11.03.2014 Views

on local galois representations attached to automorphic forms - IWR

on local galois representations attached to automorphic forms - IWR

on local galois representations attached to automorphic forms - IWR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ON LOCAL GALOIS REPRESENTATIONS<br />

ATTACHED TO AUTOMORPHIC FORMS<br />

A Thesis<br />

Submitted <strong>to</strong> the<br />

Tata Institute of Fundamental Research, Mumbai<br />

for the degree of Doc<strong>to</strong>r of Philosophy<br />

in Mathematics<br />

by<br />

VG NARASIMHA KUMAR CH<br />

School of Mathematics<br />

Tata Institute of Fundamental Research<br />

Mumbai<br />

November, 2010


DECLARATION<br />

This thesis is a presentati<strong>on</strong> of my original research work. Wherever c<strong>on</strong>tributi<strong>on</strong>s<br />

of others are involved, every effort is made <strong>to</strong> indicate this clearly, with due reference<br />

<strong>to</strong> the literature, and acknowledgement of collaborative research and discussi<strong>on</strong>s.<br />

The work was d<strong>on</strong>e under the guidance of Professor Eknath Ghate, at the Tata<br />

Institute of Fundamental Research, Mumbai.<br />

[VG Narasimha Kumar CH]<br />

In my capacity as supervisor of the candidate’s thesis, I certify that the above<br />

statements are true <strong>to</strong> the best of my knowledge.<br />

[Professor Eknath Ghate]<br />

Date:


C<strong>on</strong>tents<br />

1 Synopsis 11<br />

1.1 (p, p)-Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic <strong>forms</strong> <strong>on</strong> GL n . . . 11<br />

1.2 2-adic Hida theory and applicati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 14<br />

2 Introducti<strong>on</strong> 17<br />

3 Modular <strong>forms</strong> and Hecke algebras 25<br />

3.1 Modular <strong>forms</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

3.2 Hecke algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

3.2.1 Hecke opera<strong>to</strong>rs for Γ 1 (N) . . . . . . . . . . . . . . . . . . . . . . . 27<br />

3.2.2 Old<strong>forms</strong> and New<strong>forms</strong> . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

3.2.3 Complex multiplicati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

4 Galois Representati<strong>on</strong>s and Au<strong>to</strong>morphic Forms <strong>on</strong> GL n 31<br />

4.1 Motivati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

4.2 p-adic Hodge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

4.2.1 F<strong>on</strong>taine’s rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

4.2.2 Newt<strong>on</strong> and Hodge numbers . . . . . . . . . . . . . . . . . . . . . 34<br />

4.2.3 Potentially semistable representati<strong>on</strong>s . . . . . . . . . . . . . . . . 35<br />

4.2.4 Weil-Deligne representati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 36<br />

4.3 The case of GL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

4.3.1 Proof of Wiles’ theorem . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

4.4 The case of GL n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

4.4.1 Local Langlands corresp<strong>on</strong>dence . . . . . . . . . . . . . . . . . . . 40<br />

4.4.2 Au<strong>to</strong>morphic <strong>forms</strong> <strong>on</strong> GL n . . . . . . . . . . . . . . . . . . . . . . 42<br />

4.4.3 Galois representati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

4.4.4 A variant, following [CHT08] . . . . . . . . . . . . . . . . . . . . . 43<br />

4.4.5 Newt<strong>on</strong> and Hodge filtrati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 44<br />

4.4.6 Ordinary and quasi-ordinary representati<strong>on</strong>s . . . . . . . . . . . . 44<br />

5 On Local Galois Representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> Au<strong>to</strong>morphic Forms 45<br />

5.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

5.2 Principal series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

5.2.1 Spherical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

5.2.2 Ramified principal series case . . . . . . . . . . . . . . . . . . . . . 48<br />

5.3 Steinberg case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

5


5.3.1 Unramified twist of Steinberg . . . . . . . . . . . . . . . . . . . . . 49<br />

5.3.2 Ramified twist of Steinberg . . . . . . . . . . . . . . . . . . . . . . 51<br />

5.4 Supercuspidal ⊗ Steinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

5.4.1 m = 2 and n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

5.4.2 τ unramified supercuspidal of dim m ≥ 2 and n ≥ 2 . . . . . . . . 56<br />

5.4.3 General case: m ≥ 2 and n ≥ 2 . . . . . . . . . . . . . . . . . . . . 58<br />

5.5 General Weil-Deligne representati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 62<br />

5.5.1 Sum of twisted Steinberg . . . . . . . . . . . . . . . . . . . . . . . 62<br />

5.5.2 General ordinary case . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

5.6 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

6 2-adic Hida theory and Applicati<strong>on</strong>s 69<br />

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

6.1.1 Group and sheaf cohomology . . . . . . . . . . . . . . . . . . . . . 70<br />

6.1.2 Hecke acti<strong>on</strong> <strong>on</strong> the cohomology groups . . . . . . . . . . . . . . . 71<br />

6.1.3 Geometry of Riemann surfaces . . . . . . . . . . . . . . . . . . . . 72<br />

6.1.4 Hida’s idempotent opera<strong>to</strong>r . . . . . . . . . . . . . . . . . . . . . . 72<br />

6.2 Relati<strong>on</strong>s between cohomology groups with coefficients . . . . . . . . . . . 73<br />

6.3 Main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

6.4 C<strong>on</strong>trol theorem for cohomology . . . . . . . . . . . . . . . . . . . . . . . 77<br />

6.5 Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br />

6.6 C<strong>on</strong>stant rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

6.7 Λ-adic Hecke algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

6.8 C<strong>on</strong>trol theorem for ordinary Hecke algebras . . . . . . . . . . . . . . . . 89<br />

6.9 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br />

6.9.1 2-adic Λ-adic <strong>forms</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

6.9.2 Tame level N = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

6.9.3 Uniqueness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

6.10 An applicati<strong>on</strong> <strong>to</strong> Galois representati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . 94<br />

6.10.1 Buzzard’s result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

6.10.2 Λ-adic Galois representati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 96<br />

6.10.3 Local splitting for Λ-adic <strong>forms</strong> . . . . . . . . . . . . . . . . . . . . 97<br />

6.10.4 Descending <strong>to</strong> the classical situati<strong>on</strong> . . . . . . . . . . . . . . . . . 98<br />

A A 2-adic C<strong>on</strong>trol Theorem for Modular Curves 99<br />

A.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

A.2 Notati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

A.3 Hecke opera<strong>to</strong>rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

A.4 Ordinary parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

A.5 Iwasawa modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

A.6 Limits of cohomology modules . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

6


This thesis is dedicated <strong>to</strong><br />

my parents for their endless Love, Encouragement, and Belief.


