Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University Itinerant Spin Dynamics in Structures of ... - Jacobs University

jacobs.university.de
from jacobs.university.de More from this publisher
11.03.2014 Views

140 Appendix C: Cooperon and Spin Relaxation where n is the vector normal to the boundary. Noting the relation between the spindiffusion equation in the s i representation and the triplet components of the Cooperon density ˜s i ({|⇈〉,|⇉〉,|〉}), Eq.(3.60), U CD (ǫ ijk B SO,j ) i=1..3,k=1..3 U † CD = −i(〈˜s i |B SO ·S|˜s k 〉) i=1..3,k=1..3 , (C.24) where the matrix U CD is given by Eq.(3.61), we can thereby transform the boundary condition for the spin-diffusion current, Eq.(C.23), to the triplet components of the Cooperon density ˜s i , 0 = n·j˜si | y=±W/2 . (C.25) Requiring also that the charge density is vanishing normal to the transverse boundaries, which transforms into the condition −i∂ n˜ρ| Surface = 0 for the singlet component of the Cooperon density ˜ρ, we finally get the boundary conditions for the Cooperon without external magnetic field, Eq.(3.70), (− τ D e n·〈v F [B SO (k)·S]〉−i∂ n ) C| Surface = 0. (C.26) The last expression can be rewritten using the effective vector potential A S , Eq.(3.43), (n·2eA S −i∂ n )C| Surface = 0. (C.27) In the case of Rashba and linear and cubic Dresselhaus SO coupling in (001) systems, we get D e τ 2eA S = −〈v F (B SO (k)·S)〉 = v 2 Fm e ⎛ ⎝ −(α 1 − γ D(m ev F ) 2 4 ) −α 2 α 2 α 1 − γ D(m ev F ) 2 4 C.3 Relaxation Tensor ⎞ ⎠.S. (C.28) To connect the effective vector potential A S with the spin relaxation tensor, we notice that ˆτ can be rewritten in the following way: 1 ˆτ s = τ(〈B SO (k) 2 〉δ ij −〈B SO (k) i B SO (k) j 〉) i=1..3,j=1..3 (C.29)

Appendix C: Cooperon and Spin Relaxation 141 using U CD , Eq.(3.60), = τU † CD{〈B SO (k) x 〉S 2 x +〈B SO(k) y 〉S 2 y +〈B SO (k) x B SO (k) y 〉(S x S y +S y S x )}U CD (C.30) = τU † CD〈(B SO (k).S) 2 〉U CD (C.31) = τ vF 2 U † CD〈(v F B SO (k).S) 2 〉U CD . (C.32) Because τ vF 2 〈(v F [B SO (k).S]) 2 〉 = 2τ vF 2 〈(v F [B SO (k).S])〉 2 (C.33) is true for linear Rashba and linear Dresselhaus SO coupling but, in general, false if cubicin-k terms are included in the SO field, we have to write τ〈(B SO (k).S) 2 〉 = 2τ vF 2 〈(v F B SO (k).S)〉 2 +ct (C.34) so that we conclude 1 ˆτ s = U † CD(D e (2eA S ) 2 +ct)U CD (C.35) with the separated cubic part ct = D e m 2 eE 2 F γ2 D (S2 x+S 2 y). This reflects nothing but the fact that the effective SO Zeeman term in Eq.(3.32) can only be rewritten as a vector potential A S when the SO coupling is linear in momentum. As an example we assume a very general Cooperon that means the growth direction of the material and the SO coupling should be very general. We set (2eA S ) 2 +H γ = (α 11 S x +α 21 S y +α 31 S z ) 2 +(α 12 S x +α 22 S y +α 32 S z ) 2 +α 4 S 2 z (C.36) After the transformation we get ⎛ ⎞ α 2 21 1 ˆτ = 22 +α2 31 +α2 32 +α 4 −α 11 α 21 −α 12 α 22 −α 11 α 31 −α 12 α 32 ⎜ ⎝ −α 11 α 21 −α 12 α 22 α 2 11 +α2 12 +α2 31 +α2 32 +α 4 −α 21 α 31 −α 22 α 32 ⎟ ⎠ . −α 11 α 31 −α 12 α 32 −α 21 α 31 −α 22 α 32 α 2 11 +α2 12 +α2 21 +α2 22 (C.37) C.4 Weak Localization Correction in 2D In contrast to the case where we have a wire with a finite width, we can calculate the weak localization correction to the conductivity analytically in the 2D case. The cutoffs

