-box RNA helicase<br />

sscR b2765 0.5881 0.0085 putative 6-pyruvoyl tetrahydrobiopterin synthase<br />

sspA b3229 1.4235 0.0255 regulator <strong>of</strong> transcription; stringent starvation protein A<br />

sthA b3962 1.4674 0.0398 soluble pyridine nucleotide transhydrogenase<br />

sucA b0726 1.7215 0.0420 subunit <strong>of</strong> E1(0) component <strong>of</strong> 2-oxoglutarate dehydrogenase<br />

sufS b1680 1.4919 0.0303 L-selenocysteine lyase (and L-cysteine desulfurase) monomer<br />

sulA b0958 0.3282 0.0018 suppressor <strong>of</strong> lon; inhibits cell division and ftsZ ring formation<br />

tam b1519 1.3876 0.0359 trans-aconitate methyltransferase<br />

tap b1885 2.0690 0.0425 MCP-IV<br />

tatB b3838 1.3899 0.0436 TatABCE protein export complex<br />

tatC b3839 1.3590 0.0079 TatABCE protein export complex<br />

tdcB b3117 1.5829 0.0012 threonine dehydratase (catabolic)<br />

tdcC b3116 0.6742 0.0130 TdcC threonine STP transporter<br />

tesA b0494 0.4687 0.0017 lysophospholipase L1 / thioesterase I<br />

thyA b2827 2.4688 0.0437 thymidylate synthase<br />

tktA b2935 0.7435 0.0147 transketolase I<br />

tolC b3035 0.6930 0.0345 TolC outer membrane channel<br />

torS b0993 0.8969 0.0128 TorS-Phis850<br />

torY b1873 0.3115 0.0139 trimethylamine N-oxide reductase III, c-type cytochrome subunit<br />

144


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

torZ b1872 0.7072 0.0237 trimethylamine N-oxide reductase III, TorZ subunit<br />

trkH b3849 0.6885 0.0381 TrkH potassium ion Trk Transporter<br />

trmH b3651 1.8914 0.0192 tRNA (Gm18) 2'-O-methyltransferase<br />

trpE b1264 0.3805 0.0021 anthranilate synthase component I<br />

trxB b0888 2.0565 0.0480 thioredoxin reductase monomer<br />

tsx b0411 0.2461 0.0277 nucleoside channel; receptor <strong>of</strong> phage T6 and colicin K<br />

ttk b3641 0.6729 0.0216 Ttk transcriptional regulator<br />

tufA b3339 0.7291 0.0156 elongation factor Tu<br />

tyrR b1323 0.7217 0.0246 TyrR-Phenylalanine transcriptional repressor<br />

ubiC b4039 0.2269 0.0075 chorismate pyruvate lyase<br />

udk b2066 1.5831 0.0047 uridine kinase / cytidine kinase<br />

ugpB b3453 1.9109 0.0225 glycerol-3-P ABC transporter / tranport<br />

ulaG b4192 1.5035 0.0480 putative L-ascorbate 6-phosphate lactonase<br />

uppS b0174 0.6969 0.0442 subunit <strong>of</strong> undecaprenyl diphosphate synthase<br />

uspF b1376 0.5835 0.0176 nucleotide binding protein<br />

uvrB b0779 1.7413 0.0390 DNA repair; excision nuclease subunit B<br />

uvrY b1914 0.5143 0.0135 UvrY- Phosphorylated transcriptional regulator<br />

vsr b1960 0.6583 0.0004<br />

DNA mismatch endonuclease <strong>of</strong> the very short patch (VSP) mismatch repair<br />

pathway<br />

wbbI b2034 1.8917 0.0454 hypothetical protein; not required for colanic acid biosynthesis<br />

wcaB b2058 3.4010 0.0356 putative transferase<br />

wcaC b2057 3.4672 0.0035 putative glycosyl transferase<br />

wcaE b2055 2.1253 0.0353 putative colanic acid biosynthesis glycosyl transferase<br />

wcaF b2054 2.3400 0.0172 putative transferase<br />

wcaJ b2047 3.5268 0.0124 putative colanic acid biosynthsis UDP-glucose lipid carrier transferase<br />

wcaK b2045 3.6607 0.0020 putative galactokinase (EC 2.7.1.6).<br />

wcaL b2044 3.4923 0.0027 putative colanic biosynthesis glycosyl transferase<br />

wcaM b2043 3.6739 0.0018 hypothetical protein<br />

wzc b2060 2.2224 0.0433 tyrosine kinase involved in colanic acid biosynthesis<br />

wzxC b2046 3.2937 0.0149 WzxC<br />

wzxE b3792 1.7476 0.0290<br />

metabolism; biosynthesis <strong>of</strong> macromolecules (cellular constituents);<br />

enterobacterial common antigen (surface glycolipid) transport<br />

wzzE b3785 0.5895 0.0452 putative transport protein<br />

xapR b2405 0.3135 0.0382 XapR transcriptional activator<br />

xdhB b2867 1.1750 0.0243 putative xanthine dehydrogenase subunit, FAD-binding domain<br />

xdhD b2881 1.6833 0.0105<br />

putative oxidoreductase; possible component <strong>of</strong> selenate reductase with possible<br />

role in purine salvage<br />

xerD b2894 0.4958 0.0395 site-specific recombinase<br />

xseB b0422 0.1694 0.0020 exonuclease VII, small subunit<br />

xylA b3565 0.4106 0.0021 xylose isomerase<br />

xylG b3567 0.8076 0.0315 xylose ABC transporter<br />

xylR b3569 0.5108 0.0188 XylR-Xylose transcriptional activator<br />

yabP b0056 0.5438 0.0159 conserved hypothetical protein<br />

yadL b0137 0.6723 0.0395 putative adhesin-like protein<br />

yaeB b0195 1.4683 0.0342 hypothetical protein<br />

yaeF b0193 1.3932 0.0097 putative synthase <strong>of</strong> the YaeF/YiiX family<br />

yaeH b0163 0.7470 0.0373 putative structural protein<br />

yafK b0224 0.3497 0.0087<br />

conserved protein; in enteroaggregative E. coli, YafK is required for development<br />

<strong>of</strong> bi<strong>of</strong>ilms<br />

yagA b0267 1.6510 0.0239 hypothetical protein<br />

yagK b0277 1.2809 0.0271 hypothetical protein<br />

yagL b0278 2.0628 0.0124 DNA-binding protein<br />

yagN b0280 0.4906 0.0152 hypothetical protein<br />

yagU b0287 0.5401 0.0210 conserved protein<br />

yagZ b0293 1.5683 0.0418 conserved hypothetical protein<br />

yahA b0315 0.3553 0.0092 hypothetical protein<br />

yahG b0321 1.5771 0.0398 conserved protein<br />

yahJ b0324 1.6920 0.0040 putative deaminase<br />

145


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yaiB b0382 0.2451 0.0009 conserved hypothetical protein<br />

yajR b0427 1.2541 0.0397 YajR MFS transporter<br />

ybaJ b0461 0.2101 0.0016 conserved hypothetical protein<br />

ybaN b0468 0.4651 0.0207 hypothetical protein<br />

ybaP b0482 0.4012 0.0131 putative ligase<br />

ybbK b0489 1.2971 0.0106 putative protease<br />

ybbW b0511 1.7524 0.0306 YbbW NCS1 Transporter<br />

ybcK b0544 2.1084 0.0046 hypothetical protein<br />

ybdM b0601 1.5187 0.0100 conserved protein<br />

ybeD b0631 2.1582 0.0344 conserved hypothetical protein<br />

ybeY b0659 2.4213 0.0071 conserved hypothetical protein<br />

ybeZ b0660 2.9088 0.0292 putative ATP-binding protein<br />

ybfE b0685 1.8437 0.0015 hypothetical protein, transcriptionally regulated <strong>by</strong> LexA<br />

ybgA b0707 1.5859 0.0393 conserved protein<br />

ybgD b0719 0.5899 0.0284 putative fimbrial-like protein<br />

ybhC b0772 0.4417 0.0083 putative pectinesterase<br />

ybiN b0807 0.6910 0.0207 putative methyltransferase<br />

ybjC b0850 0.5669 0.0359 conserved hypothetical protein; <strong>gene</strong> is within soxRS regulon<br />

ybjK b0846 1.7319 0.0164 putative DEOR-type transcriptional regulator<br />

ybjP b0865 1.4541 0.0338 putative enzyme<br />

ycaL b0909 0.4083 0.0132 putative heat shock protein<br />

ycbB b0925 0.6763 0.0145 putative amidase<br />

ycdO b1018 1.6105 0.0013 conserved hypothetical protein<br />

yceJ b1057 1.4910 0.0123 putative cytochrome<br />

ycfM b1105 0.5966 0.0118 putative fibronectin-binding protein<br />

ycfQ b1111 2.1759 0.0130 hypothetical protein<br />

ycgE b1162 0.4795 0.0012 putative transcriptional regulator<br />

ycgH_1 b1169 1.8719 0.0154 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgJ b1177 0.7096 0.0429 hypothetical protein<br />

ycgL b1179 0.3597 0.0007 conserved hypothetical protein<br />

ycgN b1181 0.2099 0.0018 conserved hypothetical protein<br />

ychF b1203 1.8344 0.0127 putative GTP-binding protein<br />

ychJ b1233 0.4063 0.0421 conserved hypothetical protein<br />

yciK b1271 0.5205 0.0025 putative oxidoreductase<br />

yciO b1267 1.3356 0.0473 conserved protein<br />

yciS b1279 0.6049 0.0052 conserved hypothetical protein<br />

ycjG b1325 0.4886 0.0004 L-Ala-D/L-Glu epimerase, a muconate lactonizing enzyme<br />

ycjZ b1328 0.3753 0.0083 putative transcriptional regulator LYSR-type<br />

ydaO b1344 0.4843 0.0448 conserved protein<br />

ydaT b1358 1.2401 0.0281 hypothetical protein<br />

ydbK b1378 1.3365 0.0031 putative pyruvate synthase<br />

ydcD b1457 0.4394 0.0073 hypothetical protein<br />

ydcV b1443 1.5826 0.0274 YdcS/YdcT/YdcV/YdcU ABC transporter<br />

ydeH b1535 0.6334 0.0003 hypothetical protein<br />

ydeI b1536 0.7006 0.0434 conserved hypothetical protein<br />

ydeO b1499 1.8404 0.0071 putative ARAC-type regulatory protein<br />

ydeP b1501 1.8515 0.0329 acid resistance protein<br />

ydeQ b1502 1.5966 0.0329 putative adhesin; similar to FimH protein<br />

ydeS b1504 2.0807 0.0078 putative fimbrial-like protein<br />

ydfH b1540 0.6051 0.0014 hypothetical protein<br />

ydfT b1559 1.2620 0.0433 hypothetical protein<br />

YdgE b1599 0.5062 0.0374 YdgE SMR Protein<br />

ydgI b1605 1.2957 0.0413 ArcD APC transporter<br />

ydgT b1625 0.2841 0.0002 conserved hypothetical protein<br />

ydhF b1647 0.5142 0.0040 putative oxidoreductase, NAD(P)-linked<br />

ydhH b1640 0.5712 0.0220 conserved hypothetical protein<br />

146


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ydhK b1645 0.7743 0.0177 putative membrane protein<br />

ydhR b1667 0.5054 0.0468 conserved hypothetical protein<br />

ydiA b1703 0.3698 0.0021 conserved protein<br />

ydiO b1695 1.7686 0.0429 putative acyl-CoA dehydrogenase<br />

ydjF b1770 0.6322 0.0205 putative DEOR-type transcriptional regulator<br />

ydjG b1771 1.1870 0.0339 putative oxidoreductase<br />

ydjJ b1774 0.7716 0.0258 putative oxidoreductase<br />

ydjO b1730 0.7452 0.0045 putative enzyme<br />

yeaK b1787 0.5384 0.0111 conserved hypothetical protein<br />

yeaL b1789 0.5540 0.0222 hypothetical protein<br />

yeaO b1792 0.7835 0.0264 conserved hypothetical protein<br />

yeaS b1798 1.1343 0.0208 hypothetical protein<br />

yebC b1864 1.9628 0.0112 conserved protein<br />

yebE b1846 1.4183 0.0339 conserved hypothetical protein<br />

yebF b1847 1.6011 0.0157 conserved hypothetical protein<br />

yebG b1848 2.0455 0.0150 hypothetical protein; <strong>gene</strong> is part <strong>of</strong> SOS regulon<br />

yebK b1853 0.6198 0.0144 hypothetical protein<br />

yebN b1821 0.1208 0.0031 putative membrane protein, terpenoid synthase-like<br />

yebQ b1828 1.7129 0.0232 YebQ<br />

yebR b1832 0.2946 0.0066 conserved hypothetical protein<br />

yebY b1839 0.3459 0.0078 conserved hypothetical protein<br />

yebZ b1840 0.5397 0.0052 putative resistance protein<br />

yecN b1869 0.4794 0.0004 putative membrane protein<br />

yecO b1870 0.6886 0.0159 putative methyltransferase<br />

yedI b1958 0.7429 0.0417 hypothetical protein<br />

yedL b1932 0.8697 0.0339 putative acyl-CoA N-acyltransferase<br />

yedS_1 b1964 0.5165 0.0447 putative outer membrane protein<br />

yedS_3 b1966 0.5465 0.0327 putative outer membrane protein<br />

yedW b1969 0.2470 0.0035 putative 2-component transcriptional response regulator<br />

yeeN b1983 7.1154 0.0127 conserved protein<br />

yeeT b2003 1.3786 0.0008 hypothetical protein<br />

yeeU b2004 2.0721 0.0304 antitoxin <strong>of</strong> the YeeV-YeeU toxin-antitoxin pair<br />

yefM b2017 1.3962 0.0282 antitoxin <strong>of</strong> the YoeB-YefM toxin-antitoxin pair<br />

yegE b2067 1.7115 0.0038 putative sensor-type protein<br />

yegI b2070 0.5358 0.0484 putative chaperonin<br />

yegS b2086 3.9159 0.0491 conserved protein<br />

yehD b2111 2.1221 0.0057 putative fimbrial-like protein<br />

yeiE b2157 0.6563 0.0387 LYSR-type transcriptional regulator<br />

yejE b2179 1.5636 0.0046 YejA/YejB/YejE/YejF ABC transporter<br />

yejG b2181 1.5816 0.0091 conserved hypothetical protein<br />

yfaE b2236 1.4667 0.0481 conserved hypothetical protein, 2Fe-2S ferredoxin-related<br />

yfbE b2253 0.3390 0.0015 UDP-L-Ara4O C-4" transaminase<br />

yfbN b2273 0.6296 0.0373 conserved hypothetical protein<br />

yfcL b2325 1.4297 0.0332 conserved hypothetical protein<br />

yfcR b2335 1.6257 0.0449 putative fimbrial protein<br />

yfdK b2354 0.8266 0.0174 hypothetical protein<br />

yfdO b2358 1.7079 0.0258 hypothetical protein<br />

yfdP b2359 1.3431 0.0013 hypothetical protein<br />

yfgA b2516 0.3616 0.0096 putative membrane protein<br />

yfhG b2555 0.4592 0.0050 conserved protein<br />

yfiB b2605 0.6708 0.0141 putative outer membrane protein<br />

yfiF b2581 0.4349 0.0213 hypothetical protein<br />

yfjD b4461 1.1920 0.0274 putative membrane protein, hemolysin-like<br />

yfjG b2619 1.8537 0.0213 toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

yfjJ b2626 1.4374 0.0028 hypothetical protein<br />

ygaH b2683 0.3070 0.0005 putative transport protein<br />

147


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ygaZ b2682 0.2806 0.0339 hypothetical protein<br />

ygcH b2756 1.5103 0.0470 hypothetical protein<br />

ygcK b2759 0.5237 0.0303 hypothetical protein<br />

ygcL b2760 0.4734 0.0068<br />

hypothetical protein with possible relationship to novobiocin and deoxycholate<br />

resistance<br />

ygcT b2773 1.3680 0.0295 hypothetical protein<br />

ygdR b2833 2.0681 0.0458 conserved hypothetical protein<br />

ygeO b2857 1.4246 0.0028 hypothetical protein<br />

ygfB b2909 0.6455 0.0197 conserved hypothetical protein<br />

ygfM b2880 1.8759 0.0385<br />

putative oxidoreductase with a FAD-binding domain; possible component <strong>of</strong><br />

selenate reductase<br />

ygfZ b2898 0.6440 0.0118 conserved protein<br />

yggG b2936 1.3788 0.0242 conserved protein<br />

yggH b2960 0.3883 0.0278 tRNA (m7G46) methyltransferase<br />

yggJ b2946 0.4258 0.0253 conserved hypothetical protein<br />

yggL b2959 0.4522 0.0265 conserved hypothetical protein<br />

yggN b2958 0.5163 0.0247 conserved hypothetical protein<br />

yggX b2962 0.3380 0.0026<br />

conserved hypothetical protein with role in oxidation-resistance <strong>of</strong> iron-sulfur<br />

clusters<br />

yghO b2981 1.4352 0.0178 putative acyltransferase<br />

ygiA b3036 0.6569 0.0453 hypothetical protein<br />

ygiD b3039 1.2199 0.0229 putative enzyme with dioxygenase domain<br />

ygiF b3054 0.4578 0.0171 conserved hypothetical protein<br />

ygiL b3043 0.4481 0.0024 putative fimbrial-like protein<br />

ygiU b3022 0.5823 0.0419 putative cyanide hydratase<br />

ygjD b3064 0.5001 0.0291 putative O-sialoglycoprotein endopeptidase<br />

yhbY b3180 2.4069 0.0493 possible RNA-binding protein<br />

yhcE b3217 1.6908 0.0322 hypothetical protein<br />

yhdA b3252 0.4853 0.0034 conserved protein<br />

yhdN b3293 2.2147 0.0304 conserved hypothetical protein<br />

yheN b3345 0.7236 0.0466 conserved hypothetical protein<br />

yheO b3346 0.6587 0.0186 hypothetical protein<br />

yhfA b3356 0.4740 0.0196 conserved hypothetical protein<br />

yhfG b3362 1.5910 0.0072 conserved hypothetical protein<br />

yhfL b3369 0.7399 0.0465 hypothetical protein<br />

yhfU b3378 1.5087 0.0383 hypothetical protein<br />

yhfX b3381 1.4728 0.0231 conserved protein<br />

yhhH b3483 0.7173 0.0406 hypothetical protein<br />

yhhJ b3485 1.2472 0.0276 YhiH/YhhJ ABC transporter<br />

yhhS b3473 0.5354 0.0441 YhhS MFS transporter<br />

yhhZ b3442 1.5149 0.0020 conserved protein<br />

yhiS b3504 1.7373 0.0348 conserved protein<br />

yhjA b3518 1.6786 0.0050 putative cytochrome C peroxidase (EC 1.11.1)<br />

yhjR b3535 0.3739 0.0105 hypothetical protein<br />

yhjY b3548 1.6225 0.0111 putative lipase<br />

yi5A b3557 0.5204 0.0060 IS5 protein<br />

yiaA b3562 0.3268 0.0239 hypothetical protein<br />

yiaB b3563 0.2619 0.0011 inner membrane protein<br />

yiaN b3578 0.5853 0.0361 YiaMNO Binding Protein-dependent Secondary (TRAP) Transporter<br />

yiaW b3587 0.4349 0.0065 hypothetical protein<br />

yibD b3615 2.3369 0.0409 putative glycosyltransferase<br />

yibJ b3595 1.4681 0.0140 hypothetical protein<br />

yicE b3654 0.2155 0.0218 YicE NCS2 tranporter<br />

yicL b3660 0.5423 0.0107 inhibitor <strong>of</strong> heme biosynthesis<br />

yicN b3663 0.7539 0.0488 conserved hypothetical protein<br />

yidF b3674 1.4127 0.0375 putative transcriptional regulator<br />

yidP b3684 1.4297 0.0316 putative transcriptional regulator<br />

148


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yieG b3714 0.5508 0.0395 putative membrane / transport protein<br />

yieH b3715 0.4511 0.0214 putative enzyme with a phophatase-like domain<br />

yieN b3746 1.6277 0.0158 putative 2-component regulator<br />

yihF b3861 0.7083 0.0087 conserved protein<br />

yihI b3866 0.6516 0.0111 conserved protein<br />

yihP b3877 1.3286 0.0172 YihP GPH transporter<br />

yihS b3880 1.5315 0.0430 conserved hypothetical protein<br />

yihT b3881 1.5667 0.0274 putative aldolase<br />

yihW b3884 0.5351 0.0149 putative DEOR-type transcriptional regulator<br />

yihX b3885 0.5078 0.0280 putative phosphatase<br />

yiiR b3921 0.7676 0.0009 putative membrane protein<br />

yjbE b4026 2.5798 0.0431 conserved hypothetical protein<br />

yjbQ b4056 0.5074 0.0444 conserved hypothetical protein<br />

yjdA b4109 0.2889 0.0378 hypothetical protein<br />

yjeB b4178 0.3239 0.0058 conserved protein with a Winged helix domain<br />

yjeF b4167 0.6840 0.0052 putative kinase<br />

yjeM b4156 0.5081 0.0299 YjeM APC transporter<br />

yjeQ b4161 0.5621 0.0278 GTPase and putative translation factor / GTPase<br />

yjfI b4181 0.4271 0.0151 conserved hypothetical protein<br />

yjfK b4183 0.6194 0.0161 conserved hypothetical protein<br />

yjgN b4257 0.8020 0.0292 putative membrane protein possible involved in transport<br />

yjgP b4261 0.6738 0.0413 putative transmembrane protein possibly involved in transport<br />

yjhB b4279 1.8533 0.0006 YjhB MFS transporter<br />

yjhH b4298 0.5277 0.0150 putative lyase/synthase<br />

yjiJ b4332 0.6007 0.0492 putative transport protein<br />

yjiP b4338 1.2689 0.0190 hypothetical protein<br />

yjiY b4354 0.7537 0.0416 putative carbon starvation protein<br />

yjjG b4374 1.8650 0.0152 phosphatase<br />

yjjN b4358 1.3488 0.0441 putative oxidoreductase<br />

yjjQ b4365 0.5404 0.0231 putative regulator<br />

yjjV b4378 1.6584 0.0452 putative hydrolase<br />

ykgC b0304 0.4244 0.0245 putative oxidoreductase<br />

ykgE b0306 0.2061 0.0044 putative dehydrogenase subunit<br />

ykgF b0307 0.3156 0.0100 putative dehydrogenase<br />

ylaB b0457 1.6806 0.0383 conserved protein<br />

yliI b0837 2.0458 0.0402 putative dehydrogenase<br />

ymbA b0952 1.2388 0.0174 conserved protein<br />

ymdA b1044 1.4317 0.0156 conserved hypothetical protein<br />

ymfM b1148 1.7959 0.0269 hypothetical protein<br />

ymfO b1151 1.4852 0.0432 hypothetical protein<br />

ymjA b1295 0.4272 0.0063 hypothetical protein<br />

ynaE b1375 0.4467 0.0021 hypothetical protein<br />

ynaK b1365 0.5999 0.0473 hypothetical protein<br />

yncA b1448 0.6404 0.0336 putative N-acetyltransferase<br />

yncI b1458 2.0101 0.0095 conserved protein<br />

yneH b1524 0.6554 0.0043 putative glutaminase<br />

ynfB b1583 0.3413 0.0147 conserved hypothetical protein<br />

ynfG b1589 2.1065 0.0456 oxidoreductase, Fe-S subunit paralog <strong>of</strong> DmsB<br />

ynfN b1551 0.5507 0.0270 hypothetical protein<br />

yoaH b1811 0.7603 0.0410 conserved hypothetical protein<br />

yobA b1841 0.4646 0.0330 hypothetical protein<br />

yobD b1820 1.1210 0.0371 conserved protein<br />

ypfJ b2475 0.4521 0.0132 conserved protein<br />

yphF b2548 1.2411 0.0065 YphD/YphE/YphF ABC transporter<br />

ypjA b2647 0.5454 0.0295 putative outer membrane protein<br />

ypjC b2650 1.9137 0.0202 hypothetical protein<br />

149


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ypjF b2646 1.4842 0.0227 member <strong>of</strong> the YeeV, YkfI, YpjF family <strong>of</strong> toxin proteins<br />

yqaA b2689 0.3779 0.0112 putative integral membrane protein<br />

yqeF b2844 1.4118 0.0054 putative acyltransferase<br />

yqeI b2847 0.4452 0.0151 putative sensory transducer<br />

yqeJ b2848 0.5502 0.0358 conserved hypothetical protein<br />

yqiA b3031 0.5500 0.0167 putative hydrolase<br />

yqiJ b3050 1.2244 0.0073 putative oxidoreductase<br />

yqjI b3071 1.2930 0.0385 conserved hypothetical protein<br />

yraM b3147 0.6143 0.0013 putative glycosylase<br />

yrbK b3199 0.5981 0.0347 conserved hypothetical protein<br />

yrbL b3207 0.4490 0.0310 conserved hypothetical protein; transcription is regulated <strong>by</strong> Mg2+<br />

