Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University Itinerant Spin Dynamics in Structures of ... - Jacobs University

jacobs.university.de
from jacobs.university.de More from this publisher
11.03.2014 Views

86 Chapter 5: Spin Hall Effect • localized site orbitals are of s symmetry. Applying this assumptions the tight-binding version of the Hamiltonian is given by H = H 0 +H R +H D,lin +H D,cubic , (5.7) = ∑ ǫ i c † i,σ c i,σ −t ∑ c † i,σ c j,σ i,σ 〈i,j〉,σ ∑ {c † l,m,σ (iσ ′ y ) σσ ′c l+1,m,σ −c † l,m,σ (iσ ′ x ) σσ ′c l,m+1,σ } + α 2 2a + α 1 2a σ,σ ′ l,m ∑ {c † l,m,σ (iσ ′ x ) σσ ′c l+1,m,σ −c † l,m,σ (iσ ′ y ) σσ ′c l,m+1,σ } σ,σ ′ l,m ⎧ ⎪⎨ + γ ∑ D a 3 {c † ⎪ l,m,σ (−iσ ⎩ ′ x ) σσ ′c l+1,m,σ +c † l,m,σ (iσ ′ y ) σσ ′c l,m+1,σ } σ,σ ′ l,m σ,σ ′ l,m ⎫ + 1 ∑ ⎪⎬ {c † 2 l,m,σ (i(σ ′ x −σ y )) σσ ′c l+1,m+1,σ +c † l,m,σ (i(σ ′ x +σ y )) σσ ′c l+1,m−1,σ } ⎪⎭ +h.c.. (5.8) where c † i,σ is the creation operator at site index i with spin σ =↑,↓ and c† l,m,σ the creation operator at site (index x ,index y ) = (l,m). The hopping coupling t is given by t = 1/(2m e a) with the lattice constant a. In the following we take the cubic Dresselhaus term only as a shift of, ˜α 1 = α 1 − 2γ D /a 2 , according to Eq.(3.44), and assume a clean system, i.e the on-site energy is set to ǫ i = 0. Applying a Fourier transformation to Eq.(5.7) and going to momentum space we get (we set a ≡ 1) ⎧ H = ∑ ⎪⎨ −2t(cos(k ⎪ x )+cos(k y )) δ σσ ′c † kx,ky ⎩ } {{ } k,σ c ′ k,σ σ,σ ′ E 0 + (α 2 sin(k y )− ˜α 1 sin(k x ))c † k,σ ′ (σ x ) σσ ′c k,σ + (˜α 1 sin(k y )−α 2 sin(k x ))c † k,σ ′ (σ y ) σσ ′c k,σ } . (5.9) The corresponding eigenvalues are E ± (k) = E 0 (k)±∆(k) (5.10)

Chapter 5: Spin Hall Effect 87 with ∆(k) = √ (α 2 2 + ˜α2 1 )(sin(k x) 2 +sin(k y ) 2 )−4α 2˜α 1 sin(k x )sin(k y ) (E − (k) is plotted in Fig.5.1). The eigenvectors are given by ⎛ |+/−〉 = √ 1 ⎝ 2 ∓({˜α 1 sin(k x)−α 2 sin(k y)}+i{˜α 1 sin(k y)−α 2 sin(k x)}) ∆ 1 ⎞ ⎠ (5.11) (a) (b) Figure 5.1: Energy band E − (k), Eq.(5.10) is plotted for pure Rashba SOC as function of wave vector k. The contour lines indicate the energy at which one finds a Van Hove singularity in the DOS (below half-filling). To calculate the SHE using Kubo formula, Eq.(5.5), we have to calculate the matrix elements of spin current operator and velocity operator. In the site basis of our lattice they have the following form: 〈n|v|m〉 = 〈0| ∑ ij αβ = 〈0| ∑ ij αβ ψn(i,α)c ∗ iα vψ m (j,β)c † jβ |0〉, (5.12) ψn(i,α)c ∗ 1 iα i [r,H]ψ m(j,β)c † jβ |0〉, (5.13) with r = ∑ kσ r kc † kσ c kσ = 1 i 〈0|∑ kγ ∑ ψn ∗ (i,α)c iα[r k c † kγ c kγ]Hc † jβ ψ m(j,β) ij αβ −ψ ∗ n(i,α)c iα 1 i H[c† kγ c kγr k ]c † jβ ψ m(j,β)|0〉, (5.14)

Chapter 5: <strong>Sp<strong>in</strong></strong> Hall Effect 87<br />

with ∆(k) = √ (α 2 2 + ˜α2 1 )(s<strong>in</strong>(k x) 2 +s<strong>in</strong>(k y ) 2 )−4α 2˜α 1 s<strong>in</strong>(k x )s<strong>in</strong>(k y )<br />

(E − (k) is plotted <strong>in</strong> Fig.5.1). The eigenvectors are given by<br />

⎛<br />

|+/−〉 = √ 1 ⎝<br />

2<br />

∓({˜α 1 s<strong>in</strong>(k x)−α 2 s<strong>in</strong>(k y)}+i{˜α 1 s<strong>in</strong>(k y)−α 2 s<strong>in</strong>(k x)})<br />

∆<br />

1<br />

⎞<br />

⎠ (5.11)<br />

(a)<br />

(b)<br />

Figure 5.1: Energy band E − (k), Eq.(5.10) is plotted for pure Rashba SOC as function<br />

<strong>of</strong> wave vector k. The contour l<strong>in</strong>es <strong>in</strong>dicate the energy at which one f<strong>in</strong>ds a Van Hove<br />

s<strong>in</strong>gularity <strong>in</strong> the DOS (below half-fill<strong>in</strong>g).<br />

To calculate the SHE us<strong>in</strong>g Kubo formula, Eq.(5.5), we have to calculate the<br />

matrix elements <strong>of</strong> sp<strong>in</strong> current operator and velocity operator. In the site basis <strong>of</strong> our<br />

lattice they have the follow<strong>in</strong>g form:<br />

〈n|v|m〉 = 〈0| ∑ ij<br />

αβ<br />

= 〈0| ∑ ij<br />

αβ<br />

ψn(i,α)c ∗ iα vψ m (j,β)c † jβ<br />

|0〉, (5.12)<br />

ψn(i,α)c ∗ 1<br />

iα<br />

i [r,H]ψ m(j,β)c † jβ<br />

|0〉, (5.13)<br />

with r = ∑ kσ r kc † kσ c kσ<br />

= 1 i 〈0|∑ kγ<br />

∑<br />

ψn ∗ (i,α)c iα[r k c † kγ c kγ]Hc † jβ ψ m(j,β)<br />

ij<br />

αβ<br />

−ψ ∗ n(i,α)c iα<br />

1<br />

i H[c† kγ c kγr k ]c † jβ ψ m(j,β)|0〉, (5.14)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!