ACKNOWLEDGEMENTS<br />

This thesis would not have been possible without the warm encouragement and the guidance<br />

of my supervisor Prof. Eknath Ghate. I owe my deepest gratitude <strong>to</strong> him for his<br />

patience and care. During all these years, I learnt not <strong>on</strong>ly mathematics but also many<br />

other things which made me a better human being.<br />

I take this opportunity <strong>to</strong> thank all the members of the School of Mathematics for<br />

their patience and help.<br />

I wish <strong>to</strong> thank Prof. S. Bhattacharya, Prof. N. Nitsure, and Prof. V. Srinivas for the<br />

excellent first year graduate courses. I would also like <strong>to</strong> thank Prof. S. M. Bhatwadekar,<br />

Prof. R. V. Gurjar, and Prof. D. Prasad for the sec<strong>on</strong>d year graduate courses.<br />

I wish <strong>to</strong> thank Prof. N. Nitsure not <strong>on</strong>ly for his help at the beginning of my Ph. D.,<br />

but also for keeping an eye <strong>on</strong> me throughout. Over the years, I gradually unders<strong>to</strong>od<br />

Prof. V. Srinivas’s thoughtful comments about life and mathematics. I really appreciate<br />

them now.<br />

I wish <strong>to</strong> express my deep-felt regards <strong>to</strong> Prof. D. Prasad for the mathematical<br />

discussi<strong>on</strong>s at TIFR and also at Number theory seminars at IIT, Mumbai. I also thank<br />

him for his encouragement and support at various stages.<br />

I would like <strong>to</strong> thank Prof. R. Sujatha for various discussi<strong>on</strong>s at TIFR and also during<br />

workshops at Chennai and Guwahati. I would also like <strong>to</strong> thank Prof. C. S. Rajan and<br />

Prof. Saradha for discussing mathematics <strong>on</strong> several occasi<strong>on</strong>s.<br />

I was surprised by the amount of energy and enthusiasm of Prof. M. S. Raghunathan<br />

even at this age. I thank him for explaining various mathematical c<strong>on</strong>cepts, their origins,<br />

and many more things. I also thank Prof. Ravi Rao for being very co-operative at many<br />

places, and also for providing helpful suggesti<strong>on</strong>s whenever needed.<br />

I wish <strong>to</strong> thank Prof. H. Hida for answering several of my questi<strong>on</strong>s patiently at several<br />

stages of my Ph. D. Thanks <strong>to</strong> Prof. K. Buzzard and Prof. M. Emert<strong>on</strong> for their helpful<br />

e-mail communicati<strong>on</strong>s at the beginning of my Ph. D. I would like <strong>to</strong> thank Prof. U. K.<br />

Anandavardhanan and Prof. R. Raghunathan for making me a part of various Number<br />

theory activities at IIT, Mumbai. Special thanks <strong>to</strong> Prof. U. K. Anandavardhanan for<br />

being friendly and helpful since the beginning of my Ph. D.<br />

This work was partly completed during a visit <strong>to</strong> Université Paris-Sud-11, Paris supported<br />

by the ARCUS program (Régi<strong>on</strong> Ile-de-France). I am grateful <strong>to</strong> Prof. L. Clozel<br />

and Prof. J. Tilouine for arranging the visit. I would also like <strong>to</strong> thank Hausdorff Research<br />

Institute for Mathematics, B<strong>on</strong>n, where part of this work was carried out during<br />

the Trimester Program “Algebra and Number Theory”.<br />

I would like <strong>to</strong> thank Profs. C. Breuil, D. A. Elwood, A. Mézard, M-F. Vignéras, and<br />

J-P. Wintenberger, the organizers of the “Galois Trimester” at IHP, Paris for providing<br />

me a platform <strong>to</strong> talk <strong>to</strong> hundreds of mathematicians from all over the world. I benefitted<br />

from the various courses and the c<strong>on</strong>ferences held during the “Galois Trimester”.<br />

Words are inadequate in offering my thanks <strong>to</strong> my teacher Prof. M. Perisastri, whose<br />

influence first made mathematics interesting for me during my undergraduate days.<br />

I take this opportunity <strong>to</strong> thank all the members of Department of Mathematics and<br />

Statistics, University of Hyderabad. My special thanks <strong>to</strong> Prof. T. Amaranath, Prof. M.<br />

9


S. Datt, Prof. V. Kannan, Prof. C. Musili (late), Prof. V. Suresh, and Prof. R. Tand<strong>on</strong><br />

for their excellent courses at M. Sc., and also for their encouragement in pursuing further<br />

studies.<br />

I have benefitted from Mathematics Training and Talent Search, Advanced Foundati<strong>on</strong>al<br />

Schools and Advanced Instructi<strong>on</strong>al Schools. I thank all the organizers, especially<br />

Prof. S. Kumaresan, Prof. A. R. Shastri, and Prof. J. K. Verma, for c<strong>on</strong>ducting such<br />

perfect programs.<br />

I take this opportunity <strong>to</strong> thank my M. Sc. batchmates Ayyangar, Damodar, Devakar,<br />

Karthik, Keshav, Pratyusha, Preena, Sanjay, Siva, and Srikanth for their c<strong>on</strong>tinuous<br />

encouragement. I am also thankful <strong>to</strong> Prem, Shyam, Ved and Ranjana.<br />

I would like <strong>to</strong> thank all my friends at TIFR for making my stay enjoyable. I would<br />

specially like <strong>to</strong> thank Alok, Amala, Amit, Arati, Arijit, Arnab, Chandrasheel and Prachi,<br />

Debargha, Illangovan, Niraj, R<strong>on</strong>nie, Sagar, Sandeep, Satadal, Shanta, Shilpa, Somnath,<br />

Souradeep, Sudarshan, Vaibhav, and Vivek from Mathematics, Argha, Aditya, Bhargav,<br />

Manjusha, Nikhil, Partha, Rakesh, Sangeetha, Sashi, and Satej from Physics, Atul, Krishnamohan,<br />

Manoj, and Ram from Chemistry, Aksar, Benny, Harshit, Kalyan, Mallickarjun,<br />

Santanu, and Saswata from Computer Science, Harinath, and Sunilnoothi from Biology.<br />

Each <strong>on</strong>e has some good qualities which are unique <strong>to</strong> them. I tried <strong>to</strong> acquire them but<br />

I succeeded <strong>on</strong>ly a bit.<br />

I am short of words <strong>to</strong> express my sincere thanks <strong>to</strong> Chandrakant, Naren HR, Narendra,<br />

Sarang, and Vijay for our l<strong>on</strong>g discussi<strong>on</strong>s <strong>on</strong> various things, and also for the amount<br />

of help that I <strong>to</strong>ok from them in, and out of, mathematics.<br />

I would like <strong>to</strong> thank all the members, particularly Mr. D. B. Sawant and Mr. K.<br />

G. Jayaraj, of the School of Mathematics office, for making all administrative issues so<br />

simple and smooth. Prof. P. A. Gastesi and Mr. V. Nandagopal deserve special thanks<br />

for their help with software related issues.<br />

Above all, I take immense pleasure in thanking my parents, whose support has been<br />

instrumental in overcoming several hurdles in my life, my siblings and their families for<br />

their extended support, and finally <strong>to</strong> my late grand mother and my late uncle Ch. S. P.<br />

Ranga Rao, who <strong>to</strong>ld me about many aspects of life during my childhood. I owe every<br />

bit of my existence <strong>to</strong> them.<br />

10


Chapter 1<br />

Synopsis<br />

My thesis c<strong>on</strong>sists of two parts, <strong>on</strong>e a general result and the other rather specific. The former<br />

deals with the irreducibility of the (p, p)-Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic<br />

representati<strong>on</strong>s of GL n (A Q ), for n ≥ 3, and the latter deals with the semisimplicity<br />

of the <strong>local</strong> Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> normalized ordinary cuspidal eigen<strong>forms</strong><br />

(n = 2), for the prime p = 2.<br />

The starting point for both parts of my thesis is the following theorem, which is due<br />

<strong>to</strong> Wiles. Let f = ∑ ∞<br />

n=1 a n(f)q n be a normalized cuspidal eigenform of weight k ≥ 2. Let<br />

K f denote the number field generated by the a n (f)’s. Let G p denote the decompositi<strong>on</strong><br />

group at ℘, where ℘ denotes the prime induced by a fixed embedding of ¯Q in ¯Q p . There<br />

exists a Galois representati<strong>on</strong><br />

ρ f,℘ : Gal( ¯Q/Q) → GL 2 (K f,℘ ),<br />

associated <strong>to</strong> f (and ℘). If f is ordinary at ℘, i.e., a p (f) is a ℘-adic unit, then the<br />

representati<strong>on</strong> ρ f,℘ | Gp , the restricti<strong>on</strong> of ρ f,℘ <strong>to</strong> G p , is reducible [Wil88]. Moreover, the<br />

powers of the p-adic cyclo<strong>to</strong>mic character χ cyc,p occurring in the semisimplificati<strong>on</strong> of<br />