yrdA b3279 1.2726 0.0344 putative transferase<br />

yrdD b3283 0.4972 0.0020 putative DNA topoisomerase<br />

yrfG b3399 1.7111 0.0126 putative hydrolase with a phophatase-like domain<br />

ytfH b4212 1.2193 0.0109 putative transcriptional regulator<br />

ytfM b4220 0.6790 0.0262 hypothetical protein<br />

zapA b2910 0.2597 0.0002 ZapA protein, localizes to the cytokinetic ring<br />

zntR b3292 2.0077 0.0173 ZntR transcriptional regulator<br />

znuA b1857 0.5075 0.0106 ZnuA/ZnuB/ZnuC ABC transporter<br />

znuB b1859 2.2343 0.0178 ZnuA/ZnuB/ZnuC ABC transporter<br />

b0332 1.2327 0.0317<br />

b0395 0.7576 0.0331<br />

Supplementary table – X: LZ41 wild-type (A) Vs LZ41 fis::cm (B)<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

aceB b4014 0.4276 0.0445 malate synthase A<br />

acrE b3265 1.7547 0.0454 transmembrane protein affects septum formation and cell membrane permeability<br />

add b1623 0.8139 0.0457 deoxyadenosine deaminase / adenosine deaminase<br />

adhE b1241 0.5944 0.0064 PFL-deactivase / alcohol dehydrogenase / acetaldehyde dehydrogenase<br />

adiA b4117 0.7038 0.0075 Adi<br />

adk b0474 0.4914 0.0219 adenylate kinase<br />

aer b3072 0.3604 0.0182 aerotaxis sensor receptor, flavoprotein<br />

afuB b0263 0.6224 0.0389 AfuB<br />

agn43 b2000 0.3450 0.0040 outer membrane fluffing protein, sim. to adhesin<br />

ahpC b0605 0.5014 0.0291 AhpC component<br />

ahpF b0606 0.5624 0.0434 AhpF component<br />

aldA b1415 0.7702 0.0392 putative succinate-semialdehyde dehydrogenase / aldehyde dehydrogenase<br />

aldB b3588 0.4765 0.0388 putative aminobutyraldehyde dehydrogenase / aldehyde dehydrogenase B<br />

allR b0506 0.3911 0.0082 AllR transcriptional regulator<br />

amn b1982 0.6432 0.0084 AMP nucleosidase<br />

argO b2923 1.8685 0.0322 arginine export protein<br />

aroA b0908 0.6815 0.0220 3-phosphoshikimate-1-carboxyvinyltransferase<br />

aroB b3389 1.7762 0.0173 3-dehydroquinate synthase<br />

aroK b3390 2.0007 0.0057 shikimate kinase I<br />

arpA b4017 0.7171 0.0434 regulator <strong>of</strong> acetyl CoA synthetase<br />

artI b0863 0.6821 0.0113 arginine ABC transporter<br />

asnS b0930 0.6778 0.0337 asparaginyl-tRNA synthetase<br />

aspC b0928 0.5126 0.0438 aspartate transaminase<br />

aspS b1866 0.5612 0.0181 aspartyl-tRNA synthetase<br />

atpG b3733 1.2411 0.0477 ATP synthase, F1 complex, gamma subunit<br />

b0374 b0374 1.8747 0.0267 putative flagellin structural protein<br />

b1364 b1364 1.9078 0.0056 hypothetical protein<br />

bax b3570 2.7324 0.0137 putative ATP-binding protein<br />

150


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

bcsG b3538 1.3907 0.0114 putative membrane protein<br />

bioA b0774 4.8174 0.0341 adenosylmethionine-8-amino-7-oxononanoate aminotransferase monomer<br />

bioC b0777 2.0996 0.0055 biotin biosynthesis; reaction prior to pimeloyl CoA<br />

bioF b0776 2.1697 0.0187 8-amino-7-oxononanoate synthase<br />

btuE b1710 0.4583 0.0002 vitamin B12 transport system<br />

cdd b2143 0.5184 0.0071 cytidine deaminase<br />

cdsA b0175 1.5062 0.0193 CDP-diglyceride synthetase<br />

cld b2027 1.6377 0.0049 regulator <strong>of</strong> length <strong>of</strong> O-antigen component <strong>of</strong> lipopolysaccharide chains<br />

clpS b0881 0.6844 0.0260 specificity factor for ClpA-ClpP chaperone-protease complex<br />

cobC b0638 1.5268 0.0269 alpha-ribazole-5'-P phosphatase<br />

codA b0337 0.5518 0.0394 cytosine deaminase<br />

crl b0240 0.5173 0.0122 Crl transcriptional regulator<br />

crr b2417 0.7022 0.0165 EIIBCMalX<br />

cspG b0990 1.2495 0.0397 cold shock protein CspG<br />

cybB b1418 0.6780 0.0427 cytochrome b561<br />

cyoB b0431 1.4550 0.0005 cytochrome bo terminal oxidase subunit I<br />

cyoD b0429 1.8390 0.0014 cytochrome bo terminal oxidase subunit IV<br />

cysE b3607 1.3082 0.0119 cysteine synthase<br />

cysZ b2413 0.5453 0.0464 required for sulfate transport<br />

cytR b3934 0.6111 0.0078 CytR-cytidine<br />

dadA b1189 0.9183 0.0319 D-amino acid dehydrogenase, small subunit<br />

dam b3387 1.2185 0.0464 DNA adenine methylase<br />

dapA b2478 0.4234 0.0248 dihydrodipicolinate synthase<br />

dapB b0031 0.7373 0.0483 dihydrodipicolinate reductase<br />

dcp b1538 0.5793 0.0064 dipeptidyl carboxypeptidase II<br />

def b3287 2.0636 0.0181 peptide deformylase<br />

degQ b3234 1.3585 0.0176 serine endoprotease<br />

dgoA b3692 0.2418 0.0237 dgoA 3871635-3871018 : '2-dehydro-3-deoxyphosphogalactonate aldolase / dgoD<br />

3871021-3869873 : galactonate dehydratase<br />

dhaL b1199 2.3586 0.0311 dihydroxyacetone kinase subunit L<br />

dinB b0231 0.3459 0.0147 DNA polymerase IV (Y-family DNA polymerase; translesion DNA synthesis)<br />

dinD b3645 0.3811 0.0274 DNA-damage-inducible protein<br />

dld b2133 0.2646 0.0007 D-lactate:Quinone Oxidoreductase<br />

dnaE b0184 2.0422 0.0092 DNA polymerase III, alpha subunit<br />

dnaG b3066 2.2790 0.0124 DNA biosynthesis; DNA primase<br />

dnaK b0014 0.6706 0.0044 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins<br />

dps b0812 0.6003 0.0129 stationary phase nucleoid protein that sequesters iron and protects DNA from<br />

damage<br />

dsbA b3860 0.4929 0.0066 disulfide oxidoreductase<br />

dusB b3260 3.5507 0.0209 tRNA dihydrouridine synthase<br />

dxr b0173 1.4993 0.0175 DXP reductoisomerase<br />

ecfB b2969 1.8193 0.0019 putative protein exporter (General Secretory Pathway)<br />

ecfG b3055 2.2413 0.0064 protein with possible extracytoplasmic function<br />

ecfM b3096 1.7005 0.0256 conserved hypothetical protein with possible extracytoplasmic function<br />

eco b2209 0.4839 0.0047 ecotin monomer; serine protease inhibitor<br />

eda b1850 0.6319 0.0048 oxaloacetate decarboxylase / 2-keto-3-deoxy-6-phosphogluconate aldolase / 2-keto-<br />

4-hydroxyglutarate aldolase<br />

efp b4147 1.3561 0.0306 elongation factor P (EF-P)<br />

elaA b2267 0.2865 0.0039 hypothetical protein<br />

emrY b2367 2.0045 0.0181 EmrY putative multidrug MFS transporter<br />

eno b2779 0.5823 0.0163 enolase<br />

entA b0596 4.0462 0.0315 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase<br />

entB b0595 4.2178 0.0260 apo-EntB<br />

essQ b1556 2.3474 0.0281 hypothetical protein<br />

evgA b2369 2.3983 0.0080 EvgA-Phosphorylated transcriptional regulator<br />

exbB b3006 5.6978 0.0342 ExbB protein; uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

exbD b3005 7.3350 0.0026 ExbD uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

fabB b2323 1.1422 0.0378 beta-ketoacyl-ACP synthase I / malonyl-ACP decarboxylase<br />

fadJ b2341 0.6377 0.0434 FadJ monomer<br />

fbaB b2097 0.1525 0.0179 fructose bisphosphate aldolase monomer<br />

151


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

fdx b2525 1.5992 0.0271 oxidized ferredoxin<br />

fecA b4291 4.3615 0.0002 outer membrane receptor; citrate-dependent iron transport, outer membrane receptor<br />

fecB b4290 11.8210 0.0049 ferric dicitrate uptake system<br />

fecD b4288 13.4703 0.0266 ferric dicitrate uptake system<br />

fecI b4293 2.5694 0.0143 sigma19 factor<br />

fepA b0584 2.2534 0.0377 FepA, outer membrane receptor for ferric enterobactin (enterochelin) and colicins B<br />

and D<br />

fhuF b4367 2.6792 0.0312 acts in reduction <strong>of</strong> ferrioxamine B iron<br />

fimA b4314 0.0452 0.0017 major type 1 subunit fimbrin (pilin)<br />

fimI b4315 0.2478 0.0086 fimbrial protein<br />

fis b3261 4.8968 0.0026 Fis transcriptional dual regulator<br />

fixC b0043 0.7563 0.0451 flavoprotein (electron transport), possibly involved in anaerobic carnitine<br />

metabolism<br />

fklB b4207 0.4661 0.0011 FKBP-type 22KD peptidyl-prolyl cis-trans isomerase (a rotamase)<br />

flgA b1072 0.6317 0.0353 flagellar biosynthesis; assembly <strong>of</strong> basal-body periplasmic P ring<br />

flgE b1076 0.5821 0.0222 flagellar hook protein FlgE<br />

flgH b1079 1.4155 0.0024 flagellar L-ring protein FlgH; basal-body outer-membrane L (lipopolysaccharide<br />

layer) ring protein<br />

fliC b1923 0.7914 0.0186 flagellar biosynthesis; flagellin, filament structural protein<br />

fliG b1939 1.5644 0.0322 flagellar motor switch protein FliG; component <strong>of</strong> motor switching and energizing,<br />

enabling rotation and determining its direction<br />

fliJ b1942 1.5214 0.0394 flagellar biosynthesis protein FliJ<br />

fliL b1944 2.0419 0.0147 flagellar biosynthesis<br />

fliM b1945 2.0037 0.0079 flagellar motor switch protein FliM; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliN b1946 1.5234 0.0159 flagellar motor switch protein FliN; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliP b1948 1.8269 0.0083 flagellar biosynthesis protein FliP<br />

fliQ b1949 3.0840 0.0021 flagellar biosynthesis protein FliQ<br />

fliR b1950 7.4349 0.0077 flagellar biosynthesis protein FliR<br />

flxA b1566 0.4049 0.0066 hypothetical protein; <strong>gene</strong> is regulated <strong>by</strong> FliA<br />

fmt b3288 3.0666 0.0067 10-formyltetrahydr<strong>of</strong>olate:L-methionyl-tRNA(fMet) N-formyltransferase<br />

folE b2153 0.4596 0.0053 GTP cyclohydrolase I<br />

folP b3177 0.4636 0.0126 dihydropteroate synthase<br />

frlA b3370 0.7394 0.0427 YhfM methione APC transporter<br />

frr b0172 0.7314 0.0363 ribosome recycling factor<br />

fruL b0079 1.7136 0.0205 fruR leader peptide<br />

fruR b0080 2.1871 0.0153 FruR transcriptional dual regulator<br />

fryB b2387 0.7759 0.0158 putative PTS system enzyme IIB component<br />

ftnA b1905 0.4482 0.0169 cytoplasmic ferritin, an iron storage protein)<br />

ftsI b0084 2.0097 0.0312 essential cell division protein FtsI; penicillin-binding protein 3<br />

ftsK b0890 1.3776 0.0159 essential cell division protein FtsK<br />

ftsL b0083 1.5537 0.0073 essential cell division protein FtsL<br />

ftsQ b0093 1.3855 0.0418 essential cell division protein FtsQ<br />

ftsZ b0095 0.8510 0.0421 essential cell division protein FtsZ<br />

galF b2042 1.2879 0.0298 homolog <strong>of</strong> Salmonella UTP--glucose-1-P uridyltransferase, probably a UDP-gal<br />

transferase<br />

galM b0756 0.7402 0.0368 aldose-1-epimerase<br />

gatC b2092 0.5085 0.0245 EIIGat<br />

gatY b2096 0.4530 0.0132 tagatose-1,6-bisphosphate aldolase 2<br />

gcvA b2808 2.3893 0.0386 GcvA transcriptional dual regulator<br />

gcvR b2479 0.5830 0.0331 GcvR-gly<br />

ghrA b1033 0.5389 0.0362 glyoxylate reductase<br />

glcB b2976 0.6074 0.0247 malate synthase G<br />

glk b2388 0.6440 0.0382 glucokinase<br />

glmU b3730 1.3338 0.0066 N-acetylglucosamine-1-phosphate uridyltransferase / glucosamine-1-phosphate<br />

acetyltransferase<br />

glnB b2553 0.7567 0.0160 PII-UMP<br />

glnH b0811 1.3681 0.0225 glutamine ABC transporter<br />

glnP b0810 2.0480 0.0032 glutamine ABC transporter<br />

glnQ b0809 1.9701 0.0255 glutamine ABC transporter<br />

152


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

gloB b0212 1.6853 0.0005 glyoxalase II<br />

glpD b3426 1.5383 0.0086 glycerol 3-phosphate dehydrogenase, aerobic<br />

glpE b3425 1.5932 0.0002 thiosulfate sulfurtransferase<br />

glpG b3424 2.4244 0.0321 inner membrane-associated protein <strong>of</strong> glp regulon<br />

glpQ b2239 0.5777 0.0048 glycerophosphoryl diester phosphodiesterase, periplasmic<br />

gltB b3212 0.2558 0.0049 glutamate synthase (NADPH) large chain precursor<br />

gltD b3213 0.2960 0.0005 glutamate synthase (NADPH) small chain<br />

gltF b3214 2.1372 0.0310 regulator <strong>of</strong> gltBDF operon, induction <strong>of</strong> Ntr enzymes<br />

gltX b2400 0.6185 0.0045 glutamyl-tRNA synthetase<br />

glyA b2551 0.4249 0.0030 glycine hydroxymethyltransferase<br />

gmd b2053 0.3424 0.0173 GDP-mannose 4,6-dehydratase<br />

gnd b2029 0.7263 0.0098 6-phosphogluconate dehydrogenase (decarboxylating)<br />

gpt b0238 0.3020 0.0046 xanthine phosphoribosyltransferase / guanine phosphoribosyltransferase /<br />

hypoxanthine phosphoribosyltransferase<br />

groE b4142 0.7287 0.0389 GroES, 10 Kd chaperone binds to Hsp60 in pres. Mg-ATP, suppressing its ATPase<br />

activity<br />

grxB b1064 0.5199 0.0055 oxidized glutaredoxin 2<br />

gst b1635 0.2880 0.0003 glutathione transferase<br />

guaB b2508 0.3418 0.0146 IMP dehydrogenase<br />

hchA b1967 0.3576 0.0101 heat shock protein (Hsp) 31<br />

hdeA b3510 0.5429 0.0329 acid-resistance protein, possible chaperone<br />

hdhA b1619 0.7009 0.0222 7-alpha-hydroxysteroid dehydrogenase<br />

hemC b3805 0.6080 0.0324 hydroxymethylbilane synthase<br />

hemG b3850 2.0623 0.0029 protoporphyrinogen oxidase<br />

hemL b0154 0.4775 0.0155 glutamate-1-semialdehyde aminotransferase<br />

hepA b0059 0.5983 0.0278 RNA Polymerase (RNAP)-binding ATPase and RNAP recycling factor<br />

hflD b1132 0.7830 0.0127 membrane protein in operon with purB<br />

hipA b1507 2.6139 0.0487 HipA transcriptional activator<br />

hisC b2021 0.4902 0.0017 histidine-phosphate aminotransferase<br />

hisD b2020 0.4810 0.0042 histidinal dehydrogenase / histidinol dehydrogenase<br />

hisF b2025 0.8798 0.0136 imidazole glycerol phosphate synthase, HisF subunit<br />

hisH b2023 0.6139 0.0394 imidazole glycerol phosphate synthase, HisH subunit<br />

hisI b2026 0.6499 0.0032 phosphoribosyl-AMP cyclohydrolase / phosphoribosyl-ATP pyrophosphatase<br />

hisJ b2309 0.4481 0.0121 histidine ABC transporter<br />

h<strong>of</strong>O b3393 1.8479 0.0374 conserved hypothetical protein<br />

hscA b2526 1.6604 0.0128 chaperone, member <strong>of</strong> Hsp70 protein family<br />

hsdR b4350 2.3402 0.0036 host restriction; endonuclease R<br />

hslO b3401 2.0138 0.0492 molecular chaperone Hsp33<br />

htrA b0161 4.1874 0.0178 DegP<br />

hycI b2717 0.6596 0.0114 hydrogenase 3 maturation protease<br />

ibpA b3687 0.6656 0.0494 small heat shock protein IbpA<br />

ilvY b3773 2.5426 0.0045 IlvY transcriptional dual regulator<br />

infA b0884 1.2615 0.0395 protein chain initiation factor IF-1<br />

infB b3168 0.8553 0.0153 protein chain initiation factor IF-2<br />

iscA b2528 1.2803 0.0391 iron-sulfur cluster assembly protein<br />

iscR b2531 1.7491 0.0017 IscR transcriptional regulator<br />

iscS b2530 1.4813 0.0077 cysteine desulfurase monomer<br />

iscX b2524 1.6876 0.0213 protein with possible role in iron-sulfur cluster bio<strong>gene</strong>sis<br />

ispH b0029 0.5317 0.0441 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase<br />

kbl b3617 0.7553 0.0413 2-amino-3-ketobutyrate CoA ligase<br />

kdgR b1827 0.6868 0.0412 putative ICLR-type transcriptional regulator<br />

kdgT b3909 1.6515 0.0454 KdgT 2-keto-3-deoxygluconate transporter<br />

kduD b2842 0.5804 0.0334 2-deoxy-D-gluconate 3-dehydrogenase<br />

kduI b2843 0.5660 0.0006 homolog <strong>of</strong> pectin degrading enzyme 5-keto 4-deoxyuronate isomerase<br />

lctD b3605 4.5610 0.0020 L-Lactate:Quinone Oxidoreductase<br />

lepB b2568 0.4975 0.0172 leader peptidase (signal peptidase I)<br />

leuA b0074 2.1920 0.0484 2-isopropylmalate synthase<br />

lipB b0630 0.5344 0.0060 lipoyl-protein ligase<br />

lolB b1209 0.7109 0.0354 outer membrane lipoprotein, localization <strong>of</strong> lipoproteins in the outer membrane<br />

153


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

lpxB b0182 2.4803 0.0069 lipid A disaccharide synthase<br />

lpxD b0179 1.9305 0.0077 UDP-3-O-[3-hydroxymyristoyl]glucosamine N-acetyltransferase<br />

lysU b4129 0.3741 0.0006 lysyl-tRNA synthetase (LysRSu), inducible<br />

macB b0879 0.7619 0.0000 MacAB macrolide efflux transporter complex<br />

manY b1818 0.5887 0.0161 EIIMan<br />

map b0168 1.6259 0.0237 methionine aminopeptidase<br />

marA b1531 2.1164 0.0161 MarA transcriptional activator<br />

marR b1530 1.7225 0.0168 MarR-salicylate<br />

mdaB b3028 1.6569 0.0030 NADPH quinone reductase<br />

mdh b3236 0.4517 0.0007 malate dehydrogenase<br />

mdoC b1047 6.6596 0.0265 protein required for succinyl modification <strong>of</strong> osmoregulated periplasmic glucans<br />

mdoD b1424 0.7811 0.0064 glucan biosynthesis protein D<br />

menG b3929 0.6569 0.0011 inhibitor <strong>of</strong> ribonuclease E (RNase E) activity<br />

metB b3939 0.5240 0.0189 O-succinylhomoserine lyase / O-succinylhomoserine(thiol)-lyase<br />

metG b2114 1.6218 0.0213 methionyl-tRNA synthetase<br />

metK b2942 1.3643 0.0040 MetK S-adenosylmethionine synthetase monomer<br />

metN b0199 3.0698 0.0232 L- and D-methionine uptake ABC permease<br />

mglB b2150 0.4951 0.0238 galactose ABC transporter<br />

mgsA b0963 0.5158 0.0118 methylglyoxal synthase<br />

miaB b0661 0.5108 0.0076 hypothetical protein<br />

mntR b0817 1.3178 0.0124 putative toxin<br />

moaE b0785 0.5674 0.0315 molybdopterin synthase large subunit<br />

moeB b0826 0.5088 0.0285 molybdopterin biosynthesis<br />

mog b0009 0.6449 0.0095 required for the efficient incorporation <strong>of</strong> Mo into molybdoproteins<br />

motB b1889 0.7958 0.0468 MotB protein, enables flagellar motor rotation, linking torque machinery to cell wall<br />

mraY b0087 1.6065 0.0384 phospho-N-acetylmuramoyl-pentapeptide transferase<br />

mraZ b0081 2.0473 0.0380 protein encoded <strong>by</strong> an operon involved in formation <strong>of</strong> the cell envelope and cell<br />

division<br />

mreB b3251 0.7067 0.0373 rod shape-determining protein<br />

mscL b3291 0.5625 0.0188 MscL (Large Mechanosensitive Channel)<br />

msrB b1778 0.2242 0.0071 methionine sulfoxide reductase B / protein-methionine-S-oxide reductase /<br />

methionine sulfoxide reductase<br />

mug b3068 0.1598 0.0002 stationary phase mismatch/uracil DNA glycosylase<br />

murB b3972 0.6411 0.0055 UDP-N-acetylmuramate dehydrogenase<br />

murG b0090 1.8627 0.0219 N-acetylglucosaminyl transferase<br />

mutM b3635 0.5636 0.0298 formamidopyrimidine DNA glycosylase<br />

nagB b0678 0.6053 0.0321 glucosamine-6-phosphate deaminase<br />

narL b1221 0.3590 0.0003 NarL-Phosphorylated transcriptional dual regulator<br />

narV b1465 2.0037 0.0423 nitrate reductase Z, &gamma; subunit<br />

narX b1222 0.4701 0.0282 NarX-Phis<br />

nfnB b0578 0.6965 0.0277 dihydropteridine reductase<br />

nlpB b2477 0.5501 0.0285 lipoprotein-34<br />

nlpD b2742 0.5577 0.0232 NlpD putative outer membrane lipoprotein<br />

nrdA b2234 2.5576 0.0170 ribonucleoside-diphosphate reductase / CDP reductase / UDP reductase / ADP<br />

reductase / GDP reductase<br />

nrdB b2235 1.5476 0.0143 ribonucleoside-diphosphate reductase / CDP reductase / UDP reductase / ADP<br />

reductase / GDP reductase<br />

nudE b3397 3.6839 0.0376 ADP-ribose diphosphatase<br />

nupC b2393 0.4373 0.0148 NupC nucleoside NUP transporter<br />

nusB b0416 0.6482 0.0130 transcription termination; L factor<br />

ogrK b2082 0.4525 0.0057 OgrK transcriptional regulator<br />

ompA b0957 0.6960 0.0393 outer membrane protein 3a (II*;G;d)<br />

ompR b3405 0.6561 0.0127 OmpR transcriptional dual regulator<br />

oppA b1243 0.5783 0.0065 OppA-oligopeptide ABC transporter substrate-binding<br />

osmC b1482 0.5889 0.0305 osmotically inducible peroxidase OsmC<br />

oxyR b3961 0.5975 0.0148 OxyR transcriptional dual regulator<br />

paaX b1399 0.6230 0.0285 PaaX transcriptional regulator<br />

pal b0741 0.5655 0.0097 Tol-Pal Cell Envelope Complex<br />

panB b0134 0.5737 0.0067 3-methyl-2-oxobutanoate hydroxymethyltransferase monomer<br />

pckA b3403 1.2819 0.0394 phosphoenolpyruvate carboxykinase (ATP)<br />

154


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

pdxA b0052 1.8798 0.0156 PdxA dehydrogenase/decarboxylase<br />

pdxH b1638 0.5634 0.0154 pyridoxine 5'-phosphate oxidase / pyridoxamine 5'-phosphate oxidase<br />

pdxJ b2564 0.5506 0.0132 pyridoxine 5'-phosphate synthase monomer<br />

pdxK b2418 0.7062 0.0312 pyridoxamine kinase / hydroxymethylpyrimidine kinase / pyridoxal kinase<br />

pepB b2523 0.7989 0.0086 aminopeptidase (AP)<br />

pepD b0237 0.6038 0.0133 peptidase D<br />

pepE b4021 0.6872 0.0420 peptidase E, a dipeptidase where amino-terminal residue is aspartate<br />

pepT b1127 0.6315 0.0216 peptidase T<br />

pfkA b3916 0.4420 0.0165 6-phosph<strong>of</strong>ructokinase-1 monomer / putative NAD+ kinase<br />

