11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems 39<br />

<strong>Sp<strong>in</strong></strong> Diffusion<br />

We can get a better understand<strong>in</strong>g <strong>of</strong> the sp<strong>in</strong> relaxation <strong>in</strong>duced by the SO<br />

coupl<strong>in</strong>g and impurity scatter<strong>in</strong>g by consider<strong>in</strong>g directly the sp<strong>in</strong>-diffusion equation for the<br />

expectation value <strong>of</strong> the electron-sp<strong>in</strong> vector [MC00]<br />

s(r,t) = 1 2 〈ψ† (r,t)σψ(r,t)〉, (3.53)<br />

whereψ † = (ψ † + ,ψ† − )isthetwo-component vector <strong>of</strong> theup(+), anddown(-) sp<strong>in</strong>fermionic<br />

creation operators and ψ the two-component vector <strong>of</strong> annihilation operators, respectively.<br />

In the presence <strong>of</strong> SO coupl<strong>in</strong>g, the sp<strong>in</strong>-diffusion equation becomes for v F | ∇ r s |≪ 1/τ,<br />

0 = ∂ t s+ 1ˆτ s<br />

s−D e ∇ 2 s+γ g (B−2τ〈(∇v F )B SO (p)〉)×s (3.54)<br />

and we def<strong>in</strong>e accord<strong>in</strong>gly the sp<strong>in</strong>-diffusion Hamiltonian H SD<br />

0 = ∂ t s+D e H SD s, (3.55)<br />

where the matrix elements <strong>of</strong> the sp<strong>in</strong> relaxation terms are given by [DP71b, DP71c]<br />

(Appendix C.3)<br />

1<br />

= τγ 2 (<br />

g 〈B SO (k) 2 〉δ ij −〈B SO (k) i B SO (k) j 〉 ) . (3.56)<br />

(ˆτ s ) ij<br />

For pure Rashba SO <strong>in</strong>teraction, the sp<strong>in</strong>-diffusion operator H SD is <strong>in</strong> momentum representation[SDGR06]<br />

⎛<br />

⎞<br />

1<br />

D eτ s<br />

+k 2 0 −i2Q SO k x<br />

H SD = ⎜ 1<br />

⎝ 0<br />

D eτ s<br />

+k 2 −i2Q SO k y<br />

⎟<br />

⎠ , (3.57)<br />

2<br />

i2Q SO k x i2Q SO k y D eτ s<br />

+k 2<br />

with 1/D e τ s = Q 2 SO. In the 2D case, diagonalization yields the eigenvalues<br />

E 0 (k) = k 2 + 1 , (3.58)<br />

D e τ s<br />

√<br />

E ± (k) = k 2 + 3 1<br />

± 1 1+16 k2<br />

2D e τ s 2D e τ s Q 2 . (3.59)<br />

SO<br />

Thus, we f<strong>in</strong>d that the spectrum <strong>of</strong> the sp<strong>in</strong>-diffusion operator and the one <strong>of</strong> the triplet<br />

Cooperon Hamiltonian are identical <strong>in</strong> 2D (Ref. [MCW97]) as long as time-reversal symmetry<br />

is not broken. This confirms that antilocalization <strong>in</strong> the presence <strong>of</strong> SO <strong>in</strong>teraction,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!