ρ f,℘ | Gp are distinct and related <strong>to</strong> the weight k of f.<br />

The <strong>local</strong> representati<strong>on</strong> above is referred <strong>to</strong> as the (p, p)-Galois representati<strong>on</strong> <strong>attached</strong><br />

<strong>to</strong> f.<br />

1.1 (p, p)-Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic<br />

<strong>forms</strong> <strong>on</strong> GL n<br />

In the first part our thesis (cf. [GK1]), we study the <strong>local</strong> reducibility at p of the p-adic<br />

Galois representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ),<br />

assuming that the global representati<strong>on</strong> lives in a strictly compatible system of Galois<br />

representati<strong>on</strong>s. In the case that the underlying Weil-Deligne representati<strong>on</strong> is Frobenius<br />

semisimple and indecomposable, we analyze the reducibility completely. We use methods<br />

from p-adic Hodge theory, and work under a transversality assumpti<strong>on</strong> <strong>on</strong> the Hodge and<br />

Newt<strong>on</strong> filtrati<strong>on</strong>s in the corresp<strong>on</strong>ding filtered module.<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) with infinitesimal character<br />

H c<strong>on</strong>sisting of n-distinct integers. The source of (p, p)-Galois representati<strong>on</strong>s is<br />

the following c<strong>on</strong>jecture [Tay04, C<strong>on</strong>j. 3.4] which has been proved by Kottwitz, Clozel,<br />

11


and Harris-Taylor, for certain self-dual cuspidal π’s, and is also true when n = 2 and<br />

π = π(f), for f as above.<br />

C<strong>on</strong>jecture: Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) with infinitesimal<br />

character H c<strong>on</strong>sisting of integers. Then there is an irreducible geometric<br />

str<strong>on</strong>gly compatible system of l-adic representati<strong>on</strong>s with Hodge-Tate weights H, such<br />

that Local-Global compatibility holds for all primes p.<br />

For every prime p, the c<strong>on</strong>jecture provides a semisimple p-adic Galois representati<strong>on</strong><br />

ρ π,p : Gal( ¯Q/Q) → GL n ( ¯Q p ). The (p, p)-Galois representati<strong>on</strong> ρ π,p | Gp , the restricti<strong>on</strong> of<br />

ρ π,p <strong>to</strong> G p , is potentially semistable with Hodge-Tate weights H. By work of Colmez-<br />

F<strong>on</strong>taine, we can associate a crystal D(ρ π,p | Gp ) <strong>to</strong> ρ π,p | Gp . The study of the irreducibility<br />

of the representati<strong>on</strong> ρ π,p | Gp reduces <strong>to</strong> studying D(ρ π,p | Gp ), because the existence of an<br />

admissible submodule of D(ρ π,p | Gp ) is equivalent <strong>to</strong> the reducibility of the representati<strong>on</strong><br />

ρ π,p | Gp .<br />

Let WD(ρ π,p | Gp ) denote the (p, p)-Weil-Deligne representati<strong>on</strong> associated <strong>to</strong> ρ π,p | Gp .<br />

By the definiti<strong>on</strong> of a strictly compatible system, we know WD(ρ π,p | Gp ) from the (p, l)-<br />

Weil-Deligne representati<strong>on</strong> for l ≠ p. Deligne classified all such Frobenius semisimple<br />

(p, l)-Weil-Deligne representati<strong>on</strong>s as the direct sum of the indecomposable representati<strong>on</strong>s<br />

τ m ⊗ Sp(n), where τ m is an irreducible representati<strong>on</strong> of dimensi<strong>on</strong> m of W p , the<br />

Weil group of Q p , and Sp(n) denotes the Steinberg representati<strong>on</strong> of dimensi<strong>on</strong> n.<br />

Principal series<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL m (A Q ) with infinitesimal character<br />

given by the integers −β 1 > · · · > −β m , i.e., H = {β 1 , . . . , β m }. Suppose π p , the <strong>local</strong><br />

comp<strong>on</strong>ent of π at p, is an unramified principal series representati<strong>on</strong> with Satake parameters<br />

α 1 , . . . , α m . In this case, WD(ρ π,p | Gp ) is a direct sum of m unramified characters.<br />

Theorem 1.1.1. If π is ordinary at p, i.e., β i + v p (α i ) = 0 for all i, then ρ π,p | Gp ∼<br />

⎛<br />

α<br />

λ( 1<br />

) · χ −β ⎞<br />

1<br />

p vp(α 1 ) cyc,p ∗ · · · ∗<br />

α<br />

0 λ( 2<br />

) · χ −β 2<br />

p<br />

⎜<br />

vp(α 2 ) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ ,<br />

α<br />

0 0 0 λ( m<br />

)) · χ −βm<br />

p vp(αm) cyc,p<br />

where λ(x) is the unramified character taking arithmetic Frobenius <strong>to</strong> x. In particular,<br />

the representati<strong>on</strong> ρ π,p | Gp is ordinary.<br />

Indecomposable case<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL mn (A Q ) with infinitesimal character<br />

given by the integers −β 1 > · · · > −β mn . Suppose that the Weil-Deligne representati<strong>on</strong><br />

<strong>attached</strong> <strong>to</strong> π p is Frobenius semisimple and indecomposable, i.e.,<br />

WD(ρ π,p | Gp ) ∼ τ m ⊗ Sp(n).<br />

12


Twist of Steinberg<br />

When m = 1, we prove:<br />

Theorem 1.1.2. If π is ordinary at p, i.e., β 1 + v p (α) = 0, then the β i are necessarily<br />

c<strong>on</strong>secutive integers, and ρ π,p | Gp ∼<br />

⎛<br />

α<br />

χ 0 · λ( ) · χ −β ⎞<br />

1<br />

p vp(α) cyc,p ∗ · · · ∗<br />

α<br />

0 χ 0 · λ( ) · χ −β 1−1<br />

p<br />

⎜<br />

vp(α) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ ,<br />

α<br />

0 0 0 χ 0 · λ( ) · χ −β 1−(n−1)<br />

p vp(α) cyc,p<br />

where the character τ 1 decomposes as χ 0 · χ ′ , where χ 0 is the ramified part, and χ ′ is an<br />

unramified character mapping arithmetic Frobenius <strong>to</strong> α.<br />

If π is not ordinary at p, then the <strong>local</strong> representati<strong>on</strong> ρ π,p | Gp is irreducible.<br />

The last statement generalizes a well-known fact for n<strong>on</strong>-ordinary (p, p)-Galois representati<strong>on</strong>s<br />

<strong>attached</strong> <strong>to</strong> normalized cuspidal eigen<strong>forms</strong> (n = 2) at Steinberg primes.<br />

Supercuspidal ⊗ Steinberg<br />

Now we assume that τ m is an irreducible representati<strong>on</strong> corresp<strong>on</strong>ding <strong>to</strong> a supercuspidal<br />

representati<strong>on</strong> of GL m for m ≥ 2. Let E be the field of coefficients of the representati<strong>on</strong><br />

ρ π,p | Gp and let F be a finite Galois extensi<strong>on</strong> of Q p such that τ m | IF = 1. There is an<br />

equivalence of categories between (ϕ, N, F, E)-modules and Weil-Deligne representati<strong>on</strong>s.<br />