pfkB b1723 0.5181 0.0126 6-phosph<strong>of</strong>ructokinase-2 monomer<br />

pflA b0902 0.4936 0.0038 pyruvate formate-lyase activating enzyme<br />

pgpA b0418 0.8301 0.0117 phosphatidylglycerophosphatase A<br />

pgpB b1278 0.7228 0.0332 phosphatidylglycerophosphatase B<br />

pheS b1714 1.6482 0.0332 phenylalanyl-tRNA synthetase &alpha;-chain<br />

plsX b1090 2.5029 0.0151 glycerolphosphate auxotrophy in plsB background<br />

potC b1124 0.7615 0.0005 putrescine/spermidine ABC transporter<br />

potD b1123 0.7572 0.0238 putrescine/spermidine ABC transporter<br />

potI b0857 0.7509 0.0248 putrescine ABC transporter<br />

ppsA b1702 0.3641 0.0451 phosphoenolpyruvate synthase<br />

pptA b1461 0.4533 0.0164 probable 4-oxalocrotonate tautomerase (4-OT) monomer<br />

pqiB b0951 0.6225 0.0116 paraquat-inducible protein B<br />

prfA b1211 2.6557 0.0311 peptide chain release factor RF-1<br />

prfC b4375 0.8757 0.0393 peptide chain release factor RF-3<br />

prlC b3498 1.4622 0.0107 oligopeptidase A<br />

prmA b3259 0.6684 0.0246 methylation <strong>of</strong> 50S ribosomal subunit protein L11<br />

pspE b1308 0.4076 0.0040 thiosulfate sulfurtransferase<br />

pstC b3727 1.5388 0.0331 phosphate ABC transporter<br />

ptrA b2821 0.4205 0.0083 protease III<br />

ptsI b2416 0.5853 0.0249 PTS enzyme I<br />

purB b1131 0.6886 0.0011 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase /<br />

adenylosuccinate lyase<br />

purM b2499 0.5518 0.0249 phosphoribosylformylglycinamide cyclo-ligase<br />

purU b1232 0.6528 0.0200 formyltetrahydr<strong>of</strong>olate deformylase<br />

putA b1014 0.4763 0.0210 PutA bifunctional enzyme and transcriptional regulator<br />

puuR b1299 2.5246 0.0286 putative oxidoreductase/putative regulator<br />

pykA b1854 0.5364 0.0003 pyruvate kinase II monomer<br />

pyrD b0945 0.6409 0.0178 dihydroorotate oxidase<br />

qseB b3025 1.3558 0.0154 putative 2-component transcriptional regulator<br />

radC b3638 1.5771 0.0440 hypothetical protein<br />

rdoA b3859 0.4925 0.0088 cytoplasmic protein <strong>of</strong> low abundance<br />

recD b2819 0.4467 0.0117 DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit, ssDNA<br />

endonuclease<br />

recN b2616 2.0533 0.0461 protein used in recombination and DNA repair<br />

recO b2565 0.5768 0.0062 protein interacts with RecR and possibly RecF proteins<br />

recR b0472 0.6890 0.0234 recombination and repair<br />

relB b1564 0.5403 0.0279 antitoxin <strong>of</strong> the RelE-RelB toxin-antitoxin system and transcriptional repressor <strong>of</strong><br />

relBEF<br />

relE b1563 0.4842 0.0123 toxin <strong>of</strong> the RelE-RelB toxin-antitoxin system; cleaves mRNA in ribosome<br />

rfaH b3842 1.8283 0.0327 RfaH transcriptional regulator<br />

rfaI b3627 0.7426 0.0277 UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-D-galactosyltransferase<br />

rfaY b3625 0.6530 0.0111 lipopolysaccharide core biosynthesis<br />

rfaZ b3624 0.6938 0.0035 protein involved in KdoIII attachment during lipopolysaccharide core biosynthesis<br />

rfbB b2041 1.5853 0.0067 RmlB<br />

rhlE b0797 1.1385 0.0098 DEAD-box-containing ATP-dependent RNA helicase family member<br />

rhoL b3782 1.7040 0.0054 rho operon leader peptide<br />

rhsB b3482 0.8055 0.0317 RhsB protein in rhs element<br />

ribA b1277 1.4064 0.0192 GTP cyclohydrolase II<br />

rihA b0651 0.3965 0.0007 ribonucleoside hydrolase 1 (pyrimidine-specific)<br />

rimJ b1066 0.6008 0.0050 acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

155


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

rnb b1286 0.5168 0.0188 RNase II, mRNA degradation<br />

rnpA b3704 2.3870 0.0025 RNase P protein component; processes tRNA, 4.5S RNA<br />

rph b3643 0.3966 0.0020 RNase PH monomer<br />

rplC b3320 1.5214 0.0402 50S ribosomal subunit protein L3<br />

rplD b3319 1.4899 0.0297 50S ribosomal subunit protein L4, regulates <strong>expression</strong> <strong>of</strong> S10 operon<br />

rplI b4203 1.7848 0.0067 50S ribosomal subunit protein L9<br />

rplK b3983 1.4690 0.0323 50S ribosomal subunit protein L11<br />

rplN b3310 1.8011 0.0070 50S ribosomal subunit protein L14<br />

rplQ b3294 1.5026 0.0193 50S ribosomal subunit protein L17<br />

rplS b2606 1.8032 0.0386 50S ribosomal subunit protein L19<br />

rpmH b3703 2.4577 0.0050 50S ribosomal subunit protein L34<br />

rpmI b1717 1.6463 0.0100 50S ribosomal subunit protein A<br />

rpoS b2741 0.4760 0.0008 sigma38 factor<br />

rpsI b3230 1.5944 0.0225 30S ribosomal subunit protein S9<br />

rpsJ b3321 1.8766 0.0045 30S ribosomal subunit protein S10<br />

rpsM b3298 1.7120 0.0194 30S ribosomal subunit protein S13<br />

rpsN b3307 1.4824 0.0194 30S ribosomal subunit protein S14<br />

rpsP b2609 1.4326 0.0450 30S ribosomal subunit protein S16<br />

rpsR b4202 1.4594 0.0190 30S ribosomal subunit protein S18<br />

rseA b2572 1.2269 0.0063 anti-sigma factor that inhibits sigmaE<br />

rseC b2570 2.1501 0.0204 protein involved in reduction <strong>of</strong> the SoxR iron-sulfur cluster<br />

rsmB b3289 1.4365 0.0248 16S rRNA m5C967 methyltransferase<br />

rspA b1581 0.2047 0.0078 starvation sensing protein RspA<br />

rsxB b1628 2.6069 0.0042 member <strong>of</strong> SoxR-reducing complex<br />

rsxC b1629 2.5542 0.0057 member <strong>of</strong> SoxR-reducing complex<br />

rumA b2785 1.8745 0.0344 23S ribosomal RNA 5-methyluridine methyltransferase<br />

rusA b0550 2.0786 0.0385 endodeoxyribonuclease RUS (Holliday junction resolvase)<br />

ruvA b1861 0.4849 0.0298 branch migration <strong>of</strong> Holliday structures; repair<br />

sdaB b2797 0.6285 0.0002 L-threonine deaminase II / L-serine deaminase 2<br />

sdaC b2796 0.4271 0.0117 SdaC serine STP transporter<br />

secM b0097 1.3178 0.0023 secretion monitor that regulates SecA translation (General Secretory Pathway)<br />

seqA b0687 2.1946 0.0082 SeqA, negative modulator <strong>of</strong> initiation <strong>of</strong> replication<br />

sfcA b1479 0.8152 0.0181 MaeA<br />

sfmF b0534 1.6970 0.0472 putative fimbrial-like protein<br />

sirA b3470 0.6006 0.0488 possible RNA-binding protein required for wild-type FtsZ ring formation on rich<br />

media<br />

slyB b1641 0.4312 0.0113 putative outer membrane protein<br />

slyD b3349 0.6005 0.0258 FKBP-type rotamase, peptidyl prolyl cis-trans isomerase<br />

smg b3284 2.8745 0.0310 hypothetical protein<br />

smpB b2620 0.6515 0.0414 small protein B<br />

sodB b1656 0.5233 0.0110 superoxide dismutase (Fe)<br />

sodC b1646 0.4968 0.0252 superoxide dismutase precursor (Cu-Zn)<br />

speB b2937 0.6792 0.0484 agmatinase<br />

speC b2965 0.3877 0.0088 ornithine decarboxylase, biosynthetic<br />

speD b0120 0.3187 0.0009 adenosylmethionine decarboxylase, proenzyme<br />

speE b0121 0.4811 0.0061 spermidine synthase<br />

spr b2175 1.5236 0.0048 putative lipoprotein<br />

sra b1480 0.3080 0.0010 30S ribosomal subunit protein S22; sub-stoichiometric stationary phase ribosomal<br />

component<br />

sscR b2765 1.5203 0.0399 putative 6-pyruvoyl tetrahydrobiopterin synthase<br />

sseA b2521 0.5767 0.0312 3-mercaptopyruvate:cyanide sulfurtransferase<br />

sspA b3229 1.2589 0.0498 regulator <strong>of</strong> transcription; stringent starvation protein A<br />

sspB b3228 1.8474 0.0062 SspB monomer<br />

sstT b3089 1.4008 0.0348 YgjU DAACS transporter<br />

talA b2464 0.6019 0.0196 transaldolase A<br />

tar b1886 0.6394 0.0421 MCP-II<br />

tauD b0368 1.2571 0.0377 taurine dioxygenase<br />

tdcD b3115 2.0221 0.0493 propionate kinase / acetate kinase C<br />

tdh b3616 0.6205 0.0168 threonine dehydrogenase<br />

156


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

tdk b1238 0.7191 0.0164 thymidine kinase / deoxyuridine kinase<br />

tehB b1430 0.6931 0.0312 tellurite resistance<br />

tnaA b3708 0.3883 0.0042 L-cysteine desulfhydrase / tryptophanase<br />

tolA b0739 1.8858 0.0200 Tol-Pal Cell Envelope Complex<br />

tolB b0740 0.6129 0.0276 Tol-Pal Cell Envelope Complex<br />

tolC b3035 1.8109 0.0166 TolC outer membrane channel<br />

topB b1763 1.9680 0.0432 DNA topoisomerase III<br />

torZ b1872 0.6633 0.0251 trimethylamine N-oxide reductase III, TorZ subunit<br />

tpiA b3919 0.5807 0.0093 triose phosphate isomerase monomer<br />

tpx b1324 0.4685 0.0031 thiol peroxidase 2<br />

treB b4240 0.7492 0.0204 EIITre<br />

trg b1421 0.3929 0.0362 MCP-III<br />

trkH b3849 2.8270 0.0037 TrkH potassium ion Trk Transporter<br />

trpA b1260 0.6073 0.0425 tryptophan synthase, alpha subunit / indoleglycerol phosphate aldolase<br />

trpB b1261 0.6074 0.0328 tryptophan synthase, beta subunit<br />

trpH b1266 0.7233 0.0438 putative enzyme<br />

typA b3871 0.6670 0.0187 protein possibly involved in LPS biosynthesis and host colonization<br />

ubiB b3835 1.7738 0.0367 2-octaprenylphenol hydroxylase<br />

ubiC b4039 0.4470 0.0135 chorismate pyruvate lyase<br />

ubiF b0662 0.4865 0.0324 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase<br />

ubiG b2232 0.5625 0.0002 3-demethylubiquinone 3-methyltransferase / 2-octaprenyl-6-hydroxyphenol<br />

methylase<br />

ucpA b2426 2.1286 0.0385 putative acetoin dehydrogenase<br />

ulaE b4197 0.5257 0.0078 L-xylulose 5-phosphate 3-epimerase<br />

upp b2498 0.5910 0.0244 uracil phosphoribosyltransferase<br />

uvrA b4058 0.5239 0.0019 excision nuclease subunit A<br />

uvrD b3813 0.8144 0.0346 DNA-dependent ATPase I and helicase II<br />

wbbK b2032 0.7715 0.0198 putative transferase<br />

wcaI b2050 0.6835 0.0103 putative colanic biosynthesis glycosyl transferase<br />

wcaM b2043 0.3200 0.0127 hypothetical protein<br />

wzxC b2046 0.7084 0.0032 WzxC<br />

wzyE b3793 1.9754 0.0268 4-&alpha;-fucosyltransferase<br />

xthA b1749 0.6059 0.0079 exonuclease III<br />

xylF b3566 1.8870 0.0111 xylose ABC transporter<br />

xylH b3568 2.3622 0.0026 xylose ABC transporter<br />

yaaW b0011 1.5008 0.0488 HtgA transcriptional regulator<br />

yacH b0117 1.3881 0.0384 putative membrane protein<br />

yadK b0136 1.6125 0.0421 putative adhesin-like protein<br />

yaeB b0195 1.3994 0.0117 hypothetical protein<br />

yafL b0227 1.2458 0.0276 putative lipoprotein<br />

yafO b0233 0.6314 0.0485 conserved protein with a possible role in spontaneous muta<strong>gene</strong>sis; toxin <strong>of</strong> a<br />

putative toxin-antitoxin pair<br />

yafY b0251 0.6373 0.0205 inner membrane lipoprotein YafY<br />

yagM b0279 1.3267 0.0037 hypothetical protein<br />

yahO b0329 0.7159 0.0211 conserved hypothetical protein<br />

yaiP b0363 2.5784 0.0399 polysaccharide metabolism<br />

yaiY b0379 1.3880 0.0403 putative membrane protein<br />

yajG b0434 2.1052 0.0002 putative polymerase/proteinase<br />

yajL b0424 0.6797 0.0397 YajL<br />

ybaB b0471 0.7466 0.0289 conserved hypothetical protein; trnascription is rpoE-dependent<br />

ybaD b0413 0.7223 0.0384 conserved protein<br />

ybaK b0481 0.4834 0.0267 conserved hypothetical protein<br />

ybbN b0492 0.4921 0.0481 putative thioredoxin-like protein<br />

ybdB b0597 6.2505 0.0061 conserved hypothetical protein<br />

ybeB b0637 0.7632 0.0489 conserved hypothetical protein<br />

ybeD b0631 0.3535 0.0003 conserved hypothetical protein<br />

ybeL b0643 0.4340 0.0165 conserved hypothetical protein<br />

ybeZ b0660 0.7738 0.0071 putative ATP-binding protein<br />

ybfC b0704 0.2580 0.0019 hypothetical protein<br />

157


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

ybfD b0706 0.2417 0.0088 conserved protein<br />

ybfE b0685 3.2986 0.0038 hypothetical protein, transcriptionally regulated <strong>by</strong> LexA<br />

ybgA b0707 0.5694 0.0092 conserved protein<br />

ybgC b0736 2.2715 0.0226 Tol-Pal Cell Envelope Complex<br />

ybhL b0786 0.4736 0.0364 putative transport protein<br />

ybiB b0800 0.5707 0.0300 putative enzyme<br />

ybiC b0801 0.2496 0.0064 putative dehydrogenase<br />

ybiF b0813 1.6029 0.0489 Threonine and Homoserine Exporter<br />

ybiR b0818 2.1306 0.0273 YbiR<br />

ybjO b0858 2.2594 0.0431 putative membrane protein<br />

ycbL b0927 0.6866 0.0197 putative enzyme<br />

ycbQ b0938 0.6103 0.0474 putative fimbrial-like protein<br />

ycbR b0939 0.6518 0.0108 putative chaperone<br />

ycdN b1016 0.7257 0.0321 hypothetical protein <strong>of</strong> the OFeT transport family<br />

ycdX b1034 0.6937 0.0343 putative DNA polymerase subunit<br />

ycdY b1035 0.4819 0.0151 putative oxidoreductase component<br />

ycdZ b1036 0.9178 0.0037 putative transport protein<br />

yceK b1050 1.6485 0.0298 hypothetical protein<br />

yceP b1060 1.2575 0.0186 conserved hypothetical protein<br />

ycfF b1103 0.5809 0.0081 hypothetical protein<br />

ycfL b1104 0.6008 0.0188 conserved hypothetical protein<br />

ycfP b1108 0.6776 0.0253 putative hydrolase<br />

ycfQ b1111 0.4481 0.0222 hypothetical protein<br />

ycfX b1119 0.6020 0.0137 putative sugar kinase, ROK family protein<br />

ycgH_1 b1169 2.6426 0.0080 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgM b1180 0.8640 0.0332 putative isomerase<br />

ycgR b1194 0.5120 0.0005 protein involved in flagellar function<br />

ycgZ b1164 0.1971 0.0013 hypothetical protein<br />

yciA b1253 2.3276 0.0365 putative enzyme<br />

yciN b1273 0.5538 0.0078 conserved hypothetical protein<br />

yciS b1279 0.5680 0.0114 conserved hypothetical protein<br />

ycjO b1311 2.7124 0.0316 YcjN/YcjO/YcjP ABC transporter<br />

ycjP b1312 0.7347 0.0241 YcjN/YcjO/YcjP ABC transporter<br />

ycjX b1321 0.6578 0.0175 putative EC 2.1 enzyme<br />

ydcR b1439 2.5283 0.0312 multi modular; putative transcriptional regulator ; also putative ATP-binding<br />

component <strong>of</strong> a transport system<br />

ydcX b1445 2.1871 0.0183 hypothetical protein<br />

yddH b1462 2.2272 0.0241 putative enzyme<br />

ydeR b1503 2.5428 0.0348 putative fimbrial-like protein<br />

ydeS b1504 0.5808 0.0291 putative fimbrial-like protein<br />

ydfH b1540 0.6839 0.0190 hypothetical protein<br />

ydfJ b1543 2.0107 0.0124 YdfJ<br />

ydgA b1614 0.6747 0.0482 conserved protein<br />

YdgF b1600 2.1962 0.0042 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydgR b1634 1.2643 0.0005 YdgR putative peptide POT Transporter<br />

ydhH b1640 0.4079 0.0176 conserved hypothetical protein<br />

ydhR b1667 0.4304 0.0347 conserved hypothetical protein<br />

ydhT b1669 0.7874 0.0102 conserved protein<br />

ydiA b1703 0.2931 0.0113 conserved protein<br />

ydiY b1722 0.7966 0.0467 conserved hypothetical protein<br />

ydiZ b1724 0.3092 0.0002 conserved hypothetical protein<br />

ydjA b1765 0.6823 0.0153 conserved protein<br />

ydjY b1751 1.2582 0.0333 conserved protein, 4Fe-4S protein<br />

yeaC b1777 0.2726 0.0143 conserved hypothetical protein<br />

yebF b1847 1.2639 0.0016 conserved hypothetical protein<br />

yebR b1832 1.5900 0.0450 conserved hypothetical protein<br />

yebV b1836 0.7303 0.0472 hypothetical protein<br />

yedF b1930 0.5758 0.0367 conserved hypothetical protein; might bind RNA<br />

yedI b1958 0.6020 0.0091 hypothetical protein<br />

158


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

yegD b2069 0.1096 0.0022 actin family protein<br />

yegP b2080 0.7106 0.0331 conserved hypothetical protein<br />

yegS b2086 0.6537 0.0417 conserved protein<br />

yegV b2100 0.6305 0.0488 putative kinase<br />

yejK b2186 0.5169 0.0083 nucleoid component<br />

yfaE b2236 1.5204 0.0066 conserved hypothetical protein, 2Fe-2S ferredoxin-related<br />

yfaY b2249 0.6445 0.0134 putative competence-damage protein<br />

yfbB b2263 0.4472 0.0003 putative enzyme<br />

yfcZ b2343 0.5741 0.0249 conserved hypothetical protein<br />

yfdG b2350 2.8866 0.0223 hypothetical protein<br />

yfdH b2351 4.5779 0.0047 putative glycan biosynthesis enzyme<br />

yfdZ b2379 0.4718 0.0255 putative aminotransferase<br />

yfhA b2554 0.6241 0.0138 putative 2-component transcriptional regulator<br />

yfiF b2581 0.3793 0.0154 hypothetical protein<br />

yfiH b2593 2.3518 0.0047 conserved hypothetical protein<br />

yfiQ b2584 0.6139 0.0054 putative NAD(P)-binding and ATP-binding acyl-CoA synthetase<br />

ygaF b2660 0.3095 0.0000 hypothetical protein<br />

ygaZ b2682 2.9721 0.0184 hypothetical protein<br />

ygcL b2760 0.7291 0.0047 hypothetical protein with possible relationship to novobiocin and deoxycholate<br />

resistance<br />

ygeA b2840 0.4954 0.0300 putative resistance protein<br />

ygeO b2857 1.8523 0.0339 hypothetical protein<br />

ygfJ b2877 0.6146 0.0146 conserved protein<br />

ygfS b2886 1.7328 0.0364 putative oxidoreductase, Fe-S subunit<br />

yggJ b2946 1.6239 0.0074 conserved hypothetical protein<br />

yggL b2959 0.6458 0.0023 conserved hypothetical protein<br />

yggW b2955 1.3703 0.0151 putative oxidase<br />

yghB b3009 0.7895 0.0308 putative integral membrane protein<br />

yghU b2989 0.2467 0.0025 glutathione transferase-like protein possibly involved in glutathionylspermidine<br />

metabolism<br />

ygiA b3036 1.6742 0.0177 hypothetical protein<br />

yhaV b3130 0.5692 0.0077 conserved hypothetical protein<br />

yhcA b3215 2.1510 0.0365 putative chaperone<br />

yhdE b3248 0.4955 0.0496 conserved hypothetical protein<br />

yhdH b3253 0.3436 0.0006 putative dehydrogenase<br />

yheL b3343 3.0897 0.0190 conserved hypothetical protein<br />

yheM b3344 4.4555 0.0202 conserved hypothetical protein<br />

yheN b3345 2.6968 0.0330 conserved hypothetical protein<br />

yheO b3346 2.2685 0.0223 hypothetical protein<br />

yhfA b3356 0.5425 0.0352 conserved hypothetical protein<br />

yhhM b3467 0.7356 0.0202 putative receptor<br />

yhhT b3474 1.3859 0.0171 hypothetical protein<br />

yhiQ b3497 1.6969 0.0181 putative methyltransferase<br />

yhjK b3529 1.4678 0.0029 conserved protein<br />

yiaT b3584 0.8971 0.0295 putative outer membrane protein<br />

yibI b3598 1.5584 0.0342 hypothetical protein<br />

yicC b3644 0.6226 0.0107 conserved protein<br />

yifN b3777 0.6923 0.0355 conserved hypothetical protein<br />

yigZ b3848 2.8187 0.0073 putative elongation factor<br />

yiiR b3921 0.6478 0.0117 putative membrane protein<br />

yijP b3955 0.4791 0.0024 hypothetical protein; related to invasion protein <strong>of</strong> pathogenic E. coli<br />

yjbQ b4056 0.2981 0.0075 conserved hypothetical protein<br />

yjcZ b4110 1.2700 0.0269 hypothetical protein<br />

yjdM b4108 0.3921 0.0080 hypothetical protein<br />

yjgB b4269 0.6383 0.0112 putative oxidoreductase<br />

yjiG b4329 0.6702 0.0021 putative membrane protein<br />

yjjA b4360 0.6315 0.0065 putative glycoprotein/receptor<br />

yjjQ b4365 1.8874 0.0056 putative regulator<br />

ykfG b0247 1.4225 0.0448 putative DNA repair protein<br />

159


APPENDIX I<br />

<strong>gene</strong> blattner ratio A/B p-value Function<br />

ykgB b0301 0.2697 0.0126 putative membrane protein<br />

ykgI b0303 0.1371 0.0142 hypothetical protein<br />

yliD b0832 0.5942 0.0294 YliA/YliB/YliC/YliD ABC transporter<br />

ymgA b1165 0.1880 0.0008 hypothetical protein<br />

ynaJ b1332 0.6770 0.0219 conserved hypothetical protein<br />

ynfD b1586 0.4744 0.0302 conserved hypothetical protein<br />

ynjH b1760 0.1079 0.0001 conserved hypothetical protein<br />

yoaB b1809 0.4229 0.0064 conserved protein<br />

yoaC b1810 0.4432 0.0033 conserved hypothetical protein<br />

yphC b2545 0.7253 0.0435 predicted oxidoreductase<br />

yqeG b2845 2.3330 0.0145 YqeG STP transporter<br />

yqfB b2900 0.5018 0.0235 conserved hypothetical protein<br />

yqiA b3031 1.8528 0.0482 putative hydrolase<br />

yqiI b3048 1.5915 0.0251 conserved protein<br />

yqjD b3098 0.5135 0.0398 conserved hypothetical protein<br />

yraM b3147 0.6915 0.0206 putative glycosylase<br />

yrbA b3190 1.6358 0.0200 hypothetical protein<br />

yrdC b3282 1.9330 0.0102 RNA-binding protein with unique protein fold<br />

yrdD b3283 3.2410 0.0102 putative DNA topoisomerase<br />

yrfF b3398 3.1897 0.0119 putative dehydrogenase<br />

ytfA b4205 0.6230 0.0360 hypothetical protein<br />

znuA b1857 3.6361 0.0065 ZnuA/ZnuB/ZnuC ABC transporter<br />

znuC b1858 1.3426 0.0008 ZnuA/ZnuB/ZnuC ABC transporter<br />

zraR b4004 2.5337 0.0077 ZraR-Phosphorylated transcriptional activator<br />

Supplementary table – XI: LZ54 wild-type (A) Vs LZ54 fis::cm (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aaeX b3242 0.3200 0.0268 hypothetical protein<br />

