11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

72 Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover<br />

<strong>Sp<strong>in</strong></strong> relaxation<br />

We diagonalize the Hamiltonian, Eq.(4.10), after apply<strong>in</strong>g the transformation U,<br />

tak<strong>in</strong>g only the lowest mode <strong>in</strong>to account similar to the calculation presented <strong>in</strong> Sec.3.4.2.<br />

The spectrum <strong>of</strong> the Hamiltonian for small wire width, Wq s < 1, is given by<br />

(<br />

α<br />

E 1/2 (k x > 0) = kx 2 2<br />

±k x<br />

(2q sm − x1 +α 2 2<br />

)<br />

x2 2) −q2 W 2<br />

12q sm<br />

+ 3 (<br />

qs3<br />

2<br />

2 2 +q2 sm ∓ q2 s3 α<br />

2<br />

x1 +α 2 ) 2W<br />

x2 −q2 2<br />

2<br />

2k x 96q<br />

( sm<br />

q 2<br />

s3<br />

(α<br />

2 sm) +q2 2<br />

x1 +α 2 ) 2<br />

x2 −q2 2<br />

−<br />

W 2 , (4.21)<br />

24q 2 sm<br />

E 1 (k x = 0) = q 2 s3 +q2 sm − (α2 x1 +α2 x2 −q2 2 )2 + q2 s3<br />

E 2 (k x = 0) = q2 s3<br />

2 +q2 sm + q2 s3<br />

2<br />

2 q2 s<br />

W 2 , (4.22)<br />

12<br />

q2 2α2 x1<br />

3qsm<br />

2 W 2 , (4.23)<br />

( q 2<br />

s3<br />

(α<br />

E 3 = kx 2 + q2 s3<br />

2 + 2 sm) +q2 2<br />

x1 +α 2 x2 −q2 2<br />

12q 2 sm<br />

) 2<br />

W 2 , (4.24)<br />

with q sm = √ (α x2 −q 2 ) 2 +α 2 x1 . First we notice that the only θ dependence is <strong>in</strong> the<br />

term q sm , which disappears if the Dresselhaus SOC strength ˜α 1 , which is shifted due to<br />

the cubic term, equals the Rashba SOC strength α 2 and the angle <strong>of</strong> the boundary is<br />

θ = (1/4 + n)π, n ∈. Assum<strong>in</strong>g the term proportional to W 2 /k x to be small, the<br />

absolute m<strong>in</strong>imum can be found at<br />

( ) (α<br />

E 1/2,m<strong>in</strong> = 3 qs3<br />

2 q 2<br />

2 2 + sm − q2 s3 2<br />

2 x1 +α 2 ) 2<br />

x2 −q2 2<br />

W 2 (4.25)<br />

24q 2 sm<br />

which is <strong>in</strong>dependent <strong>of</strong> the width W if α x1 (θ = 0) = −q 2 and/or the direction <strong>of</strong> the wire<br />

is po<strong>in</strong>t<strong>in</strong>g <strong>in</strong><br />

θ = 1 ( 2〈k<br />

2<br />

2 arcs<strong>in</strong> z 〉(m e γ D ) 2 ((m e v) 2 −2〈kz〉)−q 2 2<br />

2 )<br />

(m 3 ev 2 γ D −4〈kz〉m 2 . (4.26)<br />

e γ D )q 2<br />

The second possible absolute m<strong>in</strong>imum, which dom<strong>in</strong>ates for sufficient small width W and<br />

q sm ≠ 0 (compare with E 2 (k x = 0)), is found at<br />

( q 2 (α<br />

s3<br />

E 3,m<strong>in</strong> = q2 s3<br />

2 + 2 sm) +q2 2<br />

x1 +α 2 ) 2<br />

x2 −q2 2<br />

12qsm<br />

2 W 2 . (4.27)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!