11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

46 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

which are persistent for α 2 = α 1 . The first solution is s = s 0 (α 1 ,α 2 ,0) T for Q x = 0 which<br />

is aligned with the effective SO field B SO (k) = −2γ g k x (α 1 ,α 2 ,0) T . In this case, we have<br />

accord<strong>in</strong>g to Eq.(3.81) H s,RD1 (W) = (1/12)( ˜Q SO W) 2 H s , with ˜Q 2 SO = (2m e(α 2 1 −α2 2 ))2 /α 2<br />

and 1/τ s = 2p 2 F α2 τ, α = √ α 2 1 +α2 2 . As mentioned above by transform<strong>in</strong>g the vector potential<br />

A S , Eq.(3.75), this alignment occurs due to the constra<strong>in</strong>t on the sp<strong>in</strong>-dynamics<br />

imposed by the boundary condition as soon as the wire width W is smaller than the sp<strong>in</strong><br />

precession length L SO . In addition, we f<strong>in</strong>d two sp<strong>in</strong> helix solutions <strong>in</strong> narrow wires,<br />

⎛ ⎞ ⎛ ⎞<br />

− α 2<br />

α ( ) 0 ( )<br />

s = s 0<br />

⎜ α 1 ⎟ 2π<br />

⎝ α ⎠ s<strong>in</strong> x +s 0<br />

⎜<br />

L SO<br />

⎝ 0 ⎟ 2π<br />

⎠ cos x , (3.82)<br />

L SO<br />

0<br />

1<br />

and the l<strong>in</strong>early <strong>in</strong>dependent solution, obta<strong>in</strong>ed by <strong>in</strong>terchang<strong>in</strong>g cos and s<strong>in</strong> <strong>in</strong> Eq.(3.82).<br />

The form <strong>of</strong> this long persist<strong>in</strong>g sp<strong>in</strong> helix depends therefore on the ratio <strong>of</strong> l<strong>in</strong>ear Rashba<br />

and l<strong>in</strong>ear Dresselhaus coupl<strong>in</strong>g strength, Fig.3.6, and its sp<strong>in</strong> relaxation rate is dim<strong>in</strong>ished<br />

as H s,RD2/3 = (1/2)H s,RD1 .<br />

Figure 3.6: Long persist<strong>in</strong>g sp<strong>in</strong> helix solution <strong>of</strong> the sp<strong>in</strong>-diffusion equation <strong>in</strong> a quantum<br />

wire whose width W is smaller than the sp<strong>in</strong> precession length L SO for vary<strong>in</strong>g ratio <strong>of</strong><br />

l<strong>in</strong>ear Rashba α 2 = αs<strong>in</strong>ϕ and l<strong>in</strong>ear Dresselhaus coupl<strong>in</strong>g, α 1 = αcosϕ, Eq.(3.82), for<br />

fixed α and L SO = π/m e α.<br />

3.4.3 Exact Diagonalization<br />

The exact diagonalization <strong>of</strong> the <strong>in</strong>verse Cooperon propagator, as obta<strong>in</strong>ed after<br />

the non-Abelian transformation, Eq.(3.73), is performed <strong>in</strong> the basis <strong>of</strong> transverse stand<strong>in</strong>g<br />

{<br />

waves, satisfy<strong>in</strong>gNeumannboundaryconditions, 1/ √ W, √ 2/ √ }<br />

W cos((nπ/W)(y −W/2))

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!