abgB b1337 0.4513 0.0162 hypothetical protein<br />

aceF b0115 1.4049 0.0029 AceF-lipoate<br />

acs b4069 0.0998 0.0401 putative hydroxycinnamate-CoA ligase / acetyl-CoA synthetase<br />

adk b0474 0.4908 0.0443 adenylate kinase<br />

aegA b2468 0.4339 0.0331 putative oxidoreductase, Fe-S subunit<br />

ahpC b0605 0.4949 0.0199 AhpC component<br />

aldB b3588 0.6066 0.0090 putative aminobutyraldehyde dehydrogenase / aldehyde dehydrogenase B<br />

allR b0506 0.3675 0.0004 AllR transcriptional regulator<br />

amyA b1927 1.4397 0.0367 alpha-amylase, cytoplasmic<br />

aniC b4115 0.9075 0.0200 AdiC Arginine:Agmatine Antiporter<br />

argR b3237 0.5889 0.0462 ArgR transcriptional dual regulator<br />

aroA b0908 0.7038 0.0037 3-phosphoshikimate-1-carboxyvinyltransferase<br />

artQ b0862 1.3759 0.0198 arginine ABC transporter<br />

atpG b3733 1.3528 0.0009 ATP synthase, F1 complex, gamma subunit<br />

b0309 b0309 0.3686 0.0298 hypothetical protein<br />

b0373 b0373 0.5710 0.0097 hypothetical protein<br />

b1364 b1364 1.7894 0.0168 hypothetical protein<br />

baeS b2078 0.5383 0.0205 BaeS-Phis<br />

bglG b3723 1.2005 0.0036 BglG monomer<br />

cbl b1987 0.7237 0.0159 Cbl transcriptional activator<br />

chbG b1733 2.1422 0.0047<br />

hypothetical protein, encoded <strong>by</strong> an operon required for growth on N,N'-<br />

diacetylchitobiose<br />

cheB b1883 2.0876 0.0004 CheB-Pasp / PGluMase / protein-glutamine glutaminase<br />

cheZ b1881 1.3201 0.0444 CheZ<br />

citE b0616 2.1449 0.0394 subunit <strong>of</strong> citryl-ACP lyase<br />

160


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

citX b0614 0.4000 0.0370 holo-ACP synthase<br />

clpA b0882 0.7887 0.0340 ATP-binding component <strong>of</strong> serine protease<br />

cpsB b2049 0.3934 0.0301 mannose-1-phosphate guanylyltransferase-(GDP)<br />

cpxP b3913 2.7585 0.0052<br />

regulator <strong>of</strong> the Cpx response and possible chaperone involved in resistance to<br />

extracytoplasmic stress<br />

creA b4397 0.6098 0.0489 hypothetical protein<br />

csgA b1042 0.5922 0.0165 curlin, major subunit<br />

cydC b0886 0.5727 0.0423 abc-6-cplx<br />

dcd b2065 0.5033 0.0057 dCTP deaminase<br />

dcp b1538 0.5735 0.0138 dipeptidyl carboxypeptidase II<br />

deoB b4383 2.8180 0.0292 phosphopentomutase<br />

dgoR b4479 0.3103 0.0080 regulator protein for dgo operon<br />

dinB b0231 0.5729 0.0144 DNA polymerase IV (Y-family DNA polymerase; translesion DNA synthesis)<br />

dinD b3645 0.5218 0.0499 DNA-damage-inducible protein<br />

dld b2133 0.3096 0.0065 D-lactate:Quinone Oxidoreductase<br />

dnaG b3066 2.8483 0.0412 DNA biosynthesis; DNA primase<br />

dnaQ b0215 0.4868 0.0086 DNA polymerase III, epsilon subunit<br />

dppB b3543 0.3745 0.0395 dipeptide ABC transporter<br />

elaA b2267 0.3654 0.0026 hypothetical protein<br />

elbB b3209 0.7262 0.0373 sigma cross-reacting protein 27A (SCRP-27A)<br />

emtA b1193 0.5201 0.0102 murein transglycosylase E<br />

entS b0591 5.6019 0.0045 YbdA MFS transporter<br />

erfK b1990 0.4581 0.0299 hypothetical protein with similarity to universal stress protein<br />

exbB b3006 9.4812 0.0258 ExbB protein; uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

exbD b3005 4.8930 0.0016 ExbD uptake <strong>of</strong> enterochelin; tonB-dependent uptake <strong>of</strong> B colicins<br />

fbaB b2097 0.1818 0.0492 fructose bisphosphate aldolase monomer<br />

fecA b4291 3.3493 0.0110<br />

outer membrane receptor; citrate-dependent iron transport, outer membrane<br />

receptor<br />

fecB b4290 8.7354 0.0011 ferric dicitrate uptake system<br />

feoA b3408 1.5400 0.0067 ferrous iron transport protein A<br />

fepA b0584 3.0382 0.0381<br />

FepA, outer membrane receptor for ferric enterobactin (enterochelin) and colicins<br />

B and D<br />

fhuF b4367 6.4472 0.0140 acts in reduction <strong>of</strong> ferrioxamine B iron<br />

fimA b4314 0.0474 0.0033 major type 1 subunit fimbrin (pilin)<br />

fimI b4315 0.1958 0.0097 fimbrial protein<br />

fklB b4207 0.6485 0.0088 FKBP-type 22KD peptidyl-prolyl cis-trans isomerase (a rotamase)<br />

fkpA b3347 0.6246 0.0037 peptidyl-prolyl cis-trans isomerase; in protein folding<br />

flgJ b1081 2.4784 0.0147 FlgJ<br />

flgM b1071 1.3378 0.0033 anti-FliA (anti-sigma) factor; also known as RflB protein<br />

flgN b1070 1.6620 0.0138 flagellar biosynthesis protein FlgN<br />

flhB b1880 1.7009 0.0337 flagellar biosynthesis protein FlhB<br />

fliE b1937 1.4750 0.0088 flagellar basal-body protein FliE<br />

fliF b1938 1.6666 0.0306<br />

flagellar M-ring protein FliF; basal-body MS(membrane and supramembrane)-<br />

ring and collar protein<br />

fliG b1939 2.1045 0.0069<br />

flagellar motor switch protein FliG; component <strong>of</strong> motor switching and<br />

energizing, enabling rotation and determining its direction<br />

fliL b1944 2.1945 0.0188 flagellar biosynthesis<br />

fliM b1945 2.0791 0.0003<br />

flagellar motor switch protein FliM; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliP b1948 1.9491 0.0114 flagellar biosynthesis protein FliP<br />

fliQ b1949 3.0936 0.0072 flagellar biosynthesis protein FliQ<br />

fliZ b1921 1.4597 0.0276 possible cell-density responsive regulator <strong>of</strong> sigmaF<br />

flxA b1566 1.6260 0.0119 hypothetical protein; <strong>gene</strong> is regulated <strong>by</strong> FliA<br />

folE b2153 0.6211 0.0207 GTP cyclohydrolase I<br />

frmA b0356 1.1962 0.0067 formaldehyde dehydrogenase, glutathione-dependent<br />

ftnA b1905 0.4044 0.0002 cytoplasmic ferritin, an iron storage protein)<br />

ftsI b0084 2.4213 0.0314 essential cell division protein FtsI; penicillin-binding protein 3<br />

ftsL b0083 1.7997 0.0053 essential cell division protein FtsL<br />

161


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

galR b2837 2.6916 0.0029 GalR-galactose<br />

galT b0758 0.6631 0.0384<br />

UDP-glucose-hexose-1-phosphate uridylyltransferase / galactose-1-phosphate<br />

uridylyltransferase<br />

galU b1236 1.8258 0.0242 UTP-glucose-1-phosphate uridylyltransferase<br />

garR b3125 0.6022 0.0007 tartronate semialdehyde reductase<br />

gcl b0507 0.3585 0.0257 glyoxylate carboligase<br />

ghrA b1033 0.3564 0.0005 glyoxylate reductase<br />

glmS b3729 1.0956 0.0218 L-glutamine:D-fructose-6-phosphate aminotransferase<br />

gloA b1651 0.8364 0.0384 glyoxalase I<br />

gltB b3212 0.5950 0.0474 glutamate synthase (NADPH) large chain precursor<br />

gltD b3213 0.5153 0.0061 glutamate synthase (NADPH) small chain<br />

glyA b2551 0.5605 0.0266 glycine hydroxymethyltransferase<br />

gmhB b0200 0.6287 0.0027 GmhB<br />

gpp b3779 2.2141 0.0307 guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase<br />

grxB b1064 0.4556 0.0213 oxidized glutaredoxin 2<br />

gst b1635 0.5631 0.0185 glutathione transferase<br />

gutQ b2708 0.7061 0.0173 protein with a sugar isomerase domain<br />

hdeD b3511 1.5185 0.0068 protein involved in acid resistance<br />

hdfR b4480 0.6083 0.0428 transcriptional regulator<br />

hemL b0154 0.6270 0.0356 glutamate-1-semialdehyde aminotransferase<br />

hepA b0059 0.5258 0.0325 RNA Polymerase (RNAP)-binding ATPase and RNAP recycling factor<br />

hflD b1132 0.6486 0.0423 membrane protein in operon with purB<br />

hipA b1507 2.1862 0.0158 HipA transcriptional activator<br />

hisI b2026 0.7672 0.0436 phosphoribosyl-AMP cyclohydrolase / phosphoribosyl-ATP pyrophosphatase<br />

hisJ b2309 0.5028 0.0038 histidine ABC transporter<br />

hscA b2526 1.7721 0.0266 chaperone, member <strong>of</strong> Hsp70 protein family<br />

hsdM b4349 0.7275 0.0448 host modification; DNA methylase M<br />

hsdS b4348 0.6614 0.0101 specificity determinant for hsdM and hsdR<br />

htrA b0161 2.8995 0.0097 DegP<br />

hybD b2993 0.4468 0.0191 hydrogenase 2 maturation endopeptidase<br />

hydN b2713 1.2745 0.0490 putative electron transport protein HydN<br />

ibpA b3687 2.0616 0.0065 small heat shock protein IbpA<br />

inaA b2237 1.3823 0.0226 pH-inducible protein involved in stress response<br />

infC b1718 1.3280 0.0197 protein chain initiation factor IF-3<br />

iscA b2528 1.4270 0.0242 iron-sulfur cluster assembly protein<br />

iscS b2530 1.4016 0.0167 cysteine desulfurase monomer<br />

iscU b2529 1.3576 0.0171 scaffold protein involved in iron-sulfur cluster assembly<br />

iscX b2524 1.8316 0.0294 protein with possible role in iron-sulfur cluster bio<strong>gene</strong>sis<br />

kdgT b3909 2.3520 0.0274 KdgT 2-keto-3-deoxygluconate transporter<br />

kduD b2842 0.7186 0.0150 2-deoxy-D-gluconate 3-dehydrogenase<br />

kduI b2843 0.7822 0.0384 homolog <strong>of</strong> pectin degrading enzyme 5-keto 4-deoxyuronate isomerase<br />

leuA b0074 2.9952 0.0235 2-isopropylmalate synthase<br />

lplA b4386 0.6314 0.0266 lipoyl-protein ligase A<br />

lysU b4129 0.3830 0.0029 lysyl-tRNA synthetase (LysRSu), inducible<br />

maa b0459 0.6405 0.0004 maltose acetyltransferase<br />

malX b1621 0.5038 0.0496 EIIBCMalX<br />

malY b1622 0.7775 0.0304 bifunctional: repressor <strong>of</strong> maltose regulon / cystathionine beta-lyase<br />

manA b1613 0.5147 0.0334 mannose-6-phosphate isomerase<br />

map b0168 1.5951 0.0157 methionine aminopeptidase<br />

marA b1531 5.0995 0.0031 MarA transcriptional activator<br />

marR b1530 4.0195 0.0022 MarR-salicylate<br />

mbhA b0230 0.4200 0.0113 putative motility protein<br />

mdaB b3028 1.9345 0.0233 NADPH quinone reductase<br />

mdoD b1424 0.6780 0.0394 glucan biosynthesis protein D<br />

mdtH b1065 0.5184 0.0019 YceL MFS transporter<br />

menG b3929 0.7805 0.0366 inhibitor <strong>of</strong> ribonuclease E (RNase E) activity<br />

mfd b1114 0.5397 0.0158 transcription-repair coupling factor; mutation frequency decline<br />

162


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

mglC b2148 0.1817 0.0059 galactose ABC transporter<br />

moeB b0826 0.3297 0.0018 molybdopterin biosynthesis<br />

mog b0009 0.6094 0.0062 required for the efficient incorporation <strong>of</strong> Mo into molybdoproteins<br />

motA b1890 1.4410 0.0182 MotA protein, proton conductor component <strong>of</strong> motor; no effect on switching<br />

mpaA b1326 0.6680 0.0238 murein peptide amidase A<br />

mraW b0082 1.6512 0.0423 S-adenosyl-dependent methyltransferase<br />

msrA b4219 0.3359 0.0142<br />

methionine sulfoxide reductase A / protein-methionine-S-oxide reductase /<br />

methionine sulfoxide reductase<br />

mug b3068 0.2422 0.0049 stationary phase mismatch/uracil DNA glycosylase<br />

mukE b0923 2.2877 0.0118 protein involved in chromosome partitioning<br />

mukF b0922 2.1539 0.0075 Ca2+-binding protein involved in chromosome partitioning<br />

murC b0091 1.3976 0.0217 UDP-N-acetylmuramate-alanine ligase<br />

murD b0088 1.1421 0.0308 UDP-N-acetylmuramoylalanine-D-glutamate ligase<br />

mutH b2831 0.4240 0.0337 MutHLS complex, methyl-directed mismatch repair<br />

nadR b4390 0.6257 0.0268 NadR transcriptional repressor / NMN adenylyltransferase<br />

nagA b0677 0.5678 0.0282 N-acetylglucosamine-6-phosphate deacetylase<br />

nagB b0678 0.4101 0.0011 glucosamine-6-phosphate deaminase<br />

narL b1221 0.5206 0.0007 NarL-Phosphorylated transcriptional dual regulator<br />

narX b1222 0.4355 0.0202 NarX-Phis<br />

nfi b3998 0.6846 0.0473 endonuclease V (deoxyinosine 3'endoduclease)<br />

nfnB b0578 0.7962 0.0085 dihydropteridine reductase<br />

nfrA b0568 0.3236 0.0069 bacteriophage N4 receptor, outer membrane protein<br />

nfsA b0851 1.5581 0.0063 NADPH nitroreductase<br />

nlpD b2742 0.6439 0.0366 NlpD putative outer membrane lipoprotein<br />

nudH b2830 1.4474 0.0158 putative invasion protein<br />

ompA b0957 0.7281 0.0106 outer membrane protein 3a (II*;G;d)<br />

ompC b2215 2.0986 0.0040 outer membrane porin OmpC<br />

ompX b0814 0.6904 0.0223 outer membrane protein X<br />

oxyR b3961 0.6290 0.0201 OxyR transcriptional dual regulator<br />

paaB b1389 0.0991 0.0404 putative subunit <strong>of</strong> phenylacetate-CoA oxygenase<br />

paaI b1396 1.8933 0.0289 hypothetical protein with some similarity to thioesterases<br />

pal b0741 0.5468 0.0040 Tol-Pal Cell Envelope Complex<br />

panF b3258 0.7935 0.0164 PanF sodium/pantothenate SSS transporter<br />

pepQ b3847 1.5249 0.0184 proline dipeptidase<br />

pfkA b3916 0.5688 0.0041 6-phosph<strong>of</strong>ructokinase-1 monomer / putative NAD+ kinase<br />

pfkB b1723 0.4510 0.0068 6-phosph<strong>of</strong>ructokinase-2 monomer<br />

pgk b2926 1.3521 0.0229 phosphoglycerate kinase<br />

pheS b1714 1.4275 0.0242 phenylalanyl-tRNA synthetase &alpha;-chain<br />

phnI b4099 2.1789 0.0451 phosphonate metabolism<br />

plsX b1090 2.1023 0.0467 glycerolphosphate auxotrophy in plsB background<br />

pmbA b4235 0.6317 0.0323<br />

protease involved in Microcin B17 maturation and in sensitivity to the DNA<br />

gyrase inhibitor LetD<br />

pnuC b0751 1.2218 0.0260 PnuC NMN transporter<br />

poxA b4155 0.4524 0.0462 putative regulator <strong>of</strong> pyruvate oxidase<br />

ppiD b0441 0.7431 0.0500 peptidyl-prolyl cis-trans isomerase<br />

prfA b1211 2.0627 0.0070 peptide chain release factor RF-1<br />

prfH b0236 0.3770 0.0439 probable peptide chain release factor<br />

prlC b3498 0.5779 0.0203 oligopeptidase A<br />

prmA b3259 0.6861 0.0196 methylation <strong>of</strong> 50S ribosomal subunit protein L11<br />

proA b0243 0.8509 0.0152 gamma-glutamyl kinase-GP-reductase multienzyme complex<br />

ptrA b2821 0.2672 0.0247 protease III<br />

purB b1131 0.7424 0.0127<br />

5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase /<br />

adenylosuccinate lyase<br />

purD b4005 0.6497 0.0099 phosphoribosylamine-glycine ligase<br />

purE b0523 0.5049 0.0089 N5-carboxyaminoimidazole ribonucleotide mutase<br />

purR b1658 1.3164 0.0433 PurR transcriptional repressor<br />

purT b1849 0.4486 0.0494 GAR transformylase 2<br />

163


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

puuA b1297 0.4444 0.0002 putative glutamine synthetase (EC 6.3.1.2)<br />

puuR b1299 2.1380 0.0256 putative oxidoreductase/putative regulator<br />

racR b1356 1.7456 0.0218 hypothetical protein<br />

rcsF b0196 0.7467 0.0352 RcsF-P<br />

recB b2820 0.3206 0.0117<br />

RecB; DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit,<br />

ssDNA endonuclease<br />

recC b2822 2.3410 0.0070<br />

DNA helicase, ATP-dependent dsDNA/ssDNA exonuclease V subunit, ssDNA<br />

endonuclease<br />

rep b3778 0.5395 0.0242 rep helicase, a single-stranded DNA dependent ATPase<br />

rffD b3787 1.6810 0.0404 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase<br />

rffG b3788 1.4341 0.0315 dTDP-glucose 4,6-dehydratase 2<br />

rhsC_1 b0700 0.2172 0.0239 RhsC protein in rhs element, interrupted<br />

rhtB b3824 0.4705 0.0156 RhtB homoserine Rht Transporter<br />

rimJ b1066 0.6184 0.0212<br />

acetylates N-terminal alanine <strong>of</strong> 30S ribosomal subunit protein S5 / ribosomalprotein-alanine<br />

N-acetyltransferase<br />

rob b4396 0.6252 0.0498 Rob transcriptional activator<br />

rplD b3319 1.8347 0.0070 50S ribosomal subunit protein L4, regulates <strong>expression</strong> <strong>of</strong> S10 operon<br />

rplP b3313 1.3529 0.0061 50S ribosomal subunit protein L16<br />

rpmG b3636 1.7607 0.0218 50S ribosomal subunit protein L33<br />

rpsI b3230 2.3038 0.0446 30S ribosomal subunit protein S9<br />

ruvA b1861 0.6819 0.0478 branch migration <strong>of</strong> Holliday structures; repair<br />

sanA b2144 3.4542 0.0022 vancomycin sensitivity<br />

sapB b1293 1.2822 0.0403 peptide uptake ABC transporter<br />

sbcC b0397 0.5204 0.0154 ATP-dependent dsDNA exonuclease<br />

sbcD b0398 0.5232 0.0154 ATP-dependent dsDNA exonuclease<br />

secG b3175 2.8489 0.0079 Sec Protein Secretion Complex<br />

secY b3300 1.6629 0.0061 Sec Protein Secretion Complex<br />

setB b2170 0.5873 0.0068 YeiO MFS transporter<br />

slt b4392 0.7163 0.0041 soluble lytic murein transglycosylase<br />

smtA b0921 2.2662 0.0008 S-adenosylmethionine-dependent methyltransferase<br />

sodA b3908 1.6251 0.0428 superoxide dismutase (Mn)<br />

sodB b1656 0.6871 0.0357 superoxide dismutase (Fe)<br />

sohA b3129 0.3949 0.0001 putative protease, affects protein secretion<br />

soxS b4062 0.7246 0.0408 SoxS transcriptional activator<br />

speC b2965 0.2278 0.0104 ornithine decarboxylase, biosynthetic<br />

speD b0120 0.4229 0.0032 adenosylmethionine decarboxylase, proenzyme<br />

speE b0121 0.3868 0.0023 spermidine synthase<br />

spoT b3650 2.1390 0.0249 GDP diphosphokinase / guanosine-3',5'-bis(diphosphate) 3'-diphosphatase<br />

sspB b3228 1.6238 0.0353 SspB monomer<br />

stpA b2669 0.6804 0.0362 DNA-binding protein; H-NS-like protein; chaperone activity; RNA splicing?<br />

talA b2464 0.5618 0.0078 transaldolase A<br />

tauC b0367 1.2163 0.0350 TauA/TauB/TauC ABC transporter<br />

tdcA b3118 0.7075 0.0382 TdcA transcriptional activator<br />

tesB b0452 0.5076 0.0130 thioesterase II<br />

thrA b0002 1.5206 0.0439 aspartate kinase I / homoserine dehydrogenase I<br />

thrS b1719 1.2919 0.0110 threonyl-tRNA synthetase<br />

tnaB b3709 0.3751 0.0371 TnaB tryptophan ArAAP transporter<br />

tolB b0740 0.6004 0.0079 Tol-Pal Cell Envelope Complex<br />

tonB b1252 4.8369 0.0178<br />

TonB protein; energy transducer; uptake <strong>of</strong> iron, cyanocobalimin; sensitivity to<br />

phages, colicins<br />

topB b1763 2.2188 0.0171 DNA topoisomerase III<br />

tpiA b3919 0.5602 0.0113 triose phosphate isomerase monomer<br />

tpx b1324 0.5721 0.0037 thiol peroxidase 2<br />

trkH b3849 1.6425 0.0408 TrkH potassium ion Trk Transporter<br />

trpA b1260 0.6895 0.0091 tryptophan synthase, alpha subunit / indoleglycerol phosphate aldolase<br />

ubiB b3835 1.8429 0.0208 2-octaprenylphenol hydroxylase<br />

ulaG b4192 0.5353 0.0428 putative L-ascorbate 6-phosphate lactonase<br />

ves b1742 1.6031 0.0028 cold-induced member <strong>of</strong> the CspA family<br />

164


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

wcaM b2043 0.7903 0.0280 hypothetical protein<br />

xdhD b2881 0.4314 0.0203<br />

putative oxidoreductase; possible component <strong>of</strong> selenate reductase with possible<br />

role in purine salvage<br />

xseB b0422 0.6395 0.0007 exonuclease VII, small subunit<br />

xylF b3566 0.8595 0.0048 xylose ABC transporter<br />

yaaA b0006 0.6867 0.0434 putative membrane protein<br />

yadI b0129 0.6721 0.0176 EIIAga<br />

yaeR b0187 0.6633 0.0090 putative enzyme<br />

yafK b0224 0.5143 0.0141<br />

conserved protein; in enteroaggregative E. coli, YafK is required for development<br />