We write D τm and D Sp(n) for the (ϕ, N, F, E)-modules corresp<strong>on</strong>ding <strong>to</strong> τ m and Sp(n),<br />

respectively. We prove:<br />

Theorem 1.1.3. All the (ϕ, N, F, E)-submodules of D = D τm ⊗ D Sp(n) are of the form<br />

D τm ⊗ D Sp(r) , for some 1 ≤ r ≤ n.<br />

When τ m ∼ Ind Wp<br />

W χ, where χ is a character of W p m pm, we also write down the filtered<br />

(ϕ, N, F, E)-module with underlying Weil-Deligne representati<strong>on</strong> τ m , generalizing results<br />

in [GM09] for m = 2.<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL mn (A Q ) with infinitesimal character<br />

c<strong>on</strong>sisting of distinct integers {β i,j } i=n,j=m<br />

i=1,j=1<br />

ordered as follows: β i1 ,j 1<br />

> β i2 ,j 2<br />

, if<br />

i 1 > i 2 , or if i 1 = i 2 and j 1 > j 2 . Let t N (D τm ) denote the Newt<strong>on</strong> number of the<br />

(ϕ, N, F, E)-module D τm . Using Theorem 1.1.3, we prove:<br />

Theorem 1.1.4. Suppose that<br />

WD(ρ π,p | Gp ) ∼ τ m ⊗ Sp(n).<br />

If π is ordinary at p, i.e., t N (D τm ) = ∑ m<br />

j=1 β 1,j, then ρ π,p | Gp is reducible, in which case<br />

m = 1, τ 1 is a character, and ρ π,p | Gp is quasi-ordinary as in Theorem 1.1.2.<br />

If π is not ordinary at p, then ρ π,p | Gp is irreducible. In particular, when m ≥ 2, the<br />

representati<strong>on</strong> ρ π,p | Gp is always irreducible.<br />

The theorems above gives complete informati<strong>on</strong> about the reducibility of the (p, p)-<br />

Galois representati<strong>on</strong> in the indecomposable case.<br />

13


Decomposable case<br />

Suppose π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL N (A Q ) with infinitesimal character<br />

given by the integers −β 1 > · · · > −β N . Suppose that N = ∑ r<br />

i=1 m in i and<br />

WD(ρ π,p | Gp ) ∼ ⊕ r i=1 τ m i<br />

⊗ Sp(n i ). In this case, we can also define p-ordinariness in terms<br />

of the t N (D τi )’s and β i ’s and show that there exists an admissible flag of submodules in<br />

the corresp<strong>on</strong>ding (ϕ, N, F, E)-module.<br />

Theorem 1.1.5. If π is ordinary at p, then m i = 1 for all i, the β i occur in r blocks of<br />

c<strong>on</strong>secutive integers, of lengths n i , for 1 ≤ i ≤ r, and<br />

⎛<br />

⎞<br />

ρ n1 ∗ · · · ∗<br />

0 ρ n2 · · · ∗<br />

ρ π,p | Gp ∼ ⎜<br />

⎟<br />

⎝ 0 0 · · · ∗ ⎠ ,<br />

0 0 0 ρ nr<br />

where each ρ ni is an n i -dimensi<strong>on</strong>al representati<strong>on</strong> with shape similar <strong>to</strong> that in Theorem<br />

1.1.2. In particular, ρ π,p | Gp is quasi-ordinary.<br />

In Theorem 1.1.5, we show that our ordinariness c<strong>on</strong>diti<strong>on</strong> implies that a particular<br />

complete flag is admissible. We have c<strong>on</strong>structed examples for which not all complete flags<br />

are necessarily admissible, even under our ordinariness assumpti<strong>on</strong>. In the decomposable<br />

case, we give an example of a reducible (p, p)-Galois representati<strong>on</strong> such that there is no<br />

complete flag of reducible submodules. Finally, in the n<strong>on</strong>-ordinary decomposable case,<br />

we have c<strong>on</strong>structed examples where the crystal is irreducible.<br />

1.2 2-adic Hida theory and applicati<strong>on</strong>s<br />

In the sec<strong>on</strong>d part of our thesis (cf. [GK2], [Kum]), we study the semisimplicity of the<br />

<strong>local</strong> Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> normalized ordinary cuspidal eigen<strong>forms</strong> (n = 2),<br />

for the prime p = 2.<br />

2-adic Hida theory<br />

We first prove a c<strong>on</strong>trol theorem for the Hida’s ordinary Λ-adic Hecke algebra for the<br />

prime p = 2 by following the approach of Hida [Hid86a] which deals with primes p ≥ 5.<br />

Let T 2 = Q 2 /Z 2 and Γ r = 1 + 2 r Z 2 of Γ 2 = 1 + 4Z 2 = 〈u〉. For r ≥ 2, we write<br />

V r = H 1 (X r , T 2 ) and W r = H 1 (Y r , T 2 ), where X r denotes the smooth compactificati<strong>on</strong><br />

of the complex manifold Y r = Γ 1 (N2 r )\H, with (2, N) = 1. Let Vr 0 and Wr 0 denote the<br />

ordinary parts of V r and W r , respectively, where the ordinary parts are defined by using<br />

Hida’s idempotent opera<strong>to</strong>r. There is a natural acti<strong>on</strong> of Γ 0 (N2 r )/Γ 1 (N2 r ) <strong>on</strong> Vr<br />

0 and<br />

Wr 0 . Let V 0 and W 0 denote the direct limit of Vr 0 and Wr 0 , respectively. Since (Z/N2 r Z) ×<br />

acts <strong>on</strong> Vr 0 and Wr 0 , Z × 2 acts <strong>on</strong> V0 and W 0 . Let V 0 and W 0 denote the P<strong>on</strong>tryagin duals<br />

of V 0 and W 0 , respectively. These are Λ-modules for Λ = Z 2 [[Γ 2 ]].<br />

A first step <strong>to</strong>wards proving a c<strong>on</strong>trol theorem for the Hida’s ordinary Λ-adic Hecke<br />

algebra is <strong>to</strong> prove a c<strong>on</strong>trol theorem for the cohomology modules above.<br />

14


Theorem 1.2.1. 1. For each positive integer r ≥ 2, the restricti<strong>on</strong> morphism of cohomology<br />

groups induces an isomorphism of Vr 0 <strong>on</strong><strong>to</strong> (V 0 ) Γr . The same result also<br />

holds for W 0 .<br />

2. Let N > 1. The modules V 0 and W 0 are free of finite rank over Λ.<br />

The proof of the freeness of V 0 depends heavily <strong>on</strong> the Z 2 -freeness of the module<br />

e(H 1 (Φ 2 , Z 2 (ω))/H 1 p(Φ 2 , Z 2 (ω))), where Φ 2 = Γ 1 (N)∩Γ 0 (4), and <strong>on</strong> the following theorem.<br />

