11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover 73<br />

The m<strong>in</strong>imal sp<strong>in</strong>-relaxation rate is found by analyz<strong>in</strong>g the prefactor <strong>of</strong> W 2 <strong>in</strong> Eq.(4.27),<br />

Fig.(4.1). We see immediately that <strong>in</strong> the case <strong>of</strong> vanish<strong>in</strong>g cubic Dresselhaus or <strong>in</strong> the case<br />

where α x1 (θ = 0) = −q 2 we have no direction dependence <strong>of</strong> the m<strong>in</strong>imal sp<strong>in</strong> relaxation.<br />

Notice the shift <strong>of</strong> the absolute m<strong>in</strong>imum away from q 1 = q 2 due to q s3 ≠ 0. In the case <strong>of</strong><br />

q 1 < (q s3 / √ 2)wef<strong>in</strong>dthem<strong>in</strong>imumatθ = (1/4+n)π, n ∈, elseatθ = (3/4+n)π, n ∈,<br />

which is <strong>in</strong>dicated by the dashed l<strong>in</strong>e <strong>in</strong> Fig.(4.1).<br />

Π<br />

0 <br />

4<br />

Π<br />

<br />

2<br />

3Π<br />

<br />

4 Π<br />

2.0<br />

1.5<br />

1<br />

q1/q2<br />

1.0<br />

0.5<br />

0<br />

0.0<br />

Π<br />

0 <br />

4<br />

Π<br />

<br />

3Π<br />

2 <br />

θ<br />

4<br />

Π<br />

Figure 4.1: Dependence <strong>of</strong> the W 2 coefficient <strong>in</strong> Eq.(4.27) on the lateral rotation (θ). The<br />

absolute m<strong>in</strong>imum is found for α x1 (θ = 0) = −q 2 (here: q 1 /q 2 = 1.63) and for different SO<br />

strength we f<strong>in</strong>d the m<strong>in</strong>imum at θ = (1/4 + n)π, n ∈if q 1 < (q s3 / √ 2) (dashed l<strong>in</strong>e:<br />

q 1 = (q s3 / √ 2)) and at θ = (3/4 +n)π, n ∈else. Here we set q s3 = 0.9. The scal<strong>in</strong>g is<br />

arbitrary.<br />

<strong>Sp<strong>in</strong></strong> dephas<strong>in</strong>g<br />

Concern<strong>in</strong>g sp<strong>in</strong>tronic devices it is <strong>in</strong>terest<strong>in</strong>g to know how an ensemble <strong>of</strong> sp<strong>in</strong>s<br />

<strong>in</strong>itially oriented along the [001] direction dephases <strong>in</strong> the wire <strong>of</strong> different orientation θ.<br />

Todothisanalysisweonlyhavetoknowthattheeigenvector fortheeigenvalueE 1 atk x = 0,<br />

Eq.(4.22), is the triplet state |S = 1;m = 0〉 = (|↑↓〉 + |↓↑〉)/ √ 2 ≡<br />

|⇉〉 ˆ=(0,1,0) T , Eqs.(3.62). This is equal to the z-component <strong>of</strong> the sp<strong>in</strong> density whose<br />

evolution is described by the sp<strong>in</strong> diffusion equation, Eq.(3.54). As an example we assume<br />

the case where cubic Dresselhaus term can be neglected and where the Rashba and<br />

l<strong>in</strong>. Dresselhaus SOC are equal. We notice that the dephas<strong>in</strong>g is then width <strong>in</strong>dependent.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!