<strong>of</strong> bi<strong>of</strong>ilms<br />

yafL b0227 0.6653 0.0187 putative lipoprotein<br />

yagB b0266 0.3543 0.0199 hypothetical protein<br />

yahG b0321 0.4435 0.0499 conserved protein<br />

yajC b0407 0.6234 0.0285 Sec Protein Secretion Complex<br />

yajL b0424 0.5924 0.0146 YajL<br />

yajQ b0426 0.7004 0.0019 nucleotide binding protein<br />

ybbA b0495 0.4961 0.0210 YbbA/YbbP ABC transporter<br />

ybbN b0492 0.5804 0.0095 putative thioredoxin-like protein<br />

ybdB b0597 1.8841 0.0034 conserved hypothetical protein<br />

ybeD b0631 0.5752 0.0204 conserved hypothetical protein<br />

ybeF b0629 0.5481 0.0405 putative transcriptional regulator LYSR-type<br />

ybeL b0643 0.5838 0.0267 conserved hypothetical protein<br />

ybeR b0645 0.6981 0.0297 conserved hypothetical protein<br />

ybfC b0704 0.4592 0.0473 hypothetical protein<br />

ybgA b0707 0.5380 0.0378 conserved protein<br />

ybgF b0742 0.7414 0.0495 Tol-Pal Cell Envelope Complex<br />

ybhA b0766 0.4283 0.0208 putative phosphatase<br />

ybhL b0786 0.4806 0.0166 putative transport protein<br />

ybiC b0801 0.2705 0.0026 putative dehydrogenase<br />

ybjC b0850 2.1246 0.0155 conserved hypothetical protein; <strong>gene</strong> is within soxRS regulon<br />

ybjT b0869 0.5382 0.0222 putative dTDP-glucose<br />

ycaO b0905 0.5635 0.0133 conserved hypothetical protein<br />

ycaR b0917 0.8119 0.0434 hypothetical protein<br />

ycbK b0926 0.4625 0.0396 conserved hypothetical protein<br />

ycbQ b0938 0.3915 0.0212 putative fimbrial-like protein<br />

ycbW b0946 0.4707 0.0294 conserved hypothetical protein<br />

ycdK b1010 0.6659 0.0336 conserved protein<br />

ycdO b1018 3.1170 0.0011 conserved hypothetical protein<br />

ycdX b1034 0.6258 0.0106 putative DNA polymerase subunit<br />

ycdY b1035 0.5220 0.0048 putative oxidoreductase component<br />

yceP b1060 3.0327 0.0061 conserved hypothetical protein<br />

ycfF b1103 0.7821 0.0425 hypothetical protein<br />

ycfX b1119 0.5588 0.0062 putative sugar kinase, ROK family protein<br />

ycgF b1163 0.4183 0.0033 conserved protein<br />

ycgZ b1164 0.2379 0.0051 hypothetical protein<br />

yciA b1253 2.1238 0.0447 putative enzyme<br />

ycjO b1311 2.0646 0.0042 YcjN/YcjO/YcjP ABC transporter<br />

ycjZ b1328 1.5357 0.0455 putative transcriptional regulator LYSR-type<br />

ydcR b1439 2.1811 0.0125<br />

multi modular; putative transcriptional regulator ; also putative ATP-binding<br />

component <strong>of</strong> a transport system<br />

ydcX b1445 2.0821 0.0245 hypothetical protein<br />

yddB b1495 1.8931 0.0263 conserved protein<br />

yddE b1464 0.5672 0.0290 conserved protein<br />

yddH b1462 2.1448 0.0097 putative enzyme<br />

ydeK b1510 0.7567 0.0259 YdeK<br />

ydeR b1503 2.0061 0.0065 putative fimbrial-like protein<br />

ydfD b1576 1.1486 0.0464 hypothetical protein<br />

165


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ydfG b1539 0.5150 0.0046 3-hydroxy acid dehydrogenase monomer<br />

ydfJ b1543 2.2617 0.0173 YdfJ<br />

ydfR b1555 1.4544 0.0272 hypothetical protein<br />

YdgF b1600 4.2412 0.0211 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydhH b1640 0.4438 0.0035 conserved hypothetical protein<br />

ydhO b1655 1.6025 0.0127 putative lipoprotein<br />

ydhR b1667 2.0667 0.0134 conserved hypothetical protein<br />

ydiA b1703 0.5498 0.0081 conserved protein<br />

ydiJ b1687 0.6760 0.0039 putative oxidase<br />

ydiZ b1724 0.4478 0.0112 conserved hypothetical protein<br />

ydjA b1765 0.7449 0.0457 conserved protein<br />

ydjJ b1774 0.4478 0.0421 putative oxidoreductase<br />

yecM b1875 0.5730 0.0459<br />

conserved hypothetical protein with structural similarity to metal binding<br />

isomerases and oxygenases<br />

yecR b1904 2.2905 0.0227 conserved hypothetical protein<br />

yedA b1959 0.3926 0.0268 putative transmembrane subunit<br />

yedS_2 b1965 1.2318 0.0336 putative outer membrane protein<br />

yedW b1969 1.7473 0.0293 putative 2-component transcriptional response regulator<br />

yeeV b2005 2.3889 0.0447 toxin <strong>of</strong> the YeeV-YeeU toxin-antitoxin pair<br />

yegD b2069 0.4221 0.0152 actin family protein<br />

yehS b2124 1.5509 0.0010 conserved hypothetical protein<br />

yfaY b2249 0.6432 0.0439 putative competence-damage protein<br />

yfcO b2332 2.0298 0.0093 conserved hypothetical protein<br />

yfdG b2350 1.9660 0.0295 hypothetical protein<br />

yfdH b2351 2.2682 0.0127 putative glycan biosynthesis enzyme<br />

yfdQ b2360 0.7084 0.0485 hypothetical protein<br />

yfdZ b2379 0.4682 0.0142 putative aminotransferase<br />

yfeA b2395 3.1873 0.0153 putative membrane protein<br />

yfgA b2516 1.6228 0.0427 putative membrane protein<br />

yfgG b2504 1.9854 0.0010 hypothetical protein<br />

yfiC b2575 0.6816 0.0353 putative enzyme<br />

ygaF b2660 0.2733 0.0438 hypothetical protein<br />

ygaH b2683 4.1143 0.0001 putative transport protein<br />

ygaZ b2682 3.8502 0.0126 hypothetical protein<br />

ygdR b2833 0.7101 0.0443 conserved hypothetical protein<br />

ygeA b2840 0.7747 0.0342 putative resistance protein<br />

yggG b2936 0.5864 0.0044 conserved protein<br />

yghU b2989 0.2346 0.0021<br />

glutathione transferase-like protein possibly involved in glutathionylspermidine<br />

metabolism<br />

yghX b2999 0.7351 0.0450 putative enzyme<br />

ygiB b3037 0.6675 0.0272 conserved hypothetical protein<br />

ygiC b3038 0.6545 0.0203 putative glutathione-like synthetase<br />

ygjK b3080 0.7192 0.0047 putative isomerase<br />

yhaH b3103 1.7228 0.0160 putative cytochrome<br />

yhaO b3110 0.4765 0.0045 YhaO STP transporter<br />

yhaV b3130 0.4633 0.0039 conserved hypothetical protein<br />

yhdN b3293 0.5429 0.0431 conserved hypothetical protein<br />

yhgA b3411 0.8004 0.0317 hypothetical protein<br />

yhhW b3439 0.5175 0.0175 conserved hypothetical protein<br />

yhhX b3440 0.6329 0.0101 putative galactose 1-dehydrogenase<br />

yicC b3644 0.7406 0.0216 conserved protein<br />

yidS b3690 0.7631 0.0435 putative oxidoreductase with FAD/NAD(P)-binding domain<br />

yidW b3694 0.3773 0.0239<br />

yidZ b3711 0.8211 0.0483 putative transcriptional regulator LysR-type<br />

yifK b3795 3.1137 0.0009 YifK APC transporter<br />

yiiM b3910 0.7020 0.0122 conserved hypothetical protein<br />

yjdI b4126 0.7375 0.0469 conserved hypothetical protein<br />

166


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yjdL b4130 0.8934 0.0340 YjdL peptide POT transporter<br />

yjeJ b4145 1.3189 0.0227 conserved protein<br />

yjhH b4298 0.5714 0.0293 putative lyase/synthase<br />

yjhQ b4307 0.5879 0.0424 hypothetical protein<br />

yjjQ b4365 0.7703 0.0016 putative regulator<br />

ykgB b0301 0.1144 0.0233 putative membrane protein<br />

ykgI b0303 0.0811 0.0115 hypothetical protein<br />

yliC b0831 0.5742 0.0208 YliA/YliB/YliC/YliD ABC transporter<br />

ymdB b1045 0.4293 0.0044 conserved protein<br />

ymfL b1147 0.6034 0.0298 hypothetical protein<br />

ymgA b1165 0.2057 0.0011 hypothetical protein<br />

ymgB b1166 0.2193 0.0045 hypothetical protein<br />

ynbB b1409 1.8755 0.0346 putative phosphatidate cytidiltransferase<br />

ynbD b1411 2.0382 0.0189 putative enzyme<br />

yncE b1452 1.5010 0.0124 putative receptor<br />

ynfA b1582 0.5690 0.0326 inner membrane protein<br />

ynfF b1588 1.3945 0.0073 oxidoreductase subunit paralog <strong>of</strong> DmsA<br />

ynfK b1593 1.3710 0.0451 hypothetical protein<br />

yoaB b1809 0.6323 0.0226 conserved protein<br />

yohK b2142 0.6522 0.0298 putative transporter<br />

yojI b2211 4.8991 0.0006 YojI<br />

ypfG b2466 0.5804 0.0215 conserved hypothetical protein<br />

ypjF b2646 0.6684 0.0339 member <strong>of</strong> the YeeV, YkfI, YpjF family <strong>of</strong> toxin proteins<br />

yqcD b2794 0.5550 0.0359 conserved hypothetical protein<br />

yqgF b2949 0.5076 0.0306 possible Holliday junction resolvase<br />

yqjE b3099 0.5661 0.0492 conserved protein<br />

yraR b3152 0.6835 0.0499 putative NADH dehydrogenase<br />

yrdA b3279 0.3644 0.0141 putative transferase<br />

yrdD b3283 1.3095 0.0130 putative DNA topoisomerase<br />

ytfN b4221 0.7492 0.0064 conserved protein<br />

zipA b2412 2.6840 0.0155 essential cell division protein ZipA<br />

znuA b1857 2.8611 0.0069 ZnuA/ZnuB/ZnuC ABC transporter<br />

Supplementary table – XII: LZ41 wild-type (A) Vs LZ41 hns-205::Tn10 (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

aat b0885 0.7595 0.0479 leucyl, phenylalanyl-tRNA-protein transferase<br />

abgR b1339 0.6195 0.0042 putative transcriptional regulator LYSR-type<br />

acrA b0463 4.5010 0.0065 AcrA Membrane Fusion Protein<br />

acrE b3265 0.1208 0.0044 transmembrane protein affects septum formation and cell membrane permeability<br />

acrF b3266 0.6175 0.0474 AcrEF-TolC Drug Efflux Transport System<br />

ade b3665 0.0536 0.0002 cryptic adenine deaminase monomer<br />

agaA b3135 0.5197 0.0250 AgaA<br />

agaC b3139 0.5391 0.0363 EIIAga<br />

aldB b3588 0.6583 0.0359 putative aminobutyraldehyde dehydrogenase / aldehyde dehydrogenase B<br />

allA b0505 0.6574 0.0061 ureidoglycolate hydrolase<br />

allB b0512 0.4423 0.0151 allantoinase<br />

allC b0516 0.4293 0.0117 allantoate amidohydrolase<br />

allD b0517 0.4905 0.0101 ureidoglycolate dehydrogenase<br />

alsB b4088 0.4271 0.0007 YjcX<br />

aniC b4115 0.4105 0.0212 AdiC Arginine:Agmatine Antiporter<br />

araG b1900 0.7483 0.0333 arabinose ABC transporter<br />

167


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

araH b4460 0.4566 0.0067 high-affinity L-arabinose transport protein (ABC superfamily, membrane)<br />

arnT b2257 0.2829 0.0208 4-amino-4-deoxy-L-arabinose (L-Ara4N) transferase<br />

aroD b1693 0.6190 0.0316 3-dehydroquinate dehydratase<br />

aroH b1704 0.5580 0.0038 2-dehydro-3-deoxyphosphoheptonate aldolase<br />

asnS b0930 1.7622 0.0368 asparaginyl-tRNA synthetase<br />

astB b1745 1.3454 0.0327 succinylarginine dihydrolase<br />

atoA b2222 2.3479 0.0324 AtoA / putative acetate CoA-transferase<br />

b0501 b0501 0.1596 0.0008 hypothetical protein<br />

b0816 b0816 0.4687 0.0373 hypothetical protein<br />

b1172 b1172 0.1061 0.0001 conserved hypothetical protein<br />

b1354 b1354 0.5533 0.0243 hypothetical protein<br />

b1364 b1364 10.5092 0.0054 hypothetical protein<br />

b1903 b1903 0.2168 0.0033 hypothetical protein<br />

b2596 b2596 0.5031 0.0010 hypothetical protein<br />

b2680 b2680 0.7122 0.0494 YgaY MFS transporter<br />

b2856 b2856 0.6466 0.0035 hypothetical protein<br />

bcsE b3536 0.5509 0.0240 putative protease<br />

bcsF b3537 0.5029 0.0319 hypothetical protein<br />

bcsZ b3531 0.5272 0.0166 endo-1,4-D-glucanase<br />

bdm b1481 0.4413 0.0416 hypothetical protein<br />

bioB b0775 1.5107 0.0398 biotin synthase monomer<br />

blc b4149 0.6930 0.0385 Blc outer membrane lipoprotein (lipocalin)<br />

bolA b0435 0.5808 0.0485 BolA transcriptional regulator<br />

borD b0557 0.2028 0.0066 bacteriophage lambda Bor protein homolog<br />

btuB b3966 2.0282 0.0268<br />

outer membrane receptor for transport <strong>of</strong> vitamin B12, E colicins, and<br />

bacteriophage BF23<br />

cadA b4131 0.1817 0.0010 lysine decarboxylase<br />

cadB b4132 0.2314 0.0183 CadB cadaverine/lysine APC exchanger / Transporter<br />

chaA b1216 1.1728 0.0177 ChaA calcium CaCA transporter<br />

chbF b1734 0.4431 0.0084 6-phospho-beta-glucosidase; cryptic<br />

chbG b1733 0.5453 0.0153<br />

hypothetical protein, encoded <strong>by</strong> an operon required for growth on N,N'-<br />

diacetylchitobiose<br />

chbR b1735 0.2703 0.0116 ChbR transcriptional regulator<br />

cheY b1882 3.2891 0.0487 CheY-Pasp<br />

clpB b2592 0.7053 0.0387 ClpB chaperone<br />

cmr b0842 0.4212 0.0345 MdfA/Cmr MFS multidrug transporter<br />

codA b0337 1.3776 0.0127 cytosine deaminase<br />

cpsB b2049 0.0143 0.0001 mannose-1-phosphate guanylyltransferase-(GDP)<br />

cpsG b2048 0.0793 0.0000 phosphomannomutase<br />

csgA b1042 0.1297 0.0015 curlin, major subunit<br />

csgB b1041 0.2784 0.0091 curlin, minor subunit precursor<br />

csgD b1040 0.2937 0.0139 CsgD transcriptional activator<br />

csgE b1039 0.4605 0.0168 curli production assembly/transport component<br />

csgG b1037 0.3495 0.0413 curli production component<br />

cspA b3556 2.1715 0.0311 cold shock protein CspA<br />

cspB b1557 0.3823 0.0091 cold shock protein CspB<br />

cspC b1823 0.2854 0.0008 cold shock protein CspC<br />

cspG b0990 0.2179 0.0008 cold shock protein CspG<br />

cspI b1552 0.1377 0.0009 cold shock protein CspI<br />

cycA b4208 0.7201 0.0338 CycA serine/alanine/glycine APC transporter<br />

cyoC b0430 0.6460 0.0438 cytochrome bo terminal oxidase subunit III<br />

cysW b2423 0.6811 0.0088 sulfate ABC transporter<br />

dadX b1190 0.5637 0.0240 alanine racemase, major<br />

dctR b3507 0.4508 0.0475 protein involved in metabolism <strong>of</strong> C4-dicarboxylates<br />

dcuC b0621 0.4523 0.0022 DcuC dicarboxylate transporter<br />

dcyD b1919 1.4064 0.0091 D-cysteine desulfhydrase monomer<br />

degQ b3234 1.3540 0.0123 serine endoprotease<br />

168


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value<br />

Function<br />

purine nucleoside phosphorylase / guanosine phosphorylase / deoxyguanosine<br />

phosphorylase / inosine phosphorylase / deoxyinosine phosphorylase / adenine<br />

phosphorylase / deoxyadenosine phosphorylase<br />

deoD b4384 1.5417 0.0073<br />

dgt b0160 0.6156 0.0126 deoxyguanosinetriphosphate triphosphohydrolase<br />

dmsC b0896 1.2108 0.0248 dimethyl sulfoxide reductase, chain C<br />

dnaA b3702 1.5798 0.0490 DnaA-ATP transcriptional dual regulator<br />

dnaG b3066 1.3368 0.0473 DNA biosynthesis; DNA primase<br />

dnaK b0014 0.5937 0.0163 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins<br />

dnaN b3701 1.8832 0.0335 DNA polymerase III, beta-subunit<br />

dnaX b0470 1.3300 0.0296 DNA polymerase III, tau and gamma subunits; DNA elongation factor III<br />

dpiB b0619 0.4224 0.0076 DpiB<br />

dppF b3540 1.1825 0.0280 dipeptide ABC transporter<br />

stationary phase nucleoid protein that sequesters iron and protects DNA from<br />

dps b0812 0.5769 0.0236 damage<br />

dsdX b2365 0.3602 0.0190 DsdX Gnt tranporter<br />

dtd b3887 1.2548 0.0380 D-Tyr-tRNATyr deacylase<br />

elaC b2268 0.6406 0.0465 binuclear zinc phosphodiesterase monomer<br />

emrE b0543 0.4603 0.0035 EmrE SMR transporter<br />

emrK b2368 0.5558 0.0366 EmrK putative membrane fusion protein<br />

emrY b2367 0.1336 0.0000 EmrY putative multidrug MFS transporter<br />

envC b3613 1.5602 0.0371 EnvC murein hydrolase<br />

essQ b1556 4.4414 0.0125 hypothetical protein<br />

eutB b2441 0.7106 0.0143 ethanolamine ammonia-lyase, probable regulatory subunit<br />

eutD b2458 0.4881 0.0053 putative phosphate acetyltransferase, ethanolamine utilization<br />

eutN b2456 0.5116 0.0035 putative detox protein, ethanolamine utilization<br />

GDP-4-dehydro-6-deoxy-D-mannose epimerase / GDP-4-dehydro-6-Ldeoxygalactose<br />

fcl b2052 0.0327 0.0006<br />

reductase<br />

outer membrane receptor; citrate-dependent iron transport, outer membrane<br />

fecA b4291 0.6549 0.0354 receptor<br />

fecB b4290 0.6183 0.0038 ferric dicitrate uptake system<br />

fhlA b2731 1.2443 0.0006 FhlA-Formate transcriptional activator<br />

fhuC b0151 2.0062 0.0140 ferrichrome uptake system<br />

stationary-phase protein with possible role in p-aminobenzoate or folate<br />

fic b3361 1.3138 0.0372 biosynthesis<br />

fimA b4314 0.0526 0.0007 major type 1 subunit fimbrin (pilin)<br />

fimB b4312 0.0776 0.0001 regulator for fimA<br />

fimD b4317 0.3019 0.0243 outer membrane protein; export and assembly <strong>of</strong> type 1 fimbriae, interrupted<br />

fimE b4313 0.0565 0.0001 regulator for fimA<br />

fimG b4319 0.5755 0.0041 fimbrial morphology<br />

fimI b4315 0.0712 0.0005 fimbrial protein<br />

fixB b0042 0.3451 0.0185 probable flavoprotein subunit required for anaerobic carnitine metabolism<br />

flavoprotein (electron transport), possibly involved in anaerobic carnitine<br />

fixC b0043 0.4760 0.0273 metabolism<br />

flgA b1072 27.1534 0.0010 flagellar biosynthesis; assembly <strong>of</strong> basal-body periplasmic P ring<br />

flgB b1073 24.5528 0.0038 flagellar basal-body rod protein FlgB<br />

flgC b1074 14.9393 0.0009 flagellar basal-body rod protein FlgC<br />

flgD b1075 16.5742 0.0019 flagellar biosynthesis, initiation <strong>of</strong> hook assembly<br />

flgE b1076 9.2717 0.0007 flagellar hook protein FlgE<br />

flgF b1077 6.1174 0.0007 flagellar basal-body rod protein FlgF<br />

flgG b1078 21.9901 0.0010 flagellar basal-body rod protein FlgG<br />

flagellar L-ring protein FlgH; basal-body outer-membrane L (lipopolysaccharide<br />

flgH b1079 9.7694 0.0040 layer) ring protein<br />

flgI b1080 15.6181 0.0055 flagellar P-ring protein FlgI<br />

flgJ b1081 6.3428 0.0005 FlgJ<br />

flgK b1082 4.5952 0.0289 flagellar biosynthesis, hook-filament junction protein 1<br />

flgM b1071 28.5501 0.0060 anti-FliA (anti-sigma) factor; also known as RflB protein<br />

flgN b1070 7.0812 0.0008 flagellar biosynthesis protein FlgN<br />

flhA b1879 2.5230 0.0463 flagellar biosynthesis protein FlhA<br />

flhB b1880 10.7222 0.0025 flagellar biosynthesis protein FlhB<br />

169


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

flhE b1878 1.3435 0.0065 flagellar protein<br />

fliA b1922 32.8560 0.0014 sigma28 factor<br />

fliC b1923 10.1921 0.0486 flagellar biosynthesis; flagellin, filament structural protein<br />

fliD b1924 12.4018 0.0338 flagellar cap protein FliD; filament capping protein; enables filament assembly<br />

fliE b1937 18.5368 0.0018 flagellar basal-body protein FliE<br />

fliF b1938 23.8464 0.0001<br />

flagellar M-ring protein FliF; basal-body MS(membrane and supramembrane)-<br />

ring and collar protein<br />

fliG b1939 17.5399 0.0006<br />

flagellar motor switch protein FliG; component <strong>of</strong> motor switching and<br />

energizing, enabling rotation and determining its direction<br />

fliH b1940 18.6885 0.0041 flagellar biosynthesis protein FliH<br />

fliJ b1942 14.2153 0.0015 flagellar biosynthesis protein FliJ<br />

fliK b1943 11.4774 0.0028 flagellar hook-length control protein FliK<br />

fliL b1944 21.9931 0.0024 flagellar biosynthesis<br />

fliM b1945 24.5354 0.0007<br />

flagellar motor switch protein FliM; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliN b1946 20.1390 0.0021<br />

flagellar motor switch protein FliN; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliO b1947 6.1100 0.0078 flagellar biosynthesis protein FliO<br />

fliQ b1949 16.8460 0.0006 flagellar biosynthesis protein FliQ<br />

fliR b1950 14.0112 0.0024 flagellar biosynthesis protein FliR<br />

fliS b1925 11.4258 0.0360 flagellar biosynthesis protein FliS<br />

fliY b1920 4.6961 0.0053<br />

periplasmic cystine-binding protein; member <strong>of</strong> extracellular bacterial solutebinding<br />

protein family III<br />

fliZ b1921 11.3145 0.0013 possible cell-density responsive regulator <strong>of</strong> sigmaF<br />

folX b2303 0.7774 0.0119 dihydroneopterin triphosphate 2'-epimerase<br />

frvR b3897 1.5713 0.0220 FrvR predicted transcriptional regulator<br />

frwC b3949 1.2134 0.0259 EIIBCFrw<br />

ftnA b1905 0.2411 0.0207 cytoplasmic ferritin, an iron storage protein)<br />

ftnB b1902 0.2538 0.0225 hypothetical protein<br />

ftsB b2748 2.1787 0.0303 essential cell division protein FtsB<br />

ftsK b0890 0.8409 0.0222 essential cell division protein FtsK<br />

ftsY b3464 1.1435 0.0290 SRP receptor<br />

fucI b2802 0.7804 0.0498 L-fucose isomerase<br />

fucU b2804 0.5451 0.0123 cytoplasmic L-fucose binding protein<br />

fumC b1611 0.5797 0.0314 fumarase C monomer<br />

fusA b3340 1.6060 0.0216 elongation factor G<br />

fxsA b4140 0.5479 0.0484 inner membrane protein; overproduction inhibits F exclusion <strong>of</strong> bacteriophage T7<br />

gadA b3517 0.0922 0.0055 glutamate decarboxylase A subunit<br />

gadC b1492 0.1563 0.0066 XasA GABA APC transporter<br />

gadE b3512 0.1055 0.0047 GadE transcriptional activator<br />

gadW b3515 0.4779 0.0095 GadWtranscriptional repressor<br />

galP b2943 0.5043 0.0494 GalP - galactose MFS transporter<br />

galS b2151 0.7119 0.0404 GalS-galactose<br />

garL b3126 0.5428 0.0453 alpha-dehydro-beta-deoxy-D-glucarate aldolase<br />

gatA b2094 0.2319 0.0238 EIIGat<br />

gatC b2092 0.3166 0.0061 EIIGat<br />

gatD b2091 0.3602 0.0414 galactitol-1-phosphate dehydrogenase<br />

gatR_1 b2087 0.6518 0.0330<br />

negative DNA-binding transcriptional regulator <strong>of</strong> galactitol metabolism, subunit<br />