Theorem 1.2.2. For each positive integer n ≡ a (mod 2),<br />

rank Z2 h 0 n+2(Φ 2 , Z 2 ) = r(a),<br />

where r(a) is the Z 2 -rank of the Hecke algebra h 0 2 (Φ 2, ω a , Z 2 ), where ω is the mod 4<br />

cyclo<strong>to</strong>mic character, i.e., ω(x) = ±1, if x ≡ ±1 (mod 4).<br />

For p ≥ 5, the theorem above follows from [Hid86b, Thm. 3.1 and Cor. 3.2]. But their<br />

proofs depend <strong>on</strong> the theory of Katz modular <strong>forms</strong>, the theory of mod p modular <strong>forms</strong>,<br />

and some results in these theories <strong>on</strong>ly hold for p ≥ 5. For p = 2, we give an alternative<br />

proof of this theorem, which completely avoids both these technicalities.<br />

Let K be a finite extensi<strong>on</strong> of Q 2 and O K be the integral closure of Z 2 in K. Write Λ<br />

again for O K [[Γ 2 ]]. Let ι denote the natural inclusi<strong>on</strong> of Γ 2 in Λ. For each weight k ≥ 2,<br />

let h 0 k (Γ 1(N2 ∞ ), O K ) denote the ordinary Λ-adic Hecke algebra lim h 0 ←− k (Γ 1(N2 r ), O K ). For<br />

r≥2<br />

k 1 ≥ k 2 ≥ 2, there exists a surjecti<strong>on</strong><br />

h 0 k 1<br />

(Γ 1 (N2 ∞ ), O K ) ↠ h 0 k 2<br />

(Γ 1 (N2 ∞ ), O K ),<br />

and this is an isomorphism by [Hid88b, Thm. 3.2]. Thus the ordinary Λ-adic Hecke<br />

algebra h 0 k (Γ 1(N2 ∞ ), O K ) is independent of the weight, and we denote it by h 0 (N, O K ).<br />

From Theorem 1.2.1 and 1.2.2, we deduce the following theorem, which is the 2-adic<br />

analogue of the c<strong>on</strong>trol theorem for Hida’s ordinary Λ-adic Hecke algebra h 0 (N, O K ).<br />

Theorem 1.2.3 (C<strong>on</strong>trol theorem). For r ≥ 2, the map<br />

ρ k,ɛ : h 0 (N, O K ) ⊗ Λ Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ ↠ h 0 k (Φ2 r, ɛ, K),<br />

where Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ is identified with K, via u corresp<strong>on</strong>ds <strong>to</strong> u k ɛ(u), is an isomorphism,<br />

where P k,ɛ = (ι(u) − ɛ(u)u k ) is an ideal of Λ and ɛ is a character of Γ/Γ r with values in<br />

O K .<br />

As a c<strong>on</strong>sequence of the c<strong>on</strong>trol theorem, we are able <strong>to</strong> deduce that in a primitive 2-<br />

ordinary Hida family, either all arithmetic specializati<strong>on</strong>s are CM <strong>forms</strong> or no arithmetic<br />

specializati<strong>on</strong> is a CM form. Hence, we can speak of CM and n<strong>on</strong>-CM primitive 2-ordinary<br />

Hida families.<br />

An applicati<strong>on</strong><br />

It is known that if f is ordinary at ℘ and f has complex multiplicati<strong>on</strong> (CM), then ρ f,℘ | Gp<br />

splits. Greenberg has asked whether the c<strong>on</strong>verse also holds. Serre has proved that the<br />

15


c<strong>on</strong>verse holds in the case of elliptic curves, i.e., for an elliptic curve E, the representati<strong>on</strong><br />

ρ E,℘ splits at p if and <strong>on</strong>ly if E has CM.<br />

In [GV04], Ghate and Vatsal have proved the c<strong>on</strong>verse for odd primes p and for primitive<br />

p-ordinary Λ-adic <strong>forms</strong> F, using a result of Buzzard [Buz03] for weight <strong>on</strong>e modular<br />

<strong>forms</strong> and under some c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the residual representati<strong>on</strong> ¯ρ F . As a c<strong>on</strong>sequence,<br />

they are able <strong>to</strong> deduce that all arithmetic specializati<strong>on</strong>s of a primitive p-ordinary n<strong>on</strong>-<br />

CM Hida family have n<strong>on</strong>-split <strong>local</strong> Galois representati<strong>on</strong>, except for a possible finite<br />

set of excepti<strong>on</strong>s. By Hida’s c<strong>on</strong>trol theorem for odd primes p, it is known that this<br />

excepti<strong>on</strong>al set does not c<strong>on</strong>tain any CM <strong>forms</strong>.<br />

We prove a similar result for the case of p = 2, assuming a relevant result of Buzzard<br />

c<strong>on</strong>tinues <strong>to</strong> hold for p = 2 in the residually dihedral setting.<br />

Theorem 1.2.4. Let p = 2. Let F be a primitive p-ordinary Hida family of eigen<strong>forms</strong><br />

with the property that<br />

1. ¯ρ F is p-distinguished,<br />

2. ¯ρ F is absolutely irreducible, when restricted <strong>to</strong> Gal( ¯Q/Q(i)),<br />

3. ¯ρ F (c) ≠ 1 and ¯ρ F is both α-modular and β-modular.<br />

Then,<br />

(a) F is CM if and <strong>on</strong>ly if ρ F | Gp<br />

splits.<br />

(b) If F is n<strong>on</strong>-CM, then for all but except possibly finitely many arithmetic specializati<strong>on</strong>s<br />

f of F, the representati<strong>on</strong> ρ f,℘ | Gp is n<strong>on</strong>-split. Moreover, the possible excepti<strong>on</strong>s<br />

are necessarily n<strong>on</strong>-CM <strong>forms</strong> by Theorem 1.2.3.<br />

16


Chapter 2<br />

Introducti<strong>on</strong><br />

In this thesis, we study the p-adic Galois representati<strong>on</strong>s of G p := Gal( ¯Q p /Q p ) <strong>attached</strong><br />

<strong>to</strong> au<strong>to</strong>morphic representati<strong>on</strong> of GL n , using p-adic Hodge theory and Hida theory.<br />

Let f = ∑ ∞<br />

n=1 a n(f)q n be a normalized eigenform (i.e., a primitive form) of weight<br />

k ≥ 2, level N ≥ 1, and nebentypus χ : (Z/NZ) × → C × . Let ℘ be the prime of ¯Q<br />

determined by a fixed embedding of ¯Q in<strong>to</strong> ¯Q p . Let ℘ also denote the induced prime of<br />

K f = Q(a n (f)), the Hecke field of f, and let K f,℘ denote the completi<strong>on</strong> of K f at ℘.<br />

There is a global Galois representati<strong>on</strong><br />

ρ f,℘ : G Q → GL 2 (K f,℘ )<br />

associated <strong>to</strong> f (and ℘) by Deligne which has the property that for all primes l ∤ Np,<br />

trace(ρ f,℘ (Frob l )) = a l (f) and det(ρ f,℘ (Frob l )) = χ(l)l k−1 ,<br />

where Frob l denotes the arithmetic Frobenius. It is a well-known result of Ribet that<br />

the global representati<strong>on</strong> ρ f,℘ is irreducible. However, if f is ordinary at ℘, i.e., a p (f)<br />

is a ℘-adic unit, then an important theorem of Wiles says that the corresp<strong>on</strong>ding <strong>local</strong><br />

representati<strong>on</strong> is reducible. Let χ cyc,p denote the p-adic cyclo<strong>to</strong>mic character.<br />

Theorem 2.0.5 ([Wil88]). Let f be a ℘-ordinary primitive form as above. Then the<br />

restricti<strong>on</strong> of ρ f,℘ <strong>to</strong> the decompositi<strong>on</strong> subgroup G p is reducible. More precisely, there<br />

exists a basis in which<br />

(<br />

)<br />

χ p · λ(β/p k−1 ) · χ k−1<br />

cyc,p u<br />

ρ f,℘ | Gp ∼<br />

,<br />

0 λ(α)<br />

where χ = χ p χ ′ is the decompositi<strong>on</strong> of χ in<strong>to</strong> its p and prime-<strong>to</strong>-p-parts, λ(x) : G p →<br />

K × f,℘ is the unramified character which takes arithmetic Frobenius <strong>to</strong> x, and u : G p → K f,℘<br />

is a c<strong>on</strong>tinuous functi<strong>on</strong>. Here α is (i) the unit root of X 2 − a p (f)X + p k−1 χ(p) if p ∤ N,<br />

