Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University Itinerant Spin Dynamics in Structures of ... - Jacobs University

jacobs.university.de
from jacobs.university.de More from this publisher
11.03.2014 Views

144 Appendix C: Cooperon and Spin Relaxation C n = 1 ( n ) 2 2 +K2 x + 2P 2 −n 2 sin(Pπ) − , P 2(n+P)(n−P) Pπ (C.49) D n = − 1 4 − n 2 −2P 2 sin(Pπ) , (C.50) 4(n−P)(n+P) Pπ √ 2(2n 2 −P 2 ) F n = 2 ( n− P 2)( n+ P ) sin(Pπ 2 ) . (C.51) Pπ 2 2 For n ≠ n ′ , the spin matrices have the form ⎛ 〈Q x ,n | ˜H c | Q x ,n ′ 〉 = Q2 SO π P ⎜ ⎝ 0 0 0 0 0 a ig d 0 −ig b if 0 d −if c ⎞ . (C.52) ⎟ ⎠ Calculating the matrix elements for n = 0,n ′ > 0, we get ⎛( a = √ 1 1+(−1) n′) ( sin(Pπ) 4 −1+(−1) n′) K x cos ( ) ⎞ Pπ 2 ⎝ 2 (n ′ −2P)(n ′ − ⎠, +2P) (n ′ −P)(n ′ (C.53) +P) √ ( 2 1+(−1) n′) sin(Pπ) b = − (n ′ −2P)(n ′ , (C.54) +2P) ⎛ ( c = √ 1 ⎝ 4 −1+(−1) n′) K x cos ( ) ( Pπ 2 1+(−1) n′) ⎞ sin(Pπ) 2 (n ′ −P)(n ′ + ⎠, +P) (n ′ −2P)(n ′ (C.55) +2P) d = ( 1+(−1) n′) sin(Pπ) √ 2(n ′ −2P)(n ′ +2P) , ⎛( −1+(−1) n′) ( cos(Pπ) f = 2⎝ 2(n ′ −2P)(n ′ − +2P) ⎛( −1+(−1) n′) ( cos(Pπ) g = −2⎝ 2(n ′ −2P)(n ′ + +2P) 1+(−1) n′) K x sin ( Pπ 2 (n ′ −P)(n ′ +P) 1+(−1) n′) K x sin ( Pπ 2 (n ′ −P)(n ′ +P) ) ⎞ (C.56) ⎠, (C.57) ) ⎞ ⎠. (C.58)

Appendix C: Cooperon and Spin Relaxation 145 And for n > 0,n ′ > 0, we get ( ) Pπ a = R {2,+} sin(Pπ)+4K x R {1,−} cos , (C.59) 2 b = −2R {2,+} sin(Pπ), (C.60) ( ) Pπ c = R {2,+} sin(Pπ)−4K x R {1,−} cos , (C.61) 2 d = R {2,+} sin(Pπ), (C.62) f = − √ ( ( )) Pπ 2 R {2,−} cos(Pπ)+2K x R {1,+} sin , (C.63) g = √ 2 ( R {2,−} cos(Pπ)−2K x R {1,+} sin 2 ( Pπ 2 )) , (C.64) with the functions R {1,±} = R {2,±} = ( 1±(−1) n+n′) (n 2 +n ′2 −P 2 ) ((n−n ′ )−P)((n+n ′ )−P)((n−n ′ )+P)((n+n ′ )+P) , ( 1±(−1) n+n′) (n 2 +n ′2 −(2P) 2 ) ((n−n ′ )−2P)((n+n ′ )−2P)((n−n ′ )+2P)((n+n ′ )+2P) . (C.66) (C.65)

Appendix C: Cooperon and <strong>Sp<strong>in</strong></strong> Relaxation 145<br />

And for n > 0,n ′ > 0, we get<br />

( ) Pπ<br />

a = R {2,+} s<strong>in</strong>(Pπ)+4K x R {1,−} cos , (C.59)<br />

2<br />

b = −2R {2,+} s<strong>in</strong>(Pπ),<br />

(C.60)<br />

( ) Pπ<br />

c = R {2,+} s<strong>in</strong>(Pπ)−4K x R {1,−} cos , (C.61)<br />

2<br />

d = R {2,+} s<strong>in</strong>(Pπ),<br />

(C.62)<br />

f = − √ (<br />

( )) Pπ<br />

2 R {2,−} cos(Pπ)+2K x R {1,+} s<strong>in</strong> , (C.63)<br />

g =<br />

√<br />

2<br />

(<br />

R {2,−} cos(Pπ)−2K x R {1,+} s<strong>in</strong><br />

2<br />

( Pπ<br />

2<br />

))<br />

, (C.64)<br />

with the functions<br />

R {1,±} =<br />

R {2,±} =<br />

(<br />

1±(−1) n+n′) (n 2 +n ′2 −P 2 )<br />

((n−n ′ )−P)((n+n ′ )−P)((n−n ′ )+P)((n+n ′ )+P) ,<br />

(<br />

1±(−1) n+n′) (n 2 +n ′2 −(2P) 2 )<br />

((n−n ′ )−2P)((n+n ′ )−2P)((n−n ′ )+2P)((n+n ′ )+2P) . (C.66)<br />

(C.65)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!