<strong>of</strong> GatR transcriptional repressor<br />

glf b2036 0.6716 0.0075 UDP-galactopyranose mutase<br />

glgS b3049 0.5189 0.0061 glycogen biosynthesis, rpoS dependent<br />

glpG b3424 1.5025 0.0339 inner membrane-associated protein <strong>of</strong> glp regulon<br />

gltF b3214 0.2557 0.0049 regulator <strong>of</strong> gltBDF operon, induction <strong>of</strong> Ntr enzymes<br />

glxR b0509 0.4957 0.0241 tartronate semialdehyde reductase 2<br />

gmd b2053 0.0770 0.0082 GDP-mannose 4,6-dehydratase<br />

gmk b3648 1.2627 0.0032 deoxyguanylate kinase / guanylate kinase<br />

gmr b1285 0.6330 0.0116 RNase II modulator<br />

gnd b2029 0.5770 0.0017 6-phosphogluconate dehydrogenase (decarboxylating)<br />

170


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

gnsB b1550 0.3110 0.0035 protein that affects unsaturated fatty acid abundance<br />

gspD b3325 0.5089 0.0206 putative protein secretion protein for export<br />

gspE b3326 0.6419 0.0197 putative protein secretion protein for export<br />

gspG b3328 0.6256 0.0416 putative protein secretion protein for export<br />

gspH b3329 0.1773 0.0015 putative protein secretion protein for export<br />

hcaC b2540 1.4004 0.0273 ferredoxin, 3-phenylpropionate dioxygenase system<br />

hchA b1967 0.4961 0.0197 heat shock protein (Hsp) 31<br />

hcr b0872 0.5809 0.0410 NADH oxidoreductase<br />

hdeA b3510 0.0218 0.0006 acid-resistance protein, possible chaperone<br />

hdeB b3509 0.0715 0.0064 10K-L protein, related to acid resistance protein <strong>of</strong> Shigella flexneri<br />

hdhA b1619 0.3868 0.0075 7-alpha-hydroxysteroid dehydrogenase<br />

hemA b1210 0.1261 0.0284 glutamyl-tRNA reductase<br />

hha b0460 0.3850 0.0259 haemolysin <strong>expression</strong> modulating protein<br />

hipA b1507 8.3272 0.0254 HipA transcriptional activator<br />

hlyE b1182 0.0720 0.0009 hemolysin E<br />

hns b1237 9.0470 0.0012 H-NS transcriptional dual regulator<br />

holB b1099 3.2529 0.0455 DNA polymerase III, delta prime subunit<br />

hslR b3400 0.8182 0.0329 heat shock protein Hsp15<br />

htrA b0161 0.3019 0.0256 DegP<br />

htrL b3618 0.3142 0.0055 involved in lipopolysaccharide biosynthesis<br />

hybB b2995 0.6320 0.0450 probable cytochrome Ni/Fe component <strong>of</strong> hydrogenase-2<br />

icdA b1136 0.6386 0.0068 Icd<br />

idnK b4268 0.6017 0.0247 gluconokinase II<br />

idnO b4266 0.5978 0.0248 5-keto-D-gluconate 5-reductase / putative acetoin dehydrogenase<br />

inaA b2237 2.1979 0.0462 pH-inducible protein involved in stress response<br />

intF b0281 1.8823 0.0476 putative phage integrase<br />

intG b1936 0.3321 0.0004 hypothetical protein<br />

intR b1345 0.5389 0.0226 putative transposase<br />

katE b1732 0.5629 0.0051 hydroperoxidase II<br />

kbl b3617 0.5504 0.0248 2-amino-3-ketobutyrate CoA ligase<br />

kduD b2842 1.1891 0.0386 2-deoxy-D-gluconate 3-dehydrogenase<br />

kduI b2843 0.6885 0.0274 homolog <strong>of</strong> pectin degrading enzyme 5-keto 4-deoxyuronate isomerase<br />

leuO b0076 0.3307 0.0226 LeuO transcriptional activator<br />

lit b1139 0.4834 0.0364 Lit, cell death peptidase; phage exclusion; e14 prophage<br />

lon b0439 0.6940 0.0326 DNA-binding, ATP-dependent protease La<br />

lysS b2890 1.2168 0.0189 lysyl tRNA synthetase (LysRSs), constitutive<br />

maa b0459 0.5169 0.0308 maltose acetyltransferase<br />

malP b3417 2.3538 0.0003 maltodextrin phosphorylase monomer<br />

malZ b0403 0.5110 0.0173 maltodextrin glucosidase<br />

mcrA b1159 0.6575 0.0372 restriction <strong>of</strong> DNA at 5-methylcytosine residues<br />

mcrB b4346 0.5308 0.0084 MrcB subunit <strong>of</strong> 5-methylcytosine restriction system<br />

mcrC b4345 0.4781 0.0069 MrcC subunit <strong>of</strong> 5-methylcytosine restriction system<br />

mdoC b1047 0.5105 0.0193 protein required for succinyl modification <strong>of</strong> osmoregulated periplasmic glucans<br />

mdoG b1048 0.6617 0.0179 periplasmic glucan (MDO) biosynthesis protein<br />

mdtD b2077 0.2947 0.0001 YegB<br />

mdtM b4337 0.2035 0.0056 YjiO drug MFS transporter<br />

mdtP b4080 0.6347 0.0466 putative enzyme<br />

metE b3829 0.7137 0.0147 Cobalamin-independent homocysteine transmethylase<br />

mhpD b0350 1.7196 0.0017 2-keto-4-pentenoate hydratase<br />

moaE b0785 1.1425 0.0282 molybdopterin synthase large subunit<br />

mokC b0018 0.5463 0.0278 regulatory peptide whose translation enables hokC (gef) <strong>expression</strong><br />

motB b1889 31.7966 0.0090<br />

MotB protein, enables flagellar motor rotation, linking torque machinery to cell<br />

wall<br />

mqo b2210 1.3940 0.0142 malate dehydrogenase<br />

msbA b0914 1.4206 0.0411 ATP-binding transport protein; multicopy suppressor <strong>of</strong> htrB<br />

mtr b3161 0.5406 0.0232 Mtr tryptophan ArAAP transporter<br />

murB b3972 1.3239 0.0246 UDP-N-acetylmuramate dehydrogenase<br />

171


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

mutS b2733 1.7394 0.0434 MutHLS complex, methyl-directed mismatch repair<br />

mviN b1069 6.8399 0.0383 putative virulence factor<br />

nagA b0677 1.4358 0.0326 N-acetylglucosamine-6-phosphate deacetylase<br />

nanA b3225 1.4721 0.0000 N-acetylneuraminate lyase<br />

nanC b4311 0.1875 0.0025 conserved hypothetical protein<br />

narV b1465 10.0792 0.0064 nitrate reductase Z, &gamma; subunit<br />

ndk b2518 0.5474 0.0389<br />

nucleoside diphosphate kinase / UDP kinase / CDP kinase / dUDP kinase / dCDP<br />

kinase / dTDP kinase / dADP kinase / dGDP kinase / GDP kinase<br />

nmpC b0553 0.1597 0.0178 outer membrane porin protein; locus <strong>of</strong> qsr prophage<br />

nrdH b2673 1.9330 0.0215 glutaredoxin-like protein; hydrogen donor<br />

nrfB b4071 0.7562 0.0150 nitrite reductase complex<br />

nudD b2051 0.0081 0.0000 GDP-mannose mannosyl hydrolase<br />

ompF b0929 4.4090 0.0048 outer membrane porin OmpF<br />

ompL b3875 0.4607 0.0424 OmpL<br />

oppC b1245 0.4030 0.0434 oligopeptide ABC transporter<br />

osmB b1283 0.1157 0.0062 OsmB osmotically inducible lipoprotein<br />

osmC b1482 0.2146 0.0012 osmotically inducible peroxidase OsmC<br />

otsA b1896 0.4210 0.0107 trehalose-6-phosphate synthase<br />

paaB b1389 0.4994 0.0344 putative subunit <strong>of</strong> phenylacetate-CoA oxygenase<br />

paaI b1396 8.7551 0.0044 hypothetical protein with some similarity to thioesterases<br />

pagP b0622 0.2253 0.0082 PagP monomer<br />

parE b3030 1.4510 0.0027 Topoisomerase IV subunit B<br />

pdxA b0052 0.8447 0.0010 PdxA dehydrogenase/decarboxylase<br />

pflB b0903 0.5179 0.0369 pyruvate formate-lyase (inactive)<br />

pflD b3951 0.7011 0.0477 formate acetyltransferase 2<br />

pgaC b1022 0.4106 0.0015 predicted N-glycosyltransferase<br />

pgaD b1021 0.3002 0.0038 putative inner membrane protein<br />

pheM b1715 0.5171 0.0303 phenylalanyl-tRNA synthetase (pheST) operon leader peptide<br />

pinR b1374 0.1294 0.0012 putative transposon resolvase<br />

pitB b2987 0.4130 0.0274 PitB<br />

plsB b4041 1.4149 0.0072 glycerol-3-phosphate acyltransferase<br />

pmrF b2254 0.1668 0.0000 undecaprenyl phosphate-L-Ara4FN transferase<br />

polB b0060 1.4392 0.0465 DNA polymerase II<br />

potC b1124 0.7024 0.0321 putrescine/spermidine ABC transporter<br />

poxA b4155 0.5601 0.0149 putative regulator <strong>of</strong> pyruvate oxidase<br />

pphB b2734 0.2574 0.0011<br />

protein phosphatase 2 / protein-tyrosine-phosphatase / phosphoprotein<br />

phosphatase<br />

pptA b1461 0.4035 0.0291 probable 4-oxalocrotonate tautomerase (4-OT) monomer<br />

pqqL b1494 0.3738 0.0359 putative zinc peptidase<br />

prfA b1211 6.2321 0.0253 peptide chain release factor RF-1<br />

prfH b0236 0.4740 0.0086 probable peptide chain release factor<br />

ptrB b1845 0.6002 0.0443 protease II<br />

purC b2476 1.2969 0.0425 phosphoribosylaminoimidazole-succinocarboxamide synthase<br />

puuR b1299 8.2529 0.0016 putative oxidoreductase/putative regulator<br />

pyrE b3642 0.5836 0.0304 orotate phosphoribosyltransferase<br />

rarD b3819 0.3373 0.0007 hypothetical protein<br />

rbfA b3167 1.2320 0.0250 ribosome-binding factor A<br />

rbsD b3748 0.3624 0.0037 D-ribose utilization<br />

rcsA b1951 0.2865 0.0016<br />

positive DNA-binding transcriptional regulator <strong>of</strong> capsular polysaccharide<br />

synthesis, activates its own <strong>expression</strong><br />

recT b1349 0.2404 0.0026 recombinase, DNA renaturation<br />

rfbA b2039 0.6165 0.0268 dTDP-glucose pyrophosphorylase<br />

rfbB b2041 0.5623 0.0045 RmlB<br />

rfbC b2038 0.5770 0.0462 dTDP-4-dehydrorhamnose 3,5-epimerase<br />

rfbX b2037 0.5272 0.0173 RfbX lipopolysaccharide PST transporter<br />

rfc b2035 0.5906 0.0455 O-antigen polymerase<br />

rhsA b3593 0.4056 0.0183 RhsA protein in rhs element<br />

172


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rhsD b0497 0.1818 0.0162 RhsD protein in rhs element<br />

rihB b2162 0.4616 0.0135 ribonuceloside hydrolase 2 (pyrimidine-specific)<br />

rluC b1086 0.7606 0.0060 23S rRNA pseudouridine synthase<br />

rmuC b3832 1.5317 0.0486 conserved protein<br />

rplM b3231 1.1735 0.0393 50S ribosomal subunit protein L13<br />

rpmG b3636 1.3762 0.0233 50S ribosomal subunit protein L33<br />

rpoA b3295 1.7007 0.0053 RNA polymerase, alpha subunit<br />

rpsO b3165 1.2800 0.0383 30S ribosomal subunit protein S15<br />

rseA b2572 0.6762 0.0264 anti-sigma factor that inhibits sigmaE<br />

rseB b2571 0.5923 0.0358<br />

negative regulator <strong>of</strong> sigmaE; interacts with RseA and stimulates binding <strong>of</strong> RseA<br />

to sigmaE<br />

rstA b1608 0.4644 0.0241 RstA- Phosphorylated transcriptional regulator<br />

rsxB b1628 0.8140 0.0337 member <strong>of</strong> SoxR-reducing complex<br />

rsxD b1630 0.8446 0.0469 integral membrane protein <strong>of</strong> SoxR-reducing complex<br />

ruvA b1861 0.7247 0.0021 branch migration <strong>of</strong> Holliday structures; repair<br />

sbmA b0377 1.2804 0.0236 SbmA<br />

sdhA b0723 0.5308 0.0031 succinate dehydrogenase flavoprotein<br />

sdhB b0724 0.6045 0.0340 succinate dehydrogenase iron-sulfur protein<br />

sfmC b0531 0.6341 0.0140 putative chaperone<br />

sfsA b0146 0.7060 0.0346 SfsA<br />

sgbU b3582 0.3459 0.0092 probable 3-hexulose-6-phosphate isomerase<br />

shiA b1981 0.3567 0.0076 ShiA shikimate MFS transporter<br />

skp b0178 1.0703 0.0483 periplasmic chaperone<br />

slp b3506 0.4891 0.0409 outer membrane protein induced after carbon starvation<br />

slyA b1642 0.5661 0.0360 SlyA transcriptional activator<br />

speD b0120 0.6822 0.0032 adenosylmethionine decarboxylase, proenzyme<br />

stpA b2669 0.1356 0.0074 DNA-binding protein; H-NS-like protein; chaperone activity; RNA splicing?<br />

tatA b3836 1.3939 0.0306 TatA<br />

tatD b4483 1.7888 0.0417 magnesium-dependent DNase<br />

tauA b0365 0.5600 0.0404 TauA/TauB/TauC ABC transporter<br />

tauB b0366 0.6178 0.0194 TauA/TauB/TauC ABC transporter<br />

tdcB b3117 0.2584 0.0065 threonine dehydratase (catabolic)<br />

tdcC b3116 0.2341 0.0055 TdcC threonine STP transporter<br />

tdcD b3115 0.4677 0.0419 propionate kinase / acetate kinase C<br />

tdcF b3113 0.2775 0.0099 hypothetical protein<br />

tdk b1238 0.3639 0.0022 thymidine kinase / deoxyuridine kinase<br />

tnaA b3708 0.1418 0.0152 L-cysteine desulfhydrase / tryptophanase<br />

tolA b0739 0.8478 0.0322 Tol-Pal Cell Envelope Complex<br />

torS b0993 2.0482 0.0380 TorS-Phis850<br />

torY b1873 0.2576 0.0198 trimethylamine N-oxide reductase III, c-type cytochrome subunit<br />

torZ b1872 0.3923 0.0120 trimethylamine N-oxide reductase III, TorZ subunit<br />

treB b4240 25.0943 0.0439 EIITre<br />

treC b4239 7.6034 0.0357 trehalose-6-phosphate hydrolase<br />

trmA b3965 1.5449 0.0177 tRNA (uracil-5-)-methyltransferase<br />

trmH b3651 1.5347 0.0249 tRNA (Gm18) 2'-O-methyltransferase<br />

ubiG b2232 1.1103 0.0475<br />

3-demethylubiquinone 3-methyltransferase / 2-octaprenyl-6-hydroxyphenol<br />

methylase<br />

ugd b2028 0.0650 0.0009 UDP-glucose 6-dehydrogenase<br />

ulaA b4193 1.5705 0.0194 eiisga<br />

ulaR b4191 0.7810 0.0103 putative DeoR-type transcriptional regulator<br />

uppP b3057 0.5663 0.0449 undecaprenyl diphosphatase; bacitracin resistance<br />

uspD b3923 0.4337 0.0346 stress protein involved in resistance to UV irradiation<br />

uvrC b1913 0.4947 0.0149 excinuclease ABC, subunit C; repair <strong>of</strong> UV damage to DNA<br />

uxaA b3091 0.7147 0.0481 altronate dehydratase<br />

vsr b1960 0.7256 0.0064<br />

DNA mismatch endonuclease <strong>of</strong> the very short patch (VSP) mismatch repair<br />

pathway<br />

wbbI b2034 0.6317 0.0228 hypothetical protein; not required for colanic acid biosynthesis<br />

173


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

wbbJ b2033 0.6009 0.0130 putative transferase<br />

wcaA b2059 0.1328 0.0082 putative regulator<br />

wcaB b2058 0.0815 0.0015 putative transferase<br />

wcaC b2057 0.1000 0.0029 putative glycosyl transferase<br />

wcaD b2056 0.0149 0.0002 putative colanic acid polymerase<br />

wcaE b2055 0.0409 0.0011 putative colanic acid biosynthesis glycosyl transferase<br />

wcaF b2054 0.0262 0.0002 putative transferase<br />

wcaI b2050 0.3118 0.0133 putative colanic biosynthesis glycosyl transferase<br />

wcaJ b2047 0.1255 0.0000 putative colanic acid biosynthsis UDP-glucose lipid carrier transferase<br />

wcaK b2045 0.1130 0.0074 putative galactokinase (EC 2.7.1.6).<br />

wcaL b2044 0.0764 0.0036 putative colanic biosynthesis glycosyl transferase<br />

wcaM b2043 0.0293 0.0005 hypothetical protein<br />

wza b2062 0.1207 0.0140<br />

Wza Outer Membrane Auxiliary (OMA) Protein, putative polysaccharide export<br />

protein<br />

wzb b2061 0.3249 0.0468 tyrosine phosphatase<br />

wzc b2060 0.1280 0.0091 tyrosine kinase involved in colanic acid biosynthesis<br />

wzxC b2046 0.2888 0.0079 WzxC<br />

wzxE b3792 1.5446 0.0476<br />

metabolism; biosynthesis <strong>of</strong> macromolecules (cellular constituents);<br />

enterobacterial common antigen (surface glycolipid) transport<br />

xapB b2406 0.4569 0.0141 XapB xanthosine MFS transporter<br />

xapR b2405 0.3765 0.0027 XapR transcriptional activator<br />

yaaW b0011 3.2924 0.0115 HtgA transcriptional regulator<br />

yacH b0117 0.8161 0.0238 putative membrane protein<br />

yadC b0135 0.4099 0.0206 putative fimbrial-like protein<br />

yadL b0137 0.2631 0.0178 putative adhesin-like protein<br />

yadN b0141 0.6154 0.0468 putative fimbrial-like protein<br />

yafT b0217 0.2068 0.0031 putative aminopeptidase<br />

yagL b0278 0.0609 0.0012 DNA-binding protein<br />

yagM b0279 0.3618 0.0281 hypothetical protein<br />

yagU b0287 0.5429 0.0268 conserved protein<br />

yagW b0290 0.1221 0.0006 putative receptor<br />

yagX b0291 0.1265 0.0029 putative enzyme<br />

yagZ b0293 0.0142 0.0005 conserved hypothetical protein<br />

yahA b0315 0.3523 0.0129 hypothetical protein<br />

yahB b0316 0.6555 0.0219 putative transcriptional regulator LYSR-type<br />

yahI b0323 0.5829 0.0393 putative carbamate kinase<br />

yaiB b0382 0.4839 0.0452 conserved hypothetical protein<br />

yaiP b0363 0.2167 0.0005 polysaccharide metabolism<br />

ybaJ b0461 0.2263 0.0008 conserved hypothetical protein<br />

ybaT b0486 1.5467 0.0361 YbaT APC transporter<br />

ybaX b0444 1.3088 0.0297<br />

hypothetical protein with similarity to the ALU1-P aluminum tolerance protein <strong>of</strong><br />

Arthrobacter viscosus<br />

ybbD b0500 0.3711 0.0158 conserved hypothetical protein<br />

ybbJ b0488 0.4127 0.0062 conserved protein<br />

ybbW b0511 0.1329 0.0228 YbbW NCS1 Transporter<br />

ybcC b0539 0.6619 0.0153 putative exonuclease (EC 3.1.11.3) <strong>of</strong> lambda<br />

ybcK b0544 0.2294 0.0058 hypothetical protein<br />

ybcL b0545 0.2269 0.0037 possible kinase regulator<br />

ybcM b0546 0.1406 0.0048 putative ARAC-type regulatory protein<br />

ybcW b0559 0.4816 0.0023 hypothetical protein<br />

ybdG b0577 0.5895 0.0193 putative transport protein<br />

ybdJ b0580 0.5837 0.0492 conserved hypothetical protein<br />

ybdM b0601 0.8195 0.0493 conserved protein<br />

ybdO b0603 0.2801 0.0308 putative transcriptional regulator LYSR-type<br />

ybeZ b0660 0.6636 0.0464 putative ATP-binding protein<br />

ybfD b0706 0.1079 0.0006 conserved protein<br />

ybfG b0690 0.4707 0.0244 conserved hypothetical protein<br />

174


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ybfH b0691 0.3421 0.0007 conserved hypothetical protein<br />

ybhM b0787 0.3888 0.0098 hypothetical protein<br />

ybjC b0850 0.7170 0.0462 conserved hypothetical protein; <strong>gene</strong> is within soxRS regulon<br />

ybjG b0841 0.2116 0.0107 putative permease<br />

ybjJ b0845 3.1930 0.0116 putative DEOR-type transcriptional regulator<br />

ybjL b0847 0.3923 0.0043 putative transport protein<br />

ybjN b0853 0.8482 0.0409 putative sensory transduction regulator<br />

ycaN b0900 0.5581 0.0284 putative transcriptional regulator LYSR-type<br />

ycbQ b0938 0.0713 0.0025 putative fimbrial-like protein<br />

ycbR b0939 0.1824 0.0184 putative chaperone<br />

ycbS b0940 0.1652 0.0073 putative outer membrane protein<br />

yccE b1001 0.4529 0.0130 putative hemoglobin-binding protein<br />

yccM b0992 0.6335 0.0164 hypothetical protein<br />

ycdN b1016 1.6654 0.0122 hypothetical protein <strong>of</strong> the OFeT transport family<br />

ycdU b1029 0.1999 0.0116 putative enzyme<br />

yceI b1056 0.2268 0.0001 periplasmic protein; possibly secreted<br />

yceJ b1057 0.1945 0.0009 putative cytochrome<br />

yceP b1060 0.3901 0.0267 conserved hypothetical protein<br />

ycgH_1 b1169 0.1993 0.0039 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgH_2 b1170 0.4386 0.0046 conserved protein; member <strong>of</strong> the Autotransporter family<br />

ycgV b1202 0.3109 0.0415 putative adhesion and penetration protein<br />

ycgX b1161 0.7611 0.0359 hypothetical protein<br />

ycgZ b1164 0.5664 0.0112 hypothetical protein<br />

yciA b1253 11.0540 0.0002 putative enzyme<br />

yciE b1257 0.3808 0.0301 conserved protein<br />

yciF b1258 0.1428 0.0003 conserved protein<br />

yciQ b1268 5.5117 0.0014 putative membrane protein<br />

ycjO b1311 8.6194 0.0110 YcjN/YcjO/YcjP ABC transporter<br />

ycjQ b1313 0.2968 0.0286 putative oxidoreductase<br />

ydaL b1340 0.6179 0.0096 hypothetical protein<br />

ydaT b1358 0.7086 0.0152 hypothetical protein<br />

ydaY b1366 0.4876 0.0346 hypothetical protein<br />

ydbA_2 b1405 0.4749 0.0312 hypothetical protein product <strong>of</strong> fragment 2 <strong>of</strong> a split CDS<br />

ydcC b1460 0.1497 0.0021 conserved protein, similar to H-repeat associated proteins<br />

ydcD b1457 0.5139 0.0497 hypothetical protein<br />

ydcR b1439 5.6513 0.0349<br />

multi modular; putative transcriptional regulator ; also putative ATP-binding<br />

component <strong>of</strong> a transport system<br />

ydcX b1445 3.8934 0.0011 hypothetical protein<br />

yddB b1495 7.9254 0.0046 conserved protein<br />

yddH b1462 11.8388 0.0095 putative enzyme<br />

yddJ b1470 1.7194 0.0428 hypothetical protein<br />

yddK b1471 0.7743 0.0210 putative glycoportein<br />

yddV b1490 0.4278 0.0017 conserved protein<br />

ydeH b1535 0.3768 0.0061 hypothetical protein<br />

ydeI b1536 0.0747 0.0002 conserved hypothetical protein<br />

ydeK b1510 0.4789 0.0370 YdeK<br />

ydeO b1499 0.0998 0.0062 putative ARAC-type regulatory protein<br />

ydeP b1501 0.1115 0.0201 acid resistance protein<br />

ydeQ b1502 0.2304 0.0123 putative adhesin; similar to FimH protein<br />

ydeR b1503 7.3709 0.0202 putative fimbrial-like protein<br />

ydeS b1504 0.3919 0.0199 putative fimbrial-like protein<br />

ydfJ b1543 42.4461 0.0301 YdfJ<br />

ydfO b1549 0.5234 0.0174 hypothetical protein<br />

ydfV b1565 0.7286 0.0417 hypothetical protein<br />

YdgE b1599 0.2334 0.0201 YdgE SMR Protein<br />

YdgF b1600 0.0826 0.0007 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydiA b1703 0.2332 0.0171 conserved protein<br />

