11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

142 Appendix C: Cooperon and <strong>Sp<strong>in</strong></strong> Relaxation<br />

duetodephas<strong>in</strong>gc 1 = 1/D e Q 2 SO τ ϕ andelasticscatter<strong>in</strong>gc 2 = 1/D e Q 2 SO τ determ<strong>in</strong>ewhether<br />

we have a positive or negative correction. Integrat<strong>in</strong>g over all possible wave vectors K =<br />

k/Q SO <strong>in</strong> the case without boundaries yields<br />

∆σ = − 2e2<br />

2π<br />

∫ √<br />

1 c2<br />

(<br />

(2π) 2 dK(2πK)<br />

0<br />

1<br />

+<br />

E T+ (Q SO K)/Q 2 +<br />

SO<br />

+c 1<br />

1<br />

1<br />

−<br />

E S (Q SO K)/Q 2 +<br />

SO<br />

+c 1 E T0 (Q SO K)/Q 2 SO<br />

+c 1<br />

)<br />

1<br />

E T− (Q SO K)/Q 2 SO<br />

+c 1<br />

(C.38)<br />

= − 2e2<br />

2π<br />

⎧<br />

⎪⎨<br />

arctan<br />

+<br />

⎪⎩<br />

⎧<br />

⎪⎨<br />

arctan<br />

+<br />

⎪⎩<br />

(− 1 2 ln (<br />

1+ c 2<br />

(<br />

(<br />

c 1<br />

)<br />

5 √ 1<br />

4 7<br />

16 +c 1<br />

3 √ 1<br />

4 7<br />

16 +c 1<br />

)<br />

√<br />

)<br />

√<br />

+ 1 2 ln (<br />

1+ c 2<br />

−arctan<br />

7<br />

16 +c 1<br />

+arctan<br />

7<br />

16 +c 1<br />

1+c 1<br />

)<br />

( √<br />

1<br />

16 +c 2+1<br />

√<br />

7<br />

16 +c 1<br />

( √ 1<br />

16 +c 2−1<br />

√<br />

7<br />

16 +c 1<br />

)<br />

)<br />

⎛<br />

− 1 2 ln ⎝<br />

⎛<br />

− 1 2 ln ⎝<br />

2+c 1<br />

√<br />

3<br />

2 +c 1 +c 2 +2<br />

1+c 1<br />

√<br />

3<br />

2 +c 1 +c 2 −2<br />

1<br />

16 +c 2<br />

1<br />

16 +c 2<br />

⎫<br />

⎞<br />

⎪⎬<br />

⎠<br />

⎪⎭<br />

⎫<br />

⎞<br />

⎪⎬<br />

⎠<br />

). (C.39)<br />

⎪⎭<br />

As an example, we choose parameters which have been used <strong>in</strong> the case <strong>of</strong> boundaries,<br />

1/D e Q 2 τ SO ϕ = 0.08,1/D e Q 2 τ = 4: SO ∆σ/(2e2 /2π) = −0.29. The exact calculation <strong>of</strong> wide<br />

wires (Q SO W > 1) approaches this limit as can be seen <strong>in</strong> Fig.3.11. The weak localization<br />

correction <strong>in</strong> 2D as function <strong>of</strong> these<br />

C.5 Exact Diagonalization<br />

We write the <strong>in</strong>verse Cooperon propagator, the Hamiltonian ˜H c , <strong>in</strong> the representation<br />

<strong>of</strong> the longitud<strong>in</strong>al momentum Q x , the quantized transverse momentum with quantum<br />

numbern ∈ N, and <strong>in</strong> the representation <strong>of</strong> s<strong>in</strong>glet and triplet states with quantum numbers<br />

S,m, where we note that ˜H c is diagonal <strong>in</strong> Q x ,<br />

〈Q x ,n,S,m | ˜H c | Q x ,n ′ ,S ′ ,m ′ 〉. (C.40)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!