11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

42 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

x<br />

0 L SO 2 L SO<br />

S<br />

〈S〉 0<br />

y<br />

0<br />

−S 0<br />

√<br />

2S0<br />

0 〈S〉 z<br />

− √ 2S 0<br />

Figure 3.5: Persistent sp<strong>in</strong> helix solution <strong>of</strong> the sp<strong>in</strong>-diffusion equation for equal magnitude<br />

<strong>of</strong> l<strong>in</strong>ear Rashba and l<strong>in</strong>ear Dresselhaus coupl<strong>in</strong>g, Eq.(3.68).<br />

The condition for persistence is thus rather ˜α 1 = α 2 . This has been confirmed <strong>in</strong> a recent<br />

measurement (Ref. [KWO + 09]). The existence <strong>of</strong> such long-liv<strong>in</strong>g modes has an effect on<br />

the quantum corrections to the conductivity. In this case, ˜α 1 = α 2 = α 0 , there is only<br />

WL <strong>in</strong> 2D.[PP95, SKK + 08] In the next sections we will make use <strong>of</strong> the equivalence <strong>of</strong> the<br />

triplet sector <strong>of</strong> the Cooperon propagator and the sp<strong>in</strong>-diffusion propagator <strong>in</strong> quantum<br />

wires with appropriate boundary conditions and show how long-liv<strong>in</strong>g modes may change<br />

the quantum corrections to the conductivity.<br />

3.4 Solution <strong>of</strong> the Cooperon Equation <strong>in</strong> Quantum Wires<br />

3.4.1 Quantum Wires with <strong>Sp<strong>in</strong></strong>-Conserv<strong>in</strong>g Boundaries<br />

The conductivity <strong>of</strong> quantum wires with width W < L ϕ = √ D e τ ϕ is without SO<br />

<strong>in</strong>teraction dom<strong>in</strong>ated by the transverse zero-mode Q y = 0. This yields the quasi-1D WL<br />

correction.[KCCC92] However, <strong>in</strong> the presence <strong>of</strong> SO <strong>in</strong>teraction, sett<strong>in</strong>g simply Q y = 0 is<br />

not correct. If we consider sp<strong>in</strong>-conserv<strong>in</strong>g boundaries, rather one has to solve the Cooperon<br />

equation with the follow<strong>in</strong>g modifiedboundaryconditions as derived <strong>in</strong> AppendixC.2(Refs.<br />

[AF01, MFA02]):<br />

(− τ D e<br />

n·〈v F [γ g B SO (k)·S]〉−i∂ n<br />

)<br />

C| ∂S = 0, (3.70)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!