11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover<br />

E m<strong>in</strong> /ǫ 2 F γ2 D<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.<br />

0.5<br />

1.<br />

1.5<br />

2.<br />

2.5<br />

3.<br />

0.2<br />

0.0<br />

5 10 15 20 25 30<br />

N<br />

Figure 4.5: The lowest eigenvalues <strong>of</strong> the conf<strong>in</strong>ed Cooperon Hamiltonian Eq.(4.49), equivalent<br />

to the lowest sp<strong>in</strong> relaxation rate, are shown for Q = 0 for different number <strong>of</strong> modes<br />

N = k F W/π. Different curves correspond to different values <strong>of</strong> α 1 /q s .<br />

4.6 Conclusions<br />

Summariz<strong>in</strong>g the results <strong>of</strong> this chapter, we have characterized the anisotropy and<br />

width dependence <strong>of</strong> sp<strong>in</strong> relaxation <strong>in</strong> a (001) quantum wire. There are special angles<br />

θ which are optimal for sp<strong>in</strong> transport <strong>in</strong> quantum wires <strong>of</strong> f<strong>in</strong>ite width: The [110] and<br />

the [110] direction. At [110] we f<strong>in</strong>d the longest sp<strong>in</strong> dephas<strong>in</strong>g time T 2 . If the absolute<br />

m<strong>in</strong>imum <strong>of</strong> sp<strong>in</strong> relaxation is found at [110] or [110] direction depends on the strength <strong>of</strong><br />

cubicDresselhausandwirewidth. Thef<strong>in</strong>d<strong>in</strong>gsforthesp<strong>in</strong>dephas<strong>in</strong>gtimeare<strong>in</strong>agreement<br />

with numerical results. The analytical expression for T 2 allows to see directly the <strong>in</strong>terplay<br />

between the cubic Dresselhaus SOC and the dimensional reduction, hav<strong>in</strong>g effect on T 2 .<br />

In addition we analyzed the special case <strong>of</strong> a (110) system and found the m<strong>in</strong>imal sp<strong>in</strong><br />

relaxation rates depend<strong>in</strong>g on Rashba and l<strong>in</strong>. and cubic Dresselhaus SOC <strong>in</strong> the presence<br />

<strong>of</strong> boundaries. This results can be used to understand width and direction dependent WL<br />

measurements <strong>in</strong> quantum wires. F<strong>in</strong>ally, we have shown how the reduction <strong>of</strong> channels<br />

<strong>in</strong> the wire reduces the f<strong>in</strong>ite sp<strong>in</strong> relaxation rate which is due to cubic Dresselhaus SOC<br />

and does not reduce if the wire is small, Wq s ≪ 1, and diffusive, W ≫ l e . The change <strong>in</strong><br />

channel number also changes the shift <strong>of</strong> l<strong>in</strong>. Dresselhaus SOC strength, ˜α 1 . This has to<br />

be considered if extract<strong>in</strong>g SOC strength from wires with only few transverse channels.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!