11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 Chapter 2: <strong>Sp<strong>in</strong></strong> <strong>Dynamics</strong>: Overview and Analysis <strong>of</strong> 2D Systems<br />

averag<strong>in</strong>g their product yields a f<strong>in</strong>ite value, s<strong>in</strong>ce ∆x depends on the momentum at time t,<br />

k(t), yield<strong>in</strong>g 〈∆xB SOi (k(t))〉 = 2∆t〈v F B SOi (k(t))〉, where 〈...〉 denotes the average over<br />

the Fermi surface. This way, we can also evaluate the average <strong>of</strong> the sp<strong>in</strong>-orbit term <strong>in</strong><br />

Eq.(2.22), expanded to first order <strong>in</strong> ∆x, and get, substitut<strong>in</strong>g ∆t → τ the sp<strong>in</strong> diffusion<br />

equation,<br />

∂s<br />

∂t = −B×s+D e∇ 2 s+2τ〈(∇v F )B SO (p)〉×s− 1ˆτ s<br />

s, (2.23)<br />

<strong>Sp<strong>in</strong></strong> polarized electrons <strong>in</strong>jected <strong>in</strong>to the sample spread diffusively, and their sp<strong>in</strong> polarization,<br />

while spread<strong>in</strong>g diffusively as well, decays <strong>in</strong> amplitude exponentially <strong>in</strong> time. S<strong>in</strong>ce,<br />

between scatter<strong>in</strong>g events the sp<strong>in</strong>s precess around the sp<strong>in</strong>-orbit fields, one expects also an<br />

oscillation <strong>of</strong> the polarization amplitude <strong>in</strong> space. One can f<strong>in</strong>d the spatial distribution <strong>of</strong><br />

the sp<strong>in</strong> density which is the solution <strong>of</strong> Eq.(2.23) with the smallest decay rate Γ s . As an<br />

example, the solution for l<strong>in</strong>ear Rashba coupl<strong>in</strong>g is, [SDGR06]<br />

s(x,t) = (ê q cos(qx)+Aê z s<strong>in</strong>(qx))e −t/τs , (2.24)<br />

with 1/τ s = 7/16τ s0 where 1/τ s0 = 2τkF 2α2 2 and where the amplitude <strong>of</strong> the momentum q is<br />

determ<strong>in</strong>ed by D e q 2 = 15/16τ s0 , and A = 3/ √ 15, and ê q = q/q. This solution is plotted <strong>in</strong><br />

Fig.2.4 for ê q = (1,1,0)/ √ 2. We will derive this solution <strong>in</strong> the context <strong>of</strong> local corrections<br />

to the static conductivity, Chapter3. Thereby we show that by add<strong>in</strong>g Dresselhaus SOC it<br />

will be even possible to create persistent solutions.<br />

InFig.2.5 weplotthel<strong>in</strong>early <strong>in</strong>dependentsolution obta<strong>in</strong>ed by <strong>in</strong>terchang<strong>in</strong>g cos ands<strong>in</strong><strong>in</strong><br />

Eq.(2.24), with the sp<strong>in</strong> po<strong>in</strong>t<strong>in</strong>g <strong>in</strong> z-direction, <strong>in</strong>itially. We choose ê q = ê x . Comparison<br />

with the ballistic precession <strong>of</strong> the sp<strong>in</strong>, Fig 2.5 shows that the period <strong>of</strong> precession is<br />

enhanced by the factor 4/ √ 15 <strong>in</strong> the diffusive wire, and that the amplitude <strong>of</strong> the sp<strong>in</strong><br />

density is modulated, chang<strong>in</strong>g from 1 to A = 3/ √ 15.<br />

Inject<strong>in</strong>g a sp<strong>in</strong>-polarized electron at one po<strong>in</strong>t, say x = 0, its density spreads<br />

the same way it does without sp<strong>in</strong>-orbit <strong>in</strong>teraction, ρ(r,t) = exp(−r 2 /4D e t)/(4πD e t) dD/2 ,<br />

where r is the distance to the <strong>in</strong>jection po<strong>in</strong>t. However, the decay <strong>of</strong> the sp<strong>in</strong> density is<br />

periodically modulated as a function <strong>of</strong> 2π √ 15/16r/L SO .[Fro01] The sp<strong>in</strong>-orbit <strong>in</strong>teraction<br />

together with the scatter<strong>in</strong>g from impurities is also a source <strong>of</strong> sp<strong>in</strong> relaxation, as we discuss<br />

<strong>in</strong> the next Section together with other mechanisms <strong>of</strong> sp<strong>in</strong> relaxation. We can f<strong>in</strong>d the<br />

classical sp<strong>in</strong> diffusion current <strong>in</strong> the presence <strong>of</strong> sp<strong>in</strong>-orbit <strong>in</strong>teraction, <strong>in</strong> a similar way<br />

as one can derive the classical diffusion current: The current at the position r is a sum

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!