Appendix C: Cooperon and <strong>Sp<strong>in</strong></strong> Relaxation 141<br />

us<strong>in</strong>g U CD , Eq.(3.60),<br />

= τU † CD{〈B SO (k) x 〉S 2 x +〈B SO(k) y 〉S 2 y<br />

+〈B SO (k) x B SO (k) y 〉(S x S y +S y S x )}U CD<br />

(C.30)<br />

= τU † CD〈(B SO (k).S) 2 〉U CD (C.31)<br />

= τ<br />

vF<br />

2 U † CD〈(v F B SO (k).S) 2 〉U CD .<br />

(C.32)<br />

Because<br />

τ<br />

vF<br />

2 〈(v F [B SO (k).S]) 2 〉 = 2τ<br />

vF<br />

2 〈(v F [B SO (k).S])〉 2 (C.33)<br />

is true for l<strong>in</strong>ear Rashba and l<strong>in</strong>ear Dresselhaus SO coupl<strong>in</strong>g but, <strong>in</strong> general, false if cubic<strong>in</strong>-k<br />

terms are <strong>in</strong>cluded <strong>in</strong> the SO field, we have to write<br />

τ〈(B SO (k).S) 2 〉 = 2τ<br />

vF<br />

2 〈(v F B SO (k).S)〉 2 +ct<br />

(C.34)<br />

so that we conclude<br />

1<br />

ˆτ s<br />

= U † CD(D e (2eA S ) 2 +ct)U CD<br />

(C.35)<br />

with the separated cubic part ct = D e m 2 eE 2 F γ2 D (S2 x+S 2 y). This reflects noth<strong>in</strong>g but the fact<br />

that the effective SO Zeeman term <strong>in</strong> Eq.(3.32) can only be rewritten as a vector potential<br />

A S when the SO coupl<strong>in</strong>g is l<strong>in</strong>ear <strong>in</strong> momentum.<br />

As an example we assume a very general Cooperon that means the growth direction <strong>of</strong> the<br />

material and the SO coupl<strong>in</strong>g should be very general. We set<br />

(2eA S ) 2 +H γ = (α 11 S x +α 21 S y +α 31 S z ) 2 +(α 12 S x +α 22 S y +α 32 S z ) 2 +α 4 S 2 z<br />

(C.36)<br />

After the transformation we get<br />

⎛<br />

⎞<br />

α 2 21<br />

1<br />

ˆτ = 22 +α2 31 +α2 32 +α 4 −α 11 α 21 −α 12 α 22 −α 11 α 31 −α 12 α 32<br />

⎜<br />

⎝ −α 11 α 21 −α 12 α 22 α 2 11 +α2 12 +α2 31 +α2 32 +α 4 −α 21 α 31 −α 22 α 32<br />

⎟<br />

⎠ .<br />

−α 11 α 31 −α 12 α 32 −α 21 α 31 −α 22 α 32 α 2 11 +α2 12 +α2 21 +α2 22<br />

(C.37)<br />

C.4 Weak Localization Correction <strong>in</strong> 2D<br />

In contrast to the case where we have a wire with a f<strong>in</strong>ite width, we can calculate<br />

the weak localization correction to the conductivity analytically <strong>in</strong> the 2D case. The cut<strong>of</strong>fs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!