175


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ydiB b1692 0.4286 0.0109 shikimate dehydrogenase<br />

ydiF b1694 0.3148 0.0286 putative enzyme / putative acetate CoA-transferase<br />

ydiO b1695 0.4529 0.0403 putative acyl-CoA dehydrogenase<br />

ydiR b1698 1.8775 0.0115 putative subunit <strong>of</strong> YdiQ-YdiR flavoprotein<br />

ydjH b1772 0.4958 0.0014 putative kinase<br />

ydjI b1773 0.2754 0.0004 putative aldolase<br />

ydjJ b1774 0.1765 0.0009 putative oxidoreductase<br />

yeaE b1781 0.4708 0.0318 putative oxidoreductase, NAD(P)-linked<br />

yeaJ b1786 0.4275 0.0188 putative membrane protein<br />

yebN b1821 0.3622 0.0207 putative membrane protein, terpenoid synthase-like<br />

yebQ b1828 3.1669 0.0052 YebQ<br />

yecD b1867 0.4967 0.0298 putative enzyme<br />

yecR b1904 18.6699 0.0070 conserved hypothetical protein<br />

yecT b1877 0.3511 0.0159 hypothetical protein<br />

yedK b1931 1.3670 0.0277 conserved hypothetical protein<br />

yedM b1935 2.1595 0.0289 hypothetical protein<br />

yedN_2 b1933 0.5833 0.0372 hypothetical protein<br />

yedS_1 b1964 0.4832 0.0090 putative outer membrane protein<br />

yedS_2 b1965 0.1868 0.0002 putative outer membrane protein<br />

yedS_3 b1966 0.0869 0.0022 putative outer membrane protein<br />

yedV b1968 0.3589 0.0025 putative 2-component sensor protein<br />

yedW b1969 0.3706 0.0275 putative 2-component transcriptional response regulator<br />

yeeE b2013 0.7926 0.0476 putative transport system permease protein<br />

yeeN b1983 0.5430 0.0021 conserved protein<br />

yeeW b2006 0.7709 0.0145 hypothetical protein<br />

yegI b2070 0.3095 0.0072 putative chaperonin<br />

yegJ b2071 0.2268 0.0018 hypothetical protein<br />

yegR b2085 0.1713 0.0037 hypothetical protein<br />

yegS b2086 0.2875 0.0021 conserved protein<br />

yegW b2101 0.7504 0.0332 putative transcriptional regulator<br />

yegZ b2083 0.2051 0.0136 hypothetical protein<br />

yehL b2119 0.1192 0.0005 putative transport protein (ABC superfamily, atp_bind)<br />

yehM b2120 0.2962 0.0436 conserved hypothetical protein<br />

yehX b2129 1.5433 0.0241 YehW/YehX/YehY/YehZ ABC transporter<br />

yeiG b2154 0.6806 0.0088 putative esterase (EC 3.1.1.-).<br />

yeiH b2158 0.6070 0.0478 putative membrane protein<br />

yeiT b2146 0.5692 0.0283 putative dihydrothymine dehydrogenase<br />

yfaO b2251 0.3555 0.0129 putative enzyme (Nudix hydrolase)<br />

yfaQ b2226 0.6289 0.0473 conserved protein<br />

yfaS_1 b2228 0.4905 0.0091 putative membrane protein<br />

yfaU b2245 0.3551 0.0071 protein with similarity to HHED aldolases<br />

yfbB b2263 1.5292 0.0311 putative enzyme<br />

yfbE b2253 0.4484 0.0060 UDP-L-Ara4O C-4" transaminase<br />

yfbP b2275 0.5151 0.0301 hypothetical protein<br />

yfdP b2359 0.5750 0.0474 hypothetical protein<br />

yfdU b2373 0.4607 0.0057 putative enzyme<br />

yffB b2471 0.3324 0.0071 conserved thioredoxin-like protein<br />

yfgH b2505 0.4115 0.0103 putative outer membrane lipoprotein<br />

yfhK b2556 1.8314 0.0452 putative 2-component sensor protein<br />

yfiB b2605 0.6217 0.0406 putative outer membrane protein<br />

yfiC b2575 0.7187 0.0190 putative enzyme<br />

yfiP b2583 1.3837 0.0071 conserved hypothetical protein<br />

yfiR b2603 0.3222 0.0010 conserved protein<br />

yfjK b2627 0.3419 0.0029 hypothetical protein<br />

yfjL b2628 0.3105 0.0061 hypothetical protein<br />

yfjO b2631 0.3841 0.0077 hypothetical protein<br />

176


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ygbT b2755 0.1586 0.0012 conserved hypothetical protein<br />

ygcG b2778 0.4150 0.0418 putative membrane protein<br />

ygcI b2757 0.0266 0.0000 hypothetical protein<br />

ygcJ b2758 0.4687 0.0197 conserved hypothetical protein<br />

ygcK b2759 0.0180 0.0001 hypothetical protein<br />

ygcL b2760 0.1023 0.0021<br />

hypothetical protein with possible relationship to novobiocin and deoxycholate<br />

resistance<br />

ygdR b2833 0.4092 0.0084 conserved hypothetical protein<br />

ygeQ b2863 0.6468 0.0449 hypothetical protein<br />

ygeW b2870 0.5789 0.0021 putative carbamoyl transferase<br />

yghJ b2973 0.4626 0.0310 predicted inner membrane lipoprotein<br />

yghR b2984 1.2529 0.0320 conserved protein<br />

ygiL b3043 0.0354 0.0001 putative fimbrial-like protein<br />

ygjD b3064 1.4330 0.0151 putative O-sialoglycoprotein endopeptidase<br />

yhaB b3120 0.6588 0.0079 conserved protein<br />

yhcH b3221 1.4678 0.0226 conserved hypothetical protein; <strong>gene</strong> is in sialic acid catabolic operon<br />

yhdH b3253 1.5233 0.0446 putative dehydrogenase<br />

yhfK b3358 0.7711 0.0070 hypothetical protein<br />

yhfL b3369 0.1799 0.0003 hypothetical protein<br />

yhhI b3484 0.1140 0.0042 conserved protein similar to H-repeat-associated proteins<br />

yhiK b3489 0.5909 0.0164 hypothetical protein<br />

yhjB b3520 0.6632 0.0240 putative regulator<br />

yhjH b3525 15.5314 0.0446 protein involved in flagellar function<br />

yhjR b3535 0.3106 0.0149 hypothetical protein<br />

yiaA b3562 0.3589 0.0101 hypothetical protein<br />

yiaJ b3574 1.4560 0.0188 YiaJ transcriptional repressor<br />

yiaN b3578 0.5883 0.0029 YiaMNO Binding Protein-dependent Secondary (TRAP) Transporter<br />

yiaT b3584 0.3441 0.0061 putative outer membrane protein<br />

yiaU b3585 0.3785 0.0049 putative transcriptional regulator LYSR-type<br />

yiaV b3586 0.5890 0.0043 putative membrane protein<br />

yiaW b3587 0.2799 0.0038 hypothetical protein<br />

yibA b3594 0.1903 0.0047 putative lyase<br />

yibJ b3595 0.2186 0.0238 hypothetical protein<br />

yieL b3719 0.5420 0.0231 putative xylanase<br />

yigF b3817 0.2284 0.0094 conserved hypothetical protein<br />

yigZ b3848 1.3342 0.0497 putative elongation factor<br />

yihN b3874 0.4333 0.0156 YihN MFS transporter<br />

yihO b3876 0.6279 0.0411 YihO GPH transporter<br />

yihQ b3878 0.6251 0.0380 putative glycosidase<br />

yiiG b3896 0.2402 0.0073 conserved protein<br />

yiiS b3922 0.2364 0.0157 conserved hypothetical protein<br />

yiiU b3928 1.3852 0.0299 conserved hypothetical protein<br />

yjbE b4026 0.0840 0.0029 conserved hypothetical protein<br />

yjbM b4048 0.4310 0.0137 conserved hypothetical protein<br />

yjeB b4178 1.6962 0.0415 conserved protein with a Winged helix domain<br />

yjeJ b4145 0.3840 0.0307 conserved protein<br />

yjeM b4156 0.2229 0.0057 YjeM APC transporter<br />

yjeN b4157 0.3408 0.0038 conserved hypothetical protein<br />

yjfJ b4182 0.6175 0.0334 conserved protein<br />

yjfK b4183 0.4529 0.0043 conserved hypothetical protein<br />

yjfL b4184 0.5766 0.0073 hypothetical protein<br />

yjfN b4188 1.3712 0.0202 conserved hypothetical protein<br />

yjfZ b4204 0.3394 0.0322 hypothetical protein<br />

yjgM b4256 0.4628 0.0240 putative acyltransferase<br />

yjgN b4257 0.5071 0.0145 putative membrane protein possible involved in transport<br />

yjhB b4279 0.3122 0.0246 YjhB MFS transporter<br />

yjhC b4280 0.3612 0.0064 KpLE2 phage-like element; putative NAD(P)-binding dehydrogenase<br />

177


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yjhF b4296 0.1057 0.0123 YjhF Gnt tranporter<br />

yjhG b4297 0.3226 0.0116 putative dehydratase<br />

yjhH b4298 0.0468 0.0002 putative lyase/synthase<br />

yjhI b4299 0.1141 0.0053 putative regulator<br />

yjhP b4306 0.5874 0.0178 putative methyltransferase<br />

yjiW b4347 0.2530 0.0215 hypothetical protein<br />

ykgA b0300 0.5109 0.0205 putative ARAC-type regulatory protein<br />

ykgB b0301 0.2477 0.0014 putative membrane protein<br />

ykgF b0307 0.2214 0.0430 putative dehydrogenase<br />

ykgH b0310 0.3306 0.0076 conserved protein<br />

ykgI b0303 0.0848 0.0003 hypothetical protein<br />

ykiA b0392 0.3451 0.0025 hypothetical protein<br />

ylbA b0515 0.4807 0.0467 conserved hypothetical protein<br />

yliF b0834 0.7291 0.0466 conserved protein<br />

ymcC b0986 0.5145 0.0239 putative synthetase, lipoprotein, and/or outer membrane porin<br />

ymfE b1138 0.1606 0.0015 hypothetical protein<br />

ymfK b1145 1.3071 0.0271 putative phage repressor<br />

ymgA b1165 0.3510 0.0002 hypothetical protein<br />

ymgB b1166 0.2729 0.0002 hypothetical protein<br />

ymgD b1171 0.1185 0.0000 hypothetical protein<br />

ynaE b1375 0.1056 0.0000 hypothetical protein<br />

ynaI b1330 0.5331 0.0212 YnaI<br />

ynaK b1365 0.2104 0.0022 hypothetical protein<br />

ynbB b1409 9.4657 0.0003 putative phosphatidate cytidiltransferase<br />

ynbD b1411 8.0957 0.0101 putative enzyme<br />

yncD b1451 7.7140 0.0189 Probable TonB-dependent receptor<br />

yncH b1455 0.6158 0.0168 hypothetical protein<br />

yncI b1458 0.0504 0.0048 conserved protein<br />

yneG b1523 1.4493 0.0097 conserved hypothetical protein<br />

yneK b1527 0.7595 0.0440 conserved protein<br />

ynfC b1585 0.6339 0.0385 YnfC lipoprotein<br />

ynfN b1551 0.1481 0.0169 hypothetical protein<br />

ynjI b1762 0.5647 0.0434 conserved protein<br />

yoaC b1810 0.5527 0.0163 conserved hypothetical protein<br />

yobF b1824 0.2638 0.0011 hypothetical protein<br />

yodA b1973 0.4038 0.0074 cadmium-induced metal binding protein<br />

yodB b1974 0.6011 0.0076 putative cytochrome<br />

ypdE b2384 0.1729 0.0092 putative endoglucanase<br />

yphE b2547 0.7172 0.0119 YphD/YphE/YphF ABC transporter<br />

yqeA b2874 0.7065 0.0379 putative carbamate kinase<br />

yqeI b2847 0.5345 0.0347 putative sensory transducer<br />

yqeJ b2848 0.5636 0.0205 conserved hypothetical protein<br />

yqgF b2949 2.0009 0.0211 possible Holliday junction resolvase<br />

yqiH b3047 0.4868 0.0245 putative membrane protein<br />

yqiJ b3050 0.3830 0.0118 putative oxidoreductase<br />

yqjK b3100 0.7262 0.0339 conserved hypothetical protein<br />

yraH b3142 0.2087 0.0035 putative fimbrial-like protein<br />

yraI b3143 0.2992 0.0267 putative chaperone<br />

ytfT b4230 1.3375 0.0312 YtfQ/YtfR/YtfS/YtfT/YjfF ABC transporter<br />

znuB b1859 0.7309 0.0475 ZnuA/ZnuB/ZnuC ABC transporter<br />

b0322 0.7535 0.0039<br />

178


APPENDIX I<br />

Supplementary table – XIII: LZ54 wild-type (A) Vs LZ54 hns-205::Tn10 (B)<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

acrA b0463 8.3277 0.0131 AcrA Membrane Fusion Protein<br />

acrE b3265 0.1011 0.0148 transmembrane protein affects septum formation and cell membrane permeability<br />

acrF b3266 0.2552 0.0263 AcrEF-TolC Drug Efflux Transport System<br />

add b1623 1.4042 0.0098 deoxyadenosine deaminase / adenosine deaminase<br />

ade b3665 0.0660 0.0072 cryptic adenine deaminase monomer<br />

adiY b4116 0.0713 0.0172 AdiY transcriptional activator<br />

ais b2252 0.1177 0.0011 protein induced <strong>by</strong> aluminum<br />

allC b0516 0.3939 0.0128 allantoate amidohydrolase<br />

alsI b4090 0.7750 0.0194 allose-6-phosphate isomerase / ribose-5-phosphate isomerase B<br />

alsK b4084 2.5002 0.0286 putative D-allose kinase<br />

amiC b2817 1.7337 0.0146 N-acetylmuramyl-L-alanine amidase<br />

arsR b3501 1.4310 0.0291 ArsR transcriptional regulator<br />

atoS b2219 0.6377 0.0248 AtoS-Phis<br />

b0309 b0309 0.4289 0.0345 hypothetical protein<br />

b0501 b0501 0.2721 0.0205 hypothetical protein<br />

b1172 b1172 0.1161 0.0024 conserved hypothetical protein<br />

b1354 b1354 0.2405 0.0296 hypothetical protein<br />

b1578 b1578 0.6068 0.0497 hypothetical protein<br />

b1903 b1903 0.3571 0.0463 hypothetical protein<br />

b2084 b2084 0.2100 0.0429 hypothetical protein<br />

b2680 b2680 1.5403 0.0320 YgaY MFS transporter<br />

b3044 b3044 0.5660 0.0243 IS21 protein<br />

basS b4112 0.6845 0.0066 BasS-Phis<br />

bcsF b3537 0.4067 0.0472 hypothetical protein<br />

bdm b1481 0.1582 0.0096 hypothetical protein<br />

betA b0311 2.0313 0.0247 choline dehydrogenase<br />

betB b0312 2.1260 0.0391 betaine aldehyde dehydrogenase<br />

betI b0313 3.1436 0.0193 BetI-choline<br />

bglJ b4366 0.3117 0.0457 BglJ transcriptional regulator<br />

borD b0557 0.2556 0.0172 bacteriophage lambda Bor protein homolog<br />

cadA b4131 0.4549 0.0121 lysine decarboxylase<br />

caiA b0039 1.3966 0.0108 crotonobetaine reductase<br />

cdd b2143 0.6686 0.0274 cytidine deaminase<br />

chbB b1738 1.5210 0.0330 EIIChb<br />

chbR b1735 0.3341 0.0058 ChbR transcriptional regulator<br />

chpB b4225 0.7179 0.0459 ChpB transcriptional regulator<br />

citE b0616 1.9938 0.0234 subunit <strong>of</strong> citryl-ACP lyase<br />

cmtA b2933 0.4295 0.0164 EIIABCmt<br />

cpsB b2049 0.2756 0.0341 mannose-1-phosphate guanylyltransferase-(GDP)<br />

creC b4399 0.7339 0.0442 CreC-Phis<br />

creD b4400 0.6783 0.0283 tolerance to colicin E2<br />

csgD b1040 0.1783 0.0088 CsgD transcriptional activator<br />

csgE b1039 0.2969 0.0355 curli production assembly/transport component<br />

cspA b3556 1.4925 0.0396 cold shock protein CspA<br />

cspC b1823 0.3803 0.0208 cold shock protein CspC<br />

cspI b1552 0.1418 0.0099 cold shock protein CspI<br />

cstA b0598 1.7226 0.0068 peptide transporter induced <strong>by</strong> carbon starvation<br />

cynT b0339 1.4406 0.0420 carbonate dehydratase monomer<br />

cytR b3934 0.4811 0.0258 CytR-cytidine<br />

dacA b0632 1.4499 0.0371 D-alanyl-D-alanine carboxypeptidase, fraction A; penicillin-binding protein 5<br />

damX b3388 1.5321 0.0329 putative membrane protein<br />

dapE b2472 0.5982 0.0184 N-succinyl-L-diaminopimelate desuccinylase subunit<br />

dcm b1961 1.6163 0.0045 DNA cytosine methylase<br />

dcuR b4124 0.5341 0.0130 DcuR-Pasp56<br />

179


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

dcuS b4125 0.5773 0.0341 DcuS-Phis349<br />

djlB b0646 1.2276 0.0139 putative chaperone<br />

dnaE b0184 1.5214 0.0034 DNA polymerase III, alpha subunit<br />

dnaK b0014 0.4911 0.0367 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins<br />

dpiB b0619 0.4548 0.0076 DpiB<br />

emrE b0543 0.6713 0.0308 EmrE SMR transporter<br />

emrY b2367 0.2312 0.0466 EmrY putative multidrug MFS transporter<br />

entA b0596 2.3095 0.0058 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase<br />

envR b3264 0.5029 0.0145 EnvR transcriptional regulator<br />

essQ b1556 4.5609 0.0352 hypothetical protein<br />

eutN b2456 0.6705 0.0289 putative detox protein, ethanolamine utilization<br />

evgA b2369 0.2767 0.0265 EvgA-Phosphorylated transcriptional regulator<br />

evgS b2370 0.4198 0.0441 EvgS-Phis<br />

fabB b2323 0.8572 0.0316 beta-ketoacyl-ACP synthase I / malonyl-ACP decarboxylase<br />

fabR b3963 1.6568 0.0385 FabR transcriptional repressor<br />

fbp b4232 0.7673 0.0093 fructose 1,6 bisphosphatase monomer<br />

fecR b4292 4.8729 0.0414 regulator for fec operon, periplasmic<br />

fepE b0587 0.2112 0.0281 ferric enterobactin (enterochelin) transport<br />

fhuA b0150 2.6610 0.0397<br />

FhuA outer membrane protein receptor for ferrichrome, colicin M, and phages T1,<br />

T5, and phi80<br />

fhuC b0151 2.1677 0.0270 ferrichrome uptake system<br />

fimA b4314 0.1075 0.0169 major type 1 subunit fimbrin (pilin)<br />

fimB b4312 0.0623 0.0004 regulator for fimA<br />

fimD b4317 0.6323 0.0042 outer membrane protein; export and assembly <strong>of</strong> type 1 fimbriae, interrupted<br />

fimE b4313 0.0983 0.0165 regulator for fimA<br />

fimI b4315 0.1498 0.0170 fimbrial protein<br />

flgA b1072 5.9250 0.0103 flagellar biosynthesis; assembly <strong>of</strong> basal-body periplasmic P ring<br />

flgB b1073 2.4622 0.0099 flagellar basal-body rod protein FlgB<br />

flgC b1074 5.0956 0.0165 flagellar basal-body rod protein FlgC<br />

flgD b1075 4.9964 0.0107 flagellar biosynthesis, initiation <strong>of</strong> hook assembly<br />

flgE b1076 5.2448 0.0144 flagellar hook protein FlgE<br />

flgF b1077 3.8916 0.0140 flagellar basal-body rod protein FlgF<br />

flgG b1078 6.8388 0.0172 flagellar basal-body rod protein FlgG<br />

flgH b1079 2.7794 0.0275<br />

flagellar L-ring protein FlgH; basal-body outer-membrane L (lipopolysaccharide<br />

layer) ring protein<br />

flgI b1080 4.9957 0.0130 flagellar P-ring protein FlgI<br />

flgJ b1081 4.6874 0.0136 FlgJ<br />

flgM b1071 4.1452 0.0056 anti-FliA (anti-sigma) factor; also known as RflB protein<br />

flgN b1070 2.3884 0.0246 flagellar biosynthesis protein FlgN<br />

flhB b1880 3.0669 0.0156 flagellar biosynthesis protein FlhB<br />

fliA b1922 9.7781 0.0072 sigma28 factor<br />

fliC b1923 2.9614 0.0275 flagellar biosynthesis; flagellin, filament structural protein<br />

fliD b1924 3.9935 0.0464 flagellar cap protein FliD; filament capping protein; enables filament assembly<br />

fliE b1937 4.0249 0.0012 flagellar basal-body protein FliE<br />

fliF b1938 7.3494 0.0024<br />

flagellar M-ring protein FliF; basal-body MS(membrane and supramembrane)-<br />

ring and collar protein<br />

fliG b1939 6.5031 0.0323<br />

flagellar motor switch protein FliG; component <strong>of</strong> motor switching and<br />

energizing, enabling rotation and determining its direction<br />

fliH b1940 3.0144 0.0294 flagellar biosynthesis protein FliH<br />

fliJ b1942 4.6660 0.0065 flagellar biosynthesis protein FliJ<br />

fliK b1943 3.4194 0.0186 flagellar hook-length control protein FliK<br />

fliL b1944 7.1439 0.0097 flagellar biosynthesis<br />

fliM b1945 7.9995 0.0100<br />

flagellar motor switch protein FliM; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliN b1946 7.8012 0.0123<br />

flagellar motor switch protein FliN; component <strong>of</strong> motor switch and energizing,<br />

enabling rotation and determining its direction<br />

fliQ b1949 3.9371 0.0296 flagellar biosynthesis protein FliQ<br />

fliS b1925 4.0888 0.0000 flagellar biosynthesis protein FliS<br />

180


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

fliZ b1921 4.4203 0.0056 possible cell-density responsive regulator <strong>of</strong> sigmaF<br />

focA b0904 0.3591 0.0199 FocA formate FNT transporter<br />

frlA b3370 0.6250 0.0009 YhfM methione APC transporter<br />

frmB b0355 1.4987 0.0417 putative S-formylglutathione hydrolase<br />

fsaB b3946 1.6046 0.0285 fructose 6-phosphate aldolase 2<br />

fxsA b4140 0.5805 0.0376 inner membrane protein; overproduction inhibits F exclusion <strong>of</strong> bacteriophage T7<br />

gadA b3517 0.1582 0.0235 glutamate decarboxylase A subunit<br />

gadC b1492 0.2334 0.0316 XasA GABA APC transporter<br />

gadE b3512 0.1309 0.0490 GadE transcriptional activator<br />

galE b0759 1.2371 0.0142 UDP-glucose 4-epimerase monomer<br />

gatD b2091 0.2599 0.0438 galactitol-1-phosphate dehydrogenase<br />

gatY b2096 0.2067 0.0396 tagatose-1,6-bisphosphate aldolase 2<br />

gatZ b2095 0.1364 0.0278 tagatose-1,6-bisphosphate aldolase 2<br />

ghrA b1033 1.3218 0.0231 glyoxylate reductase<br />

glf b2036 0.7362 0.0107 UDP-galactopyranose mutase<br />

glpF b3927 0.6041 0.0017 GlpF - glycerol MIP channel<br />

glpG b3424 1.3109 0.0131 inner membrane-associated protein <strong>of</strong> glp regulon<br />

gltD b3213 1.3195 0.0434 glutamate synthase (NADPH) small chain<br />

gltF b3214 0.1336 0.0102 regulator <strong>of</strong> gltBDF operon, induction <strong>of</strong> Ntr enzymes<br />

gltK b0653 1.4577 0.0267 glutamate ABC transporter<br />

gmd b2053 0.3426 0.0190 GDP-mannose 4,6-dehydratase<br />

gntX b3413 1.8845 0.0301 gluconate periplasmic binding protein<br />

gshA b2688 1.5587 0.0456 glutamate-cysteine ligase<br />

gspD b3325 0.5645 0.0087 putative protein secretion protein for export<br />

gspE b3326 0.6429 0.0423 putative protein secretion protein for export<br />

hdeA b3510 0.0429 0.0068 acid-resistance protein, possible chaperone<br />

hdeB b3509 0.0449 0.0041 10K-L protein, related to acid resistance protein <strong>of</strong> Shigella flexneri<br />

hdeD b3511 0.3744 0.0297 protein involved in acid resistance<br />

hdhA b1619 0.3986 0.0141 7-alpha-hydroxysteroid dehydrogenase<br />

hipA b1507 4.0652 0.0109 HipA transcriptional activator<br />

hisH b2023 1.7301 0.0302 imidazole glycerol phosphate synthase, HisH subunit<br />

hlyE b1182 0.1729 0.0157 hemolysin E<br />

hns b1237 6.1952 0.0176 H-NS transcriptional dual regulator<br />

h<strong>of</strong>M b3395 1.4093 0.0034 conserved hypothetical protein<br />

hscA b2526 2.5483 0.0441 chaperone, member <strong>of</strong> Hsp70 protein family<br />

hycI b2717 1.2466 0.0014 hydrogenase 3 maturation protease<br />

hypC b2728 1.6554 0.0250 pleiotrophic effects on 3 hydrogenase isozymes<br />

ibpA b3687 0.6923 0.0383 small heat shock protein IbpA<br />

idnK b4268 0.4140 0.0285 gluconokinase II<br />

ilvN b3670 1.7883 0.0127 acetohydroxybutanoate synthase I / acetolactate synthase I<br />