(ii) the unit a p (f) if p||N, p ∤ c<strong>on</strong>d(χ) and k = 2, and (iii) the unit a p (f) if p|N,<br />

v p (N) = v p (c<strong>on</strong>d(χ)). In all cases αβ = χ ′ (p)p k−1 .<br />

Moreover, in case (ii), a p (f) is a unit if and <strong>on</strong>ly if k = 2, and <strong>on</strong>e can easily show that<br />

ρ f,℘ | Gp is irreducible when k > 2.<br />

Urban has generalized Theorem 2.0.5 <strong>to</strong> the case of primitive Siegel modular cusprepresentati<strong>on</strong>s<br />

of genus 2. For a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> π <strong>on</strong> GSp 4 (A Q )<br />

17


whose Archimedean comp<strong>on</strong>ent π ∞ bel<strong>on</strong>gs <strong>to</strong> the discrete series with cohomological<br />

weights (a, b; a + b) with a ≥ b ≥ 0, Laum<strong>on</strong>, Taylor, and Weissauer have defined a<br />

four-dimensi<strong>on</strong>al Galois representati<strong>on</strong><br />

ρ π,p : G Q → GL 4 ( ¯Q p )<br />

with standard properties. For an unramified prime p for π, Tilouine and Urban have<br />

generalized the noti<strong>on</strong> of ordinariness for such primes p in three ways. For example, in<br />

the Borel case, the p-ordinariness of π implies that the valuati<strong>on</strong>s of the roots of the Hecke<br />

polynomial of π p are 0, b + 1, a + 2 and a + b + 3. In this case, the restricti<strong>on</strong> of ρ π,p<br />

<strong>to</strong> the decompositi<strong>on</strong> subgroup G p is upper-triangular. More precisely, there is a basis in<br />

which the <strong>local</strong> representati<strong>on</strong> ρ π,p | Gp<br />

⎛<br />

⎞<br />

λ(δ/p a+b+3 ) · χ a+b+3<br />

cyc,p ∗ ∗ ∗<br />

0 λ(γ/p a+2 ) · χ a+2<br />

cyc,p ∗ ∗<br />

∼ ⎜<br />

⎝ 0 0 λ(β/p b+1 ) · χ b+1 ⎟<br />

cyc,p ∗ ⎠ ,<br />

0 0 0 λ(α)<br />

where α, β, γ and δ are the roots of the Hecke polynomial of π p with increasing valuati<strong>on</strong>s.<br />

In the first part of the thesis (cf. Chapters 4 and 5), motivated by the above two<br />

examples, we define a noti<strong>on</strong> of p-ordinariness for cuspidal au<strong>to</strong>morphic representati<strong>on</strong>s<br />

π <strong>on</strong> GL n (A Q ), for n ≥ 3, and we study the reducibility or the irreducibility of the <strong>local</strong><br />

Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> π [GK1]. We show that p-ordinariness for π implies that<br />

the associated <strong>local</strong> Galois representati<strong>on</strong> at p is quasi-ordinary, in the sense of Greenberg<br />

(cf. §4.4.6). In this case we explicitly write down the characters <strong>on</strong> the diag<strong>on</strong>al. In<br />

certain cases, we also show that the n<strong>on</strong>-ordinariness of π implies the irreducibility of the<br />

p-adic <strong>local</strong> Galois representati<strong>on</strong>. These results can be thought of as a generalizati<strong>on</strong> of<br />

Wiles’ theorem for GL 2 (cf. Theorem 2.0.5), when we interpret the primitive form f as a<br />

cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL 2 (A Q ).<br />

In Chapter 4, after stating the necessary results from p-adic Hodge theory, we reprove<br />

Theorem 2.0.5. The proof serves <strong>to</strong> illustrate the techniques that will be used in Chapter<br />

5. Let f be a primitive form which is ℘-ordinary. A key ingredient in our proof is that the<br />

representati<strong>on</strong> ρ f,℘ lives in a strictly compatible system of Galois representati<strong>on</strong>s (ρ f,λ ),<br />

where λ varies over the primes of K f . By F<strong>on</strong>taine theory, <strong>on</strong>e can associate a crystal<br />

<strong>to</strong> the potentially semistable representati<strong>on</strong> ρ f,℘ | Gp . Using the explicit descripti<strong>on</strong> of the<br />

crystal (cf. [Bre01], [GM09]) in the Unramified, Steinberg, and ramified principal series<br />

cases, we study the reducibility or the irreducibility of the representati<strong>on</strong> ρ f,℘ | Gp .<br />

In Chapter 5, we prove structure theorems for the <strong>local</strong> Galois representati<strong>on</strong>s <strong>attached</strong><br />

<strong>to</strong> cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ).<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) with infinitesimal character<br />

H, where H c<strong>on</strong>sists of a set of distinct integers. We assume that the global p-adic<br />

Galois representati<strong>on</strong> ρ π,p <strong>attached</strong> <strong>to</strong> π exists, and that it satisfies several natural properties,<br />

e.g., it lives in a strictly compatible system of Galois representati<strong>on</strong>s, and satisfies<br />

Local-Global compatibility.<br />

By a result of Flath, π is a restricted tensor product π = ⊗ ′ pπ p (cf. [Bum97, Thm.<br />

3.3.3]) of <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong>s. Langlands classified that all irreducible admissible<br />

representati<strong>on</strong>s of GL n (Q p ) are isomorphic <strong>to</strong> Q(∆ 1 , . . . , ∆ r ) for some segments<br />

18


{∆ i } r i=1 , such that for i < j, ∆ i does not precede ∆ j (cf. Theorem 4.4.1). There exists<br />

a bijecti<strong>on</strong> between isomorphism classes of irreducible admissible representati<strong>on</strong>s of<br />

GL n (Q p ) and isomorphism classes of admissible n-dimensi<strong>on</strong>al representati<strong>on</strong>s, over ¯Q l<br />

for l ≠ p, of W p, ′ the Weil-Deligne group of Q p (cf. the discussi<strong>on</strong> after Theorem 4.4.2).<br />

Deligne classified all such admissible n-dimensi<strong>on</strong>al representati<strong>on</strong>s of W p, ′ over an<br />

algebraically closed fields of characterstic 0, as the direct sum of the indecomposable<br />

representati<strong>on</strong>s τ m ⊗ Sp(n), where τ m is an irreducible representati<strong>on</strong> of dimensi<strong>on</strong> m of<br />

W p , the Weil group of Q p , and Sp(r) denotes the Steinberg representati<strong>on</strong> of dimensi<strong>on</strong><br />

r.<br />

Let WD(ρ π,p | Gp ) denote the (p, p)-Weil-Deligne representati<strong>on</strong> associated <strong>to</strong> ρ π,p | Gp .<br />

By the definiti<strong>on</strong> of a strictly compatible system, we know WD(ρ π,p | Gp ) from the (p, l)-<br />

Weil-Deligne representati<strong>on</strong> for l ≠ p, and which is determined by the <strong>local</strong> au<strong>to</strong>morphic<br />

representati<strong>on</strong> of π at p.<br />

The noti<strong>on</strong> of p-ordinariness is defined by using p-adic valuati<strong>on</strong> v p of certain parameters<br />

coming from the <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong> π at p. The parameters vary in<br />

different cases, but can be made completely precise.<br />

For instance, suppose that the <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong> π p is an unramified<br />

representati<strong>on</strong> of GL m (Q p ) (in the classical setting, we are in this case if p ∤ N), i.e.,<br />

π p = Q(χ 1 , . . . , χ m ), for some unramified characters χ i of Q × p . We can parametrize<br />

the isomorphism class of this representati<strong>on</strong> by the Satake parameters α 1 , . . . , α m , for<br />

