11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

58 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

all wave vectors, K = Q/Q SO , is given by<br />

with<br />

E B,2D,1 /D e Q 2 SO<br />

= 1+K 2 x, (3.100)<br />

E B,2D,2 /D e Q 2 SO<br />

= E B,2D,1 + f 1<br />

E B,2D,3/4 /D e Q 2 SO = E B,2D,1 − 1 2<br />

+ 1 6<br />

f 1/3<br />

2<br />

− 1 3 f1/3 2 , (3.101)<br />

(<br />

1±i<br />

√<br />

3<br />

)<br />

f1<br />

f 1/3<br />

2<br />

(<br />

1∓i √ 3<br />

)<br />

f 1/3<br />

2<br />

, (3.102)<br />

f 1 = ˜B 2 −4Kx 2 −1, (3.103)<br />

( √3 √ )<br />

f 2 = 3 108Kx 4 +f3 1 −18K2 x , (3.104)<br />

˜B = gµ B B/D e Q 2 SO, (3.105)<br />

Thus, there are sp<strong>in</strong> states with the same real part <strong>of</strong> the Cooperon energy, so that they<br />

decay equally <strong>in</strong> time, but the imag<strong>in</strong>ary part is different, so that they precess with different<br />

frequencies around the magnetic field axis. A significant change <strong>of</strong> the Cooperon spectrum<br />

appears when gµ B B/D e exceeds Q 2 SO<br />

, as can be seen <strong>in</strong> Fig.3.16(b). All states with a low<br />

decay rate do precess now, due to a f<strong>in</strong>ite imag<strong>in</strong>ary value <strong>of</strong> their eigenvalue. Associated<br />

with this change is also a change <strong>of</strong> the dispersion <strong>of</strong> the real part <strong>of</strong> E B,2D,3 which changes<br />

for K y = 0 from a nearly quadratic dispersion <strong>in</strong> K x , a 0 + a 1 K 2 x for ˜B < 1 to one which<br />

changes more slowly as a 0 +a 1 K 2/3<br />

x +a 2 K 4/3<br />

x +a 3 K 2 x for ˜B ≥ 1 [see Fig.3.16 (a)].<br />

Weak Field<br />

In the case <strong>of</strong> a weak Zeeman field, ˜B ≪ 1, the s<strong>in</strong>glet and triplet sectors are<br />

still approximately separated. A f<strong>in</strong>ite ˜B ≪ 1 lifts however the energy <strong>of</strong> the s<strong>in</strong>glet mode<br />

to E B,2D,2 (K = 0)/D e Q 2 SO<br />

= ˜B 2 /2 + O(˜B 4 ), thus the s<strong>in</strong>glet mode atta<strong>in</strong>s a f<strong>in</strong>ite gap,<br />

correspond<strong>in</strong>g to a f<strong>in</strong>ite relaxation rate. The absolute m<strong>in</strong>imum <strong>of</strong> two <strong>of</strong> the triplet<br />

modes is also lifted by E B,2D,2 (K = ± √ 15/4)/D e Q 2 = 7/16 + (3/4) ˜B 2 SO<br />

+ O(˜B 4 ), while<br />

their value is <strong>in</strong>dependent <strong>of</strong> ˜B at K = 0. In contrast, the m<strong>in</strong>imum <strong>of</strong> the triplet mode<br />

E B,2D,3 , whichapproachesE T+ <strong>in</strong>thelimit<strong>of</strong>nomagneticfield(seeFig.3.4)isdim<strong>in</strong>ishedto<br />

E B,2D,3 (K = 0)/D e Q 2 = 2− ˜B 2 SO<br />

/2+O(˜B 4 ). So, <strong>in</strong> summary, a weak Zeeman field renders<br />

all four Cooperon modes gapfull and that gap can be <strong>in</strong>terpreted as a f<strong>in</strong>ite relaxation rate

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!