intZ b2442 1.7292 0.0221 putative prophage integrase<br />

ispB b3187 1.2318 0.0439 octaprenyl diphosphate synthase<br />

kbl b3617 0.5690 0.0286 2-amino-3-ketobutyrate CoA ligase<br />

kdpB b0697 1.6697 0.0185 potassium ion P-type ATPase transporter<br />

kdsB b0918 1.7064 0.0110 3-deoxy-D-manno-octulosonate-cytidylyltransferase<br />

kefB b3350 1.5528 0.0397 KefB potassium CPA2 transporter<br />

lepA b2569 1.9688 0.0349 GTP-binding elongation factor, may be inner membrane protein<br />

lolD b1117 1.2471 0.0101 LolCDE ABC lipoprotein transporter<br />

lysP b2156 2.0194 0.0452 LysP lysine APC transporter<br />

maa b0459 0.4245 0.0030 maltose acetyltransferase<br />

mdtG b1053 1.2882 0.0249 YceE drug MFS transporter<br />

mdtL b3710 0.7142 0.0215 YidY drug MFS transporter<br />

metH b4019 0.7227 0.0004 Cobalamin-dependent homocysteine transmethylase<br />

metI b0198 1.4979 0.0420 L- and D-methionine uptake ABC permease<br />

metR b3828 1.6070 0.0336 MetR-Homocysteine transcriptional activator<br />

miaB b0661 1.4769 0.0167 hypothetical protein<br />

181


APPENDIX I<br />

<strong>gene</strong> blattner ratio<br />

A/B<br />

p-value<br />

Function<br />

cell division inhibitor <strong>of</strong> the MinC-MinD-MinE and DicB-MinC systems that<br />

regulate septum placement<br />

minC b1176 0.5656 0.0077<br />

mltB b2701 1.6697 0.0259 membrane-bound lytic murein transglycosylase B<br />

moaB b0782 1.8201 0.0406 MoaB subunit<br />

MotB protein, enables flagellar motor rotation, linking torque machinery to cell<br />

wall<br />

motB b1889 8.5864 0.0015<br />

msbA b0914 2.4362 0.0074 ATP-binding transport protein; multicopy suppressor <strong>of</strong> htrB<br />

murP b2429 0.3070 0.0310 MurP<br />

nadC b0109 1.2142 0.0267 quinolinate phosphoribosyltransferase (decarboxylating) monomer<br />

nagA b0677 1.3065 0.0297 N-acetylglucosamine-6-phosphate deacetylase<br />

nanC b4311 0.1870 0.0154 conserved hypothetical protein<br />

nfnB b0578 0.5525 0.0086 dihydropteridine reductase<br />

nikC b3478 1.8058 0.0147 nickel ABC transporter<br />

nmpC b0553 0.0693 0.0038 outer membrane porin protein; locus <strong>of</strong> qsr prophage<br />

nrfD b4073 0.4712 0.0109 nitrite reductase complex<br />

nudD b2051 0.0587 0.0129 GDP-mannose mannosyl hydrolase<br />

nudE b3397 1.8481 0.0487 ADP-ribose diphosphatase<br />

ogrK b2082 0.4983 0.0113 OgrK transcriptional regulator<br />

ompC b2215 0.6383 0.0480 outer membrane porin OmpC<br />

ompF b0929 2.5595 0.0108 outer membrane porin OmpF<br />

osmB b1283 0.2432 0.0020 OsmB osmotically inducible lipoprotein<br />

osmC b1482 0.4503 0.0263 osmotically inducible peroxidase OsmC<br />

pagP b0622 0.2419 0.0392 PagP monomer<br />

parE b3030 1.4390 0.0125 Topoisomerase IV subunit B<br />

pflB b0903 0.5987 0.0440 pyruvate formate-lyase (inactive)<br />

pgaD b1021 0.2752 0.0393 putative inner membrane protein<br />

phoR b0400 1.8038 0.0289 PhoR-Phis<br />

pinR b1374 0.1363 0.0086 putative transposon resolvase<br />

pioO b3322 0.5656 0.0226 calcium-binding protein required for initiation <strong>of</strong> chromosome replication<br />

pitB b2987 0.3142 0.0356 PitB<br />

proB b0242 0.5567 0.0474 gamma-glutamyl kinase-GP-reductase multienzyme complex<br />

prpD b0334 1.8705 0.0377 2-methylcitrate dehydratase<br />

purL b2557 1.1685 0.0423 phosphoribosylformylglycinamide synthase<br />

puuP b1296 1.5737 0.0077 YcjJ APC transporter<br />

puuR b1299 3.1778 0.0435 putative oxidoreductase/putative regulator<br />

rbsC b3750 0.3361 0.0271 ribose ABC transporter<br />

rbsD b3748 0.2044 0.0179 D-ribose utilization<br />

rbsK b3752 0.6382 0.0278 ribokinase<br />

positive DNA-binding transcriptional regulator <strong>of</strong> capsular polysaccharide<br />

rcsA b1951 0.0925 0.0303 synthesis, activates its own <strong>expression</strong><br />

rcsD b2216 0.7698 0.0039 putative 2-component sensor protein<br />

relA b2784 1.3700 0.0315 GDP pyrophosphokinase / GTP pyrophosphokinase<br />

rffD b3787 2.2065 0.0462 UDP-N-acetyl-D-mannosaminuronic acid dehydrogenase<br />

rho b3783 2.2388 0.0451 transcription termination factor Rho monomer; polarity suppressor<br />

rhsA b3593 0.4975 0.0344 RhsA protein in rhs element<br />

rhsD b0497 0.1777 0.0029 RhsD protein in rhs element<br />

ribD b0414 1.2103 0.0239 pyrimidine reductase / pyrimidine deaminase<br />

rihC b0030 2.3026 0.0130 ribonucleoside hydrolase 3<br />

rng b3247 1.6144 0.0451 ribonuclease G (RNAse G) monomer<br />

rplK b3983 1.5386 0.0382 50S ribosomal subunit protein L11<br />

rplL b3986 1.6665 0.0070 50S ribosomal subunit protein L7/L12<br />

rplU b3186 1.8052 0.0302 50S ribosomal subunit protein L21<br />

rpsC b3314 1.5181 0.0057 30S ribosomal subunit protein S3<br />

rpsJ b3321 1.3506 0.0099 30S ribosomal subunit protein S10<br />

rpsR b4202 1.5535 0.0028 30S ribosomal subunit protein S18<br />

rpsS b3316 1.5309 0.0152 30S ribosomal subunit protein S19<br />

rspB b1580 0.2910 0.0312 putative dehydrogenase RspB<br />

182


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

rumB b0859 2.8430 0.0229 23S ribosomal RNA 5-methyluridine methyltransferase<br />

rzpR b1362 0.3718 0.0295 putative prophage lambda endopeptidase<br />

serC b0907 0.8655 0.0233 phosphohydroxythreonine transaminase / phosphoserine transaminase<br />

sfmF b0534 1.5761 0.0050 putative fimbrial-like protein<br />

sfsB b3188 0.6211 0.0341 Nlp transcriptional regulator<br />

sgbU b3582 0.4728 0.0465 probable 3-hexulose-6-phosphate isomerase<br />

sgcR b4300 0.7052 0.0469 SgcR transcriptional regulator<br />

sieB b1353 0.6826 0.0164 phage superinfection exclusion protein<br />

slp b3506 0.2794 0.0041 outer membrane protein induced after carbon starvation<br />

sra b1480 0.3405 0.0369<br />

30S ribosomal subunit protein S22; sub-stoichiometric stationary phase ribosomal<br />

component<br />

ssuC b0934 1.3094 0.0450 YcbE/YcbM ABC transporter<br />

stpA b2669 0.2394 0.0352 DNA-binding protein; H-NS-like protein; chaperone activity; RNA splicing?<br />

sufA b1684 2.2615 0.0121 scaffold protein for iron-sulfur cluster assembly<br />

sufC b1682 2.6029 0.0111<br />

ATPase component <strong>of</strong> SufB-SufC-SufD cysteine desulfurase (SufS) activator<br />

complex<br />

tar b1886 5.6716 0.0475 MCP-II<br />

tatD b4483 1.8518 0.0203 magnesium-dependent DNase<br />

tauA b0365 0.3175 0.0372 TauA/TauB/TauC ABC transporter<br />

tdcC b3116 0.1433 0.0075 TdcC threonine STP transporter<br />

tdcD b3115 0.4925 0.0458 propionate kinase / acetate kinase C<br />

tgt b0406 0.7951 0.0462 tRNA-guanine transglycosylase monomer<br />

thiD b2103 0.7993 0.0109 hydroxymethylpyrimidine kinase 2 / HMP-P kinase<br />

tnaA b3708 0.0673 0.0163 L-cysteine desulfhydrase / tryptophanase<br />

tolB b0740 1.3875 0.0321 Tol-Pal Cell Envelope Complex<br />

trpD b1263 1.2758 0.0363 anthranilate synthase component II<br />

tsr b4355 2.6861 0.0245 MCP-I<br />

ttdB b3062 0.7602 0.0085 L-tartrate dehydratase, beta subunit<br />

ubiC b4039 1.5219 0.0401 chorismate pyruvate lyase<br />

ugd b2028 0.1087 0.0032 UDP-glucose 6-dehydrogenase<br />

ung b2580 1.1711 0.0157 uracil-DNA-glycosylase<br />

uvrB b0779 1.5839 0.0266 DNA repair; excision nuclease subunit B<br />

uvrC b1913 0.6579 0.0189 excinuclease ABC, subunit C; repair <strong>of</strong> UV damage to DNA<br />

uvrY b1914 0.5041 0.0474 UvrY- Phosphorylated transcriptional regulator<br />

wcaA b2059 0.5870 0.0415 putative regulator<br />

wcaC b2057 0.5717 0.0358 putative glycosyl transferase<br />

wcaD b2056 0.0530 0.0169 putative colanic acid polymerase<br />

wcaE b2055 0.1901 0.0098 putative colanic acid biosynthesis glycosyl transferase<br />

wcaF b2054 0.1153 0.0195 putative transferase<br />

wcaM b2043 0.3407 0.0472 hypothetical protein<br />

wzc b2060 0.3446 0.0355 tyrosine kinase involved in colanic acid biosynthesis<br />

wzxE b3792 1.8477 0.0010<br />

metabolism; biosynthesis <strong>of</strong> macromolecules (cellular constituents);<br />

enterobacterial common antigen (surface glycolipid) transport<br />

wzyE b3793 1.4866 0.0048 4-&alpha;-fucosyltransferase<br />

xapR b2405 0.1931 0.0064 XapR transcriptional activator<br />

xerC b3811 1.4882 0.0457<br />

site-specific recombinase, acts on cer sequence <strong>of</strong> ColE1, effects chromosome<br />

segregation at cell division<br />

xseA b2509 1.6165 0.0433 exonuclease VII, large subunit<br />

xylB b3564 0.4772 0.0249 xylulokinase<br />

xylF b3566 0.5971 0.0345 xylose ABC transporter<br />

yaaY b0024 2.2168 0.0034 hypothetical protein<br />

yabP b0056 0.6871 0.0260 conserved hypothetical protein<br />

yadD b0132 1.2444 0.0248 hypothetical protein<br />

yadL b0137 0.2804 0.0369 putative adhesin-like protein<br />

yafD b0209 1.4135 0.0200 conserved hypothetical protein<br />

yafJ b0223 0.6082 0.0284 putative amidotransferase<br />

yafS b0213 1.4431 0.0410 putative methyltransferase<br />

yagG b0270 0.5001 0.0099 YagG GPH Transporter<br />

183


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yagT b0286 0.6949 0.0498 putative oxidoreductase, Fe-S subunit<br />

yagX b0291 0.3706 0.0491 putative enzyme<br />

yagZ b0293 0.0536 0.0008 conserved hypothetical protein<br />

yahA b0315 0.3956 0.0385 hypothetical protein<br />

ybaJ b0461 0.2760 0.0119 conserved hypothetical protein<br />

ybbD b0500 0.3847 0.0090 conserved hypothetical protein<br />

ybbL b0490 0.7678 0.0092 YbbL<br />

ybcJ b0528 1.3234 0.0305 putative RNA-binding protein<br />

ybcW b0559 0.4321 0.0311 hypothetical protein<br />

ybdB b0597 1.9962 0.0233 conserved hypothetical protein<br />

ybfD b0706 0.2376 0.0116 conserved protein<br />

ybfF b0686 1.5949 0.0464 putative enzyme<br />

ybgD b0719 0.5377 0.0327 putative fimbrial-like protein<br />

ybgS b0753 1.8287 0.0028 putative homeobox protein<br />

ybhM b0787 0.4738 0.0397 hypothetical protein<br />

ybiB b0800 1.3766 0.0189 putative enzyme<br />

ybiU b0821 0.8261 0.0211 conserved hypothetical protein<br />

ybjD b0876 0.5663 0.0278 conserved protein with a nucleotide triphosphate hydrolase domain<br />

ybjL b0847 0.5150 0.0010 putative transport protein<br />

ycbQ b0938 0.1147 0.0155 putative fimbrial-like protein<br />

ycdJ b1009 1.6640 0.0210 putative acetyltransferase<br />

ycdL b1011 2.0719 0.0001 putative synthetase<br />

yceG b1097 2.3657 0.0237 putative thymidylate kinase (EC 2.7.4.9)<br />

yceI b1056 0.3488 0.0018 periplasmic protein; possibly secreted<br />

yceJ b1057 0.3421 0.0458 putative cytochrome<br />

ycfH b1100 2.0979 0.0027 putative hydrolase<br />

ycfR b1112 5.2716 0.0014 conserved hypothetical protein<br />

ycgE b1162 0.6911 0.0063 putative transcriptional regulator<br />

ycgV b1202 0.2423 0.0354 putative adhesion and penetration protein<br />

ycgX b1161 0.4727 0.0469 hypothetical protein<br />

ychJ b1233 1.3522 0.0498 conserved hypothetical protein<br />

ychQ b1213 1.7261 0.0345 hypothetical protein<br />

yciA b1253 2.8879 0.0202 putative enzyme<br />

yciF b1258 0.3526 0.0266 conserved protein<br />

ycjN b1310 0.3041 0.0419 YcjN/YcjO/YcjP ABC transporter<br />

ycjO b1311 2.4268 0.0369 YcjN/YcjO/YcjP ABC transporter<br />

ycjT b1316 0.7525 0.0127 putative enzyme<br />

ydbA_1 b1401 0.7593 0.0356 hypothetical protein product <strong>of</strong> fragment 1 <strong>of</strong> a split CDS<br />

ydcC b1460 0.2272 0.0112 conserved protein, similar to H-repeat associated proteins<br />

ydcL b1431 0.6791 0.0441 conserved hypothetical protein<br />

ydcR b1439 4.0253 0.0261<br />

multi modular; putative transcriptional regulator ; also putative ATP-binding<br />

component <strong>of</strong> a transport system<br />

ydeA b1528 2.7790 0.0432 YdeA MFS transporter<br />

ydeI b1536 0.1821 0.0253 conserved hypothetical protein<br />

ydeK b1510 0.6187 0.0071 YdeK<br />

ydeP b1501 0.1915 0.0184 acid resistance protein<br />

ydeS b1504 0.4539 0.0400 putative fimbrial-like protein<br />

ydfB b1572 1.6584 0.0428 hypothetical protein<br />

ydfE b1577 0.6538 0.0130 hypothetical protein<br />

ydfJ b1543 3.1165 0.0181 YdfJ<br />

YdgE b1599 0.2358 0.0111 YdgE SMR Protein<br />

YdgF b1600 0.1460 0.0053 YdgF SMR protein; toxin <strong>of</strong> a putative toxin-antitoxin pair<br />

ydgR b1634 2.3865 0.0058 YdgR putative peptide POT Transporter<br />

ydiA b1703 0.3853 0.0309 conserved protein<br />

ydjG b1771 0.6625 0.0268 putative oxidoreductase<br />

ydjI b1773 0.3205 0.0299 putative aldolase<br />

ydjJ b1774 0.3084 0.0391 putative oxidoreductase<br />

184


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

ydjL b1776 0.6122 0.0341 putative oxidoreductase<br />

yeaG b1783 0.4721 0.0039 conserved protein<br />

yeaJ b1786 0.4354 0.0260 putative membrane protein<br />

yebN b1821 0.2184 0.0221 putative membrane protein, terpenoid synthase-like<br />

yebW b1837 1.6464 0.0240 hypothetical protein<br />

yecR b1904 3.4357 0.0288 conserved hypothetical protein<br />

yedS_2 b1965 0.2584 0.0387 putative outer membrane protein<br />

yedS_3 b1966 0.2391 0.0482 putative outer membrane protein<br />

yedV b1968 0.1575 0.0161 putative 2-component sensor protein<br />

yeeE b2013 1.3107 0.0382 putative transport system permease protein<br />

yeeN b1983 0.3367 0.0153 conserved protein<br />

yegJ b2071 0.2035 0.0169 hypothetical protein<br />

yehT b2125 0.5225 0.0364 two-component response regulator<br />

yeiS b2145 0.4474 0.0138 hypothetical protein<br />

yfaL b2233 1.3955 0.0170 potential adhesin<br />

yfaO b2251 0.4117 0.0366 putative enzyme (Nudix hydrolase)<br />

yfbE b2253 0.2945 0.0149 UDP-L-Ara4O C-4" transaminase<br />

yfbN b2273 0.1982 0.0195 conserved hypothetical protein<br />

yfcI b2305 0.5760 0.0448 hypothetical protein<br />

yfcV b2339 0.1962 0.0324 putative fimbrial-like protein<br />

yfdP b2359 0.7302 0.0446 hypothetical protein<br />

yfdZ b2379 1.3458 0.0451 putative aminotransferase<br />

yfeD b2399 0.6741 0.0159 hypothetical protein<br />

yfeX b2431 1.2507 0.0360 conserved protein<br />

yffB b2471 0.3893 0.0112 conserved thioredoxin-like protein<br />

yfgH b2505 0.1761 0.0294 putative outer membrane lipoprotein<br />

yfiR b2603 0.5716 0.0344 conserved protein<br />

yfjH b2623 0.5403 0.0467 putative histone<br />

yfjK b2627 0.5869 0.0193 hypothetical protein<br />

ygbE b2749 2.2898 0.0383 putative cytochrome oxidase subunit<br />

ygbT b2755 0.3143 0.0043 conserved hypothetical protein<br />

ygcF b2777 0.4973 0.0417 hypothetical protein<br />

ygcI b2757 0.0520 0.0045 hypothetical protein<br />

ygcJ b2758 0.4560 0.0338 conserved hypothetical protein<br />

ygcK b2759 0.0541 0.0086 hypothetical protein<br />

ygcL b2760 0.0966 0.0050<br />

hypothetical protein with possible relationship to novobiocin and deoxycholate<br />

resistance<br />

ygdI b2809 1.7669 0.0042 hypothetical protein<br />

ygdL b2812 1.7338 0.0474 putative enzyme<br />

ygeO b2859 0.7191 0.0320 conserved protein<br />

yggP b2931 0.4937 0.0082 putative NAD(P)-binding dehydrogenase (B2931)<br />

yghQ b2983 1.6030 0.0092 putative serine protease<br />

yghS b2985 0.3944 0.0088 conserved protein<br />

ygiL b3043 0.0454 0.0037 putative fimbrial-like protein<br />

ygiR b3015 2.2378 0.0114<br />

ygiU b3022 1.4623 0.0263 putative cyanide hydratase<br />

yhbW b3160 1.3420 0.0364 putative enzyme<br />

yhcA b3215 0.4083 0.0170 putative chaperone<br />

yhdX b3269 0.4868 0.0189 YhdW/YhdX/YhdY/YhdZ ABC transporter<br />

yhfL b3369 0.2237 0.0277 hypothetical protein<br />

yhhH b3483 0.5665 0.0435 hypothetical protein<br />

yhhI b3484 0.2639 0.0294 conserved protein similar to H-repeat-associated proteins<br />

yhiP b3496 1.4822 0.0076 YhiP peptide POT transporter<br />

yhjB b3520 0.5360 0.0254 putative regulator<br />

yhjR b3535 0.3791 0.0427 hypothetical protein<br />

yhjX b3547 0.4577 0.0155 YhjX MFS transporter<br />

yiaA b3562 0.2225 0.0295 hypothetical protein<br />

185


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yiaN b3578 0.3218 0.0405 YiaMNO Binding Protein-dependent Secondary (TRAP) Transporter<br />

yiaT b3584 0.3228 0.0018 putative outer membrane protein<br />

yiaU b3585 0.2708 0.0129 putative transcriptional regulator LYSR-type<br />

yiaV b3586 0.6530 0.0169 putative membrane protein<br />

yiaW b3587 0.1805 0.0226 hypothetical protein<br />

yibA b3594 0.2554 0.0369 putative lyase<br />

yibI b3598 1.5678 0.0042 hypothetical protein<br />

yibJ b3595 0.4409 0.0364 hypothetical protein<br />

yifK b3795 1.6627 0.0041 YifK APC transporter<br />

yiiS b3922 0.2877 0.0426 conserved hypothetical protein<br />

yjbE b4026 0.2320 0.0056 conserved hypothetical protein<br />

yjdI b4126 0.3844 0.0223 conserved hypothetical protein<br />

yjeJ b4145 0.1947 0.0001 conserved protein<br />

yjfJ b4182 0.4165 0.0368 conserved protein<br />

yjfO b4189 0.6287 0.0167 conserved protein<br />

yjgA b4234 1.4336 0.0306 putative transport protein (ABC superfamily, atp_bind)<br />

yjgM b4256 0.3526 0.0092 putative acyltransferase<br />

yjhF b4296 0.3026 0.0290 YjhF Gnt tranporter<br />

yjhG b4297 0.3862 0.0320 putative dehydratase<br />

yjhH b4298 0.1447 0.0289 putative lyase/synthase<br />

yjhI b4299 0.1010 0.0196 putative regulator<br />

yjiW b4347 0.3016 0.0341 hypothetical protein<br />

yjjQ b4365 0.5375 0.0405 putative regulator<br />

yjjY b4402 1.8482 0.0252 hypothetical protein<br />

ykfF b0249 1.4653 0.0173 hypothetical protein<br />

ykgA b0300 0.3332 0.0455 putative ARAC-type regulatory protein<br />

ykgB b0301 0.4130 0.0197 putative membrane protein<br />

ykgF b0307 0.0923 0.0096 putative dehydrogenase<br />

ykgI b0303 0.1914 0.0271 hypothetical protein<br />

ykgK b0294 0.3670 0.0464 putative regulator<br />

ykiA b0392 0.4606 0.0100 hypothetical protein<br />

yliF b0834 0.5389 0.0387 conserved protein<br />

ymgD b1171 0.2996 0.0307 hypothetical protein<br />

ynaE b1375 0.1454 0.0051 hypothetical protein<br />

ynaI b1330 0.4059 0.0015 YnaI<br />

ynaK b1365 0.2128 0.0235 hypothetical protein<br />

yncC b1450 0.7923 0.0469 hypothetical protein<br />

yncD b1451 4.6042 0.0276 Probable TonB-dependent receptor<br />

yncI b1458 0.2616 0.0295 conserved protein<br />

ynfN b1551 0.1250 0.0013 hypothetical protein<br />

ynjF b1758 1.9527 0.0260 putative cytochrome oxidase<br />

ynjI b1762 0.6095 0.0436 conserved protein<br />

yoaC b1810 0.5329 0.0343 conserved hypothetical protein<br />

yobF b1824 0.2197 0.0180 hypothetical protein<br />

yodA b1973 0.3883 0.0353 cadmium-induced metal binding protein<br />

yohL b2105 0.8820 0.0341 conserved hypothetical protein<br />

yojI b2211 2.6739 0.0227 YojI<br />

ypfJ b2475 1.7103 0.0293 conserved protein<br />

ypjF b2646 1.7408 0.0282 member <strong>of</strong> the YeeV, YkfI, YpjF family <strong>of</strong> toxin proteins<br />

yqcC b2792 1.1876 0.0346 conserved hypothetical protein<br />

yqeI b2847 0.3092 0.0385 putative sensory transducer<br />

yqhC b3010 1.5425 0.0156 putative ARAC-type regulatory protein<br />

yqjF b3101 1.9399 0.0112 putative membrane protein<br />

yraH b3142 0.4222 0.0010 putative fimbrial-like protein<br />

yraQ b3151 1.7555 0.0334 putative membrane protein<br />

yrdD b3283 0.8037 0.0413 putative DNA topoisomerase<br />

186


APPENDIX I<br />

<strong>gene</strong> blattner ratio p-value Function<br />

A/B<br />

yrfF b3398 1.2449 0.0097 putative dehydrogenase<br />

ysgA b3830 1.9227 0.0146 putative enzyme<br />

ytfA b4205 0.5673 0.0178 hypothetical protein<br />

ytfT b4230 1.5645 0.0022 YtfQ/YtfR/YtfS/YtfT/YjfF ABC transporter<br />

ytjB b4387 1.3640 0.0001 membrane protein<br />

187


Statement <strong>of</strong> sources<br />

Declaration<br />

I declare that this thesis is my own work and has not been submitted in<br />

any form for another degree or diploma at any university or other<br />

institution <strong>of</strong> tertiary education. Information derived from published<br />

scientific work has been cited in the text and listed in the references.<br />

Signature<br />

Date<br />

188


189


190

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!