11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

86 Chapter 5: <strong>Sp<strong>in</strong></strong> Hall Effect<br />

• localized site orbitals are <strong>of</strong> s symmetry.<br />

Apply<strong>in</strong>g this assumptions the tight-b<strong>in</strong>d<strong>in</strong>g version <strong>of</strong> the Hamiltonian is given by<br />

H = H 0 +H R +H D,l<strong>in</strong> +H D,cubic , (5.7)<br />

= ∑ ǫ i c † i,σ c i,σ −t ∑<br />

c † i,σ c j,σ<br />

i,σ 〈i,j〉,σ<br />

∑<br />

{c † l,m,σ<br />

(iσ ′ y ) σσ ′c l+1,m,σ −c † l,m,σ<br />

(iσ ′ x ) σσ ′c l,m+1,σ }<br />

+ α 2<br />

2a<br />

+ α 1<br />

2a<br />

σ,σ ′<br />

l,m<br />

∑<br />

{c † l,m,σ<br />

(iσ ′ x ) σσ ′c l+1,m,σ −c † l,m,σ<br />

(iσ ′ y ) σσ ′c l,m+1,σ }<br />

σ,σ ′<br />

l,m<br />

⎧<br />

⎪⎨<br />

+ γ ∑<br />

D<br />

a 3 {c †<br />

⎪<br />

l,m,σ<br />

(−iσ<br />

⎩ ′ x ) σσ ′c l+1,m,σ +c † l,m,σ<br />

(iσ ′ y ) σσ ′c l,m+1,σ }<br />

σ,σ ′<br />

l,m<br />

σ,σ ′<br />

l,m<br />

⎫<br />

+ 1 ∑<br />

⎪⎬<br />

{c †<br />

2<br />

l,m,σ<br />

(i(σ ′ x −σ y )) σσ ′c l+1,m+1,σ +c † l,m,σ<br />

(i(σ ′ x +σ y )) σσ ′c l+1,m−1,σ }<br />

⎪⎭<br />

+h.c.. (5.8)<br />

where c † i,σ is the creation operator at site <strong>in</strong>dex i with sp<strong>in</strong> σ =↑,↓ and c† l,m,σ<br />

the creation<br />

operator at site (<strong>in</strong>dex x ,<strong>in</strong>dex y ) = (l,m). The hopp<strong>in</strong>g coupl<strong>in</strong>g t is given by t = 1/(2m e a)<br />

with the lattice constant a. In the follow<strong>in</strong>g we take the cubic Dresselhaus term only as<br />

a shift <strong>of</strong>, ˜α 1 = α 1 − 2γ D /a 2 , accord<strong>in</strong>g to Eq.(3.44), and assume a clean system, i.e the<br />

on-site energy is set to ǫ i = 0. Apply<strong>in</strong>g a Fourier transformation to Eq.(5.7) and go<strong>in</strong>g to<br />

momentum space we get (we set a ≡ 1)<br />

⎧<br />

H = ∑ ⎪⎨<br />

−2t(cos(k<br />

⎪ x )+cos(k y )) δ σσ ′c †<br />

kx,ky ⎩ } {{ }<br />

k,σ<br />

c ′ k,σ<br />

σ,σ ′ E 0<br />

+ (α 2 s<strong>in</strong>(k y )− ˜α 1 s<strong>in</strong>(k x ))c † k,σ ′ (σ x ) σσ ′c k,σ<br />

+ (˜α 1 s<strong>in</strong>(k y )−α 2 s<strong>in</strong>(k x ))c † k,σ ′ (σ y ) σσ ′c k,σ<br />

}<br />

. (5.9)<br />

The correspond<strong>in</strong>g eigenvalues are<br />

E ± (k) = E 0 (k)±∆(k) (5.10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!