α i = χ i (ω), where ω is a uniformizer for Q p . In this case, WD(ρ π,p | Gp ) is a direct sum<br />

of unramified characters χ i ’s. The <strong>local</strong> representati<strong>on</strong> ρ π,p | Gp is crystalline with Hodge-<br />

Tate weights H. Let D be the corresp<strong>on</strong>ding filtered ϕ-module. Let the jumps in the<br />

filtrati<strong>on</strong> <strong>on</strong> D be β 1 < · · · < β m (so that H = {−β 1 , . . . , −β m }). In this case, we say<br />

that the cuspidal au<strong>to</strong>morphic representati<strong>on</strong> π is p-ordinary if<br />

for all i = 1, . . . , m.<br />

β i + v p (α i ) = 0,<br />

Theorem 2.0.6 (Spherical case). Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of<br />

GL m (A Q ) with infinitesimal character given by the integers −β 1 > · · · > −β m and such<br />

that π p is in the unramified principal series with Satake parameters α 1 , . . . , α m . If π is<br />

p-ordinary, then ρ π,p | Gp ∼<br />

⎛<br />

α<br />

λ( 1<br />

) · χ −β ⎞<br />

1<br />

p vp(α 1 ) cyc,p ∗ · · · ∗<br />

α<br />

0 λ( 2<br />

) · χ −β 2<br />

p<br />

⎜<br />

vp(α 2 ) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ .<br />

α<br />

0 0 0 λ( n<br />

) · χ −βm<br />

p vp(αm) cyc,p<br />

In particular, ρ π,p | Gp<br />

is ordinary.<br />

A similar result was also obtained by D. Geraghty in the course of proving modularity<br />

lifting theorems for GL n . However, the main point of our thesis is <strong>to</strong> treat other cases (in<br />

the classical language, the primes of bad reducti<strong>on</strong>).<br />

In the n<strong>on</strong>-principal series case, we no l<strong>on</strong>ger have the Satake parameters of π p at our<br />

disposal. However, we can replace these numbers by the corresp<strong>on</strong>ding eigenvalues of l-<br />

adic Frobenius in the l-adic Weil-Deligne representati<strong>on</strong> corresp<strong>on</strong>ding <strong>to</strong> π p , for l ≠ p, or<br />

19


equivalently, by using the properties of strictly compatible systems, with the eigenvalues<br />

of crystalline Frobenius <strong>on</strong> the filtered module <strong>attached</strong> <strong>to</strong> π p (as in [GM09] for n = 2).<br />

To keep the analysis of the structure of the <strong>local</strong> Galois representati<strong>on</strong> ρ π,p | Gp within<br />

reas<strong>on</strong>able limits in this thesis, we shall assume that the Newt<strong>on</strong> filtrati<strong>on</strong> is in general<br />

positi<strong>on</strong> with respect <strong>to</strong> the Hodge filtrati<strong>on</strong> <strong>on</strong> the associated crystal.<br />

Now suppose π p is a twist of the Steinberg representati<strong>on</strong>, i.e., π p = Q(∆) for a<br />

segment ∆ = [σ, σ(n − 1)], where σ is a supercuspidal representati<strong>on</strong> of GL m (Q p ) (in the<br />

classical setting, we are in this case if v p (N) = 1 and v p (c<strong>on</strong>d(χ)) = 0). We know that<br />

the corresp<strong>on</strong>ding Frobenius semisimplificati<strong>on</strong> of the Weil-Deligne representati<strong>on</strong> is of<br />

the form τ m ⊗ Sp(n). In this case, we not <strong>on</strong>ly show that the p-ordinariness of π implies<br />

quasi-ordinariness of the representati<strong>on</strong> ρ π,p | Gp but also show that the n<strong>on</strong>-ordinariness<br />

of π implies the representati<strong>on</strong> ρ π,p | Gp is irreducible, unlike in the principal series case.<br />

When m = 1, we prove:<br />

Theorem 2.0.7 (Twist of Steinberg). Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of<br />

GL n (A Q ) with infinitesimal character given by the integers −β 1 > · · · > −β n . Suppose<br />

π p is a twist of the Steinberg representati<strong>on</strong>, and WD(ρ π,p | Gp ) is Frobenius semisimple,<br />

hence<br />

WD(ρ π,p | Gp ) ∼ τ 1 ⊗ Sp(n).<br />

If π is p-ordinary, i.e., β 1 + v p (α) = 0, then the β i are necessarily c<strong>on</strong>secutive integers,<br />

and ρ π,p | Gp ∼<br />

⎛<br />

α<br />

χ 0 · λ( ) · χ −β ⎞<br />

1<br />

p vp(α) cyc,p ∗ · · · ∗<br />

α<br />

0 χ 0 · λ( ) · χ −β 1−1<br />

p<br />

⎜<br />

vp(α) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ ,<br />

α<br />

0 0 0 χ 0 · λ( ) · χ −β 1−(n−1)<br />

p vp(α) cyc,p<br />

where the character τ 1 decomposes as χ 0 · χ ′ , where χ 0 is the ramified part, and χ ′ is an<br />

unramified character mapping arithmetic Frobenius <strong>to</strong> α.<br />

If π is not ordinary at p, then the <strong>local</strong> representati<strong>on</strong> ρ π,p | Gp is irreducible.<br />

The last statement generalizes a well-known fact for n<strong>on</strong>-ordinary (p, p)-Galois representati<strong>on</strong>s<br />

<strong>attached</strong> <strong>to</strong> normalized cuspidal eigen<strong>forms</strong> (n = 2) at Steinberg primes.<br />

We now turn <strong>to</strong> the case where m ≥ 2. Recall that π p = Q(∆) for some segment<br />

∆ = [σ, σ(n − 1)], where σ is supercuspidal representati<strong>on</strong> of GL m (Q p ). Suppose the<br />

infinitesimal character of π c<strong>on</strong>sists of distinct integers {β i,j } i=n,j=m<br />

i=1,j=1<br />

ordered as follows:<br />

β i1 ,j 1<br />

> β i2 ,j 2<br />

, if i 1 > i 2 , or if i 1 = i 2 and j 1 > j 2 . Before defining the p-ordinariness in<br />

this case, we slightly deviate and study the structure of the associated crystal.<br />

Let E be the field of coefficients of the representati<strong>on</strong> ρ π,p | Gp and let F be a finite<br />

Galois extensi<strong>on</strong> of Q p such that τ m | IF = 1. By [BS07, Prop. 4.1], there is an equivalence<br />

of categories between (ϕ, N, F, E)-modules and Weil-Deligne representati<strong>on</strong>s. We write<br />

D τm and D Sp(n) for the (ϕ, N, F, E)-modules corresp<strong>on</strong>ding <strong>to</strong> τ m and Sp(n), respectively.<br />

We prove:<br />

Theorem 2.0.8. All the (ϕ, N, F, E)-submodules of D = D τm ⊗ D Sp(n) are of the form<br />

D τm ⊗ D Sp(r) , for some 1 ≤ r ≤ n.<br />

20


When τ m ∼ Ind Wp<br />

W χ, where χ is a character of W p m pm, we also write down the filtered<br />

(ϕ, N, F, E)-module with underlying Weil-Deligne representati<strong>on</strong> τ m , generalizing results<br />

in [GM09] for m = 2.<br />

Let t N (D τm ) denote the Newt<strong>on</strong> number of the (ϕ, N, F, E)-module D τm . Using Theorem<br />

2.0.8, we prove:<br />

Theorem 2.0.9 (Indecomposable case). Suppose that<br />

WD(ρ π,p | Gp ) ∼ τ m ⊗ Sp(n).<br />

If π is ordinary at p, i.e., t N (D τm ) = ∑ m<br />

j=1 β 1,j, then ρ π,p | Gp is reducible, in which case<br />

m = 1, τ 1 is a character, and ρ π,p | Gp is quasi-ordinary as in Theorem 2.0.7.<br />

