11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix B: L<strong>in</strong>ear Response 133<br />

<strong>in</strong> comb<strong>in</strong>ation with 〈[J,P]〉 = Tr([P,ρ 0 ]J). We get<br />

σ µν (ω) = V<br />

∫ β<br />

0<br />

dx<br />

∫ ∞<br />

0<br />

dtTr(ρ 0 J ν (0)J µ (t+ix))e i(ω+iη)t ,<br />

us<strong>in</strong>g (1/V)Ṗ = J, with the system volume V, β = 1/k BT and the density matrix<br />

ρ 0 = e−βH 0<br />

Tr(e −βH 0 )<br />

.<br />

(B.5)<br />

(B.6)<br />

Extract<strong>in</strong>g the time dependency <strong>of</strong> the current operator J µ D (t+ix) = ei(t+ix)H J µ e −i(t+ix)H<br />

and us<strong>in</strong>g the eigenvector basis {|i〉} we can write the conductivity tensor <strong>in</strong> the follow<strong>in</strong>g<br />

way<br />

σ µν (ω) = V<br />

∫ β<br />

0<br />

dx<br />

∫ ∞<br />

0<br />

dt ∑ 〈<br />

∣<br />

∣<br />

∣∣m<br />

〈m|J ν (0)|n〉 n∣e i(t+ix)En J µ e<br />

〉e −i(t+ix)Em i(ω+iη)t·<br />

m,n<br />

(B.7)<br />

·Tr(ρ 0 a † m a na † p a q).<br />

(B.8)<br />

We used H = ∑ m E ma † ma m . For the next step we need the identity<br />

Tr(ρ 0 a † ma n a † pa q ) = δ mq δ np f(E m )(1−f(E n )),<br />

(B.9)<br />

where f(E) is the Fermi distribution function.<br />

Pro<strong>of</strong>. The factor δ mq δ np is due to momentum conservation. The second part is yield by<br />

commutator relation<br />

Tr(ρ 0 a † ma n a † pa q ) = Tr(ρ 0 a † ma n (δ nm −a m a † n))<br />

(B.10)<br />

= Tr(ρ 0 (a † m a nδ nm −a † m a na m a † n )) (B.11)<br />

= Tr(ρ 0 (a † ma n δ nm −a † ma m a n a † n)) (B.12)<br />

= Tr(ρ 0 (a † m a nδ nm −a † m a m(1−a † n a n)) (B.13)<br />

= Tr(ρ 0 (a † ma n δ nm −n m (1−n n )). (B.14)<br />

Apply<strong>in</strong>g Eq.(B.9) to Eq.(B.7) and evaluat<strong>in</strong>g the <strong>in</strong>tegral over x we get<br />

σ µν (ω) = V<br />

∫ ∞<br />

0<br />

dt ∑ f(E m )(1−f(E n )) 1−e−β(En−Em)<br />

〈m|J ν |n〉〈n|J µ |m〉<br />

(E<br />

m,n<br />

n −E m )<br />

} {{ }<br />

f(Em)−f(En)<br />

En−Em<br />

·e it(ω+iη+En−Em) . (B.15)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!