If π is not ordinary at p, then ρ π,p | Gp is irreducible. In particular, when m ≥ 2, the<br />

representati<strong>on</strong> ρ π,p | Gp is always irreducible.<br />

The theorems above give complete informati<strong>on</strong> about the reducibility of the (p, p)-<br />

Galois representati<strong>on</strong> in the indecomposable case.<br />

Now suppose π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL N (A Q ) with infinitesimal<br />

character given by the integers −β 1 > · · · > −β N , and π p = Q(∆ 1 , . . . , ∆ r ) for some<br />

segments ∆ i = [σ i , σ i (n i −1)] (up<strong>to</strong> permutati<strong>on</strong>) such that for i < j, ∆ i does not precede<br />

∆ j , where σ i is a supercuspidal representati<strong>on</strong> of GL mi (Q p ). Clearly, N = ∑ r<br />

i=1 m in i and<br />

WD(ρ π,p | Gp ) ∼ ⊕ r i=1 τ m i<br />

⊗ Sp(n i ). In this case, we can also define p-ordinariness in terms<br />

of the t N (D τi )’s and β i ’s and show that there exists an admissible flag of submodules in<br />

the corresp<strong>on</strong>ding (ϕ, N, F, E)-module.<br />

Theorem 2.0.10. If π is ordinary at p, then m i = 1 for all i, the β i occur in r blocks of<br />

c<strong>on</strong>secutive integers, of lengths n i , for 1 ≤ i ≤ r, and<br />

⎛<br />

⎞<br />

ρ n1 ∗ · · · ∗<br />

0 ρ n2 · · · ∗<br />

ρ π,p | Gp ∼ ⎜<br />

⎟<br />

⎝ 0 0 · · · ∗ ⎠ ,<br />

0 0 0 ρ nr<br />

where each ρ ni is an n i -dimensi<strong>on</strong>al representati<strong>on</strong> with shape similar <strong>to</strong> that in Theorem<br />

2.0.7. In particular, ρ π,p | Gp is quasi-ordinary.<br />

In Theorem 2.0.10 we show that our ordinariness c<strong>on</strong>diti<strong>on</strong> implies that a particular<br />

complete flag is admissible. In §5.6, we have c<strong>on</strong>structed examples for which not all<br />

complete flags are necessarily admissible, even under our ordinariness assumpti<strong>on</strong>. In<br />

the decomposable case, we give an example of a reducible (p, p)-Galois representati<strong>on</strong><br />

such that there is no complete flag of reducible submodules. Finally, in the n<strong>on</strong>-ordinary<br />

decomposable case, we have c<strong>on</strong>structed examples where the crystal is irreducible.<br />

This gives an overview of all the results in the first part of the thesis.<br />

In the sec<strong>on</strong>d part of the thesis (cf. Chapter 6 and Appendix A), we show that<br />

some of the basic results of Hida theory in the literature stated for odd primes p (and<br />

originally for p ≥ 5 in [Hid86b], [Hid86a]) remain valid for the prime p = 2. We prove<br />

a 2-adic analogue of the c<strong>on</strong>trol theorem for the Hida’s Hecke algebra [GK2]. As an<br />

applicati<strong>on</strong>, we study the semisimplicity of the <strong>local</strong> Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong><br />

ordinary primitive <strong>forms</strong> (n = 2), for the prime p = 2.<br />

21


In Chapter 6, we start by proving a c<strong>on</strong>trol theorem for cohomology groups. To explain<br />

briefly, for every positive integer r ≥ 2, we write V r = H 1 (X r , T 2 ), W r = H 1 (Y r , T 2 ), where<br />

T 2 = Q 2 /Z 2 . The Hecke algebra h 2 (Γ 1 (N2 r ), Z 2 ) acts <strong>on</strong> V r and therefore V 0 r , the ordinary<br />

part of V r , is a module over h 0 2 (Γ 1(N2 r ), Z 2 ), the ordinary part of h 2 (Γ 1 (N2 r ), Z 2 ). There<br />

is also an acti<strong>on</strong> of Γ 0 (N2 r )/Γ 1 (N2 r ) <strong>on</strong> V 0 r and W 0 r . Let V 0 denote the direct limit of V 0 r ,<br />

for r ≥ 2, and similarly for W 0 . One sees that V 0 and W 0 become c<strong>on</strong>tinuous modules<br />

(if we equip them with the discrete <strong>to</strong>pology) over the Iwasawa algebra Λ = Z 2 [[Γ 2 ]],<br />

where Γ r = 1 + 2 r Z 2 , and Γ = Γ 2 = 〈u〉. Let V 0 and W 0 denote the P<strong>on</strong>tryagin duals<br />

of V 0 and W 0 , respectively. The modules V 0 and W 0 are modules over Λ. We prove (cf.<br />

Theorem 6.3.1)<br />

Theorem 2.0.11. Let p = 2. We have:<br />

1. For each positive integer r ≥ 2, the restricti<strong>on</strong> morphism of cohomology groups<br />

induces an isomorphism of V 0 r <strong>on</strong><strong>to</strong> (V 0 ) Γr . The same result also holds for W 0 .<br />

2. Let N > 1. The modules V 0 and W 0 are free modules of finite rank over Λ.<br />

A proof of the freeness of W 0 <strong>forms</strong> the c<strong>on</strong>tent of Appendix A. For the other statements,<br />

especially the freeness of V 0 , by closely following the proof for odd primes, <strong>on</strong>e<br />

realizes that <strong>on</strong>e needs certain results from the theory of Katz modular <strong>forms</strong> and the<br />

theory of mod p modular <strong>forms</strong>. Since these results are not known for p = 2, we prove<br />

the theorem above with other ingredients (cf. §6.6).<br />

Let K be a finite extensi<strong>on</strong> of Q 2 and let O K denote the integral closure of Z 2 in<br />

K. By [Hid88b, Thm. 3.2], we know that the ordinary Λ-adic Hecke algebra is defined<br />

independently of the weight and we denote this Hecke algebra by h 0 (N, O K ). In §6.8, we<br />

prove a 2-adic versi<strong>on</strong> of the Hida’s c<strong>on</strong>trol theorem for h 0 (N, O K ).<br />

Theorem 2.0.12 (C<strong>on</strong>trol theorem). Let ɛ be a character of Γ/Γ r with values in O K ,<br />

and let P k,ɛ denote the ideal (ι(u) − ɛ(u)u k ) of Λ, where ι is an inclusi<strong>on</strong> of Γ in Λ. For<br />

r ≥ 2, the map<br />

ρ k,ɛ : h 0 (N, O K ) ⊗ Λ Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ ↠ h 0 k (Φ2 r, ɛ, K),<br />

where Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ is identified with K, via u corresp<strong>on</strong>ds <strong>to</strong> u k ɛ(u), is an isomorphism.<br />

As a c<strong>on</strong>sequence, we deduce a uniqueness theorem (cf. Theorem 6.9.10) for 2-<br />

stabilized ordinary primitive <strong>forms</strong> in Hida families. Namely, we show that such <strong>forms</strong><br />

live in unique primitive 2-ordinary cuspidal families, up <strong>to</strong> Galois c<strong>on</strong>jugacy, a well-known<br />

result when p is odd. As an applicati<strong>on</strong> of this result we show that the noti<strong>on</strong> of CM-ness<br />

is pure with respect <strong>to</strong> 2-adic families, i.e., we show that for a primitive 2-ordinary Λ-adic<br />

cuspidal eigenform F, either all arithmetic specializati<strong>on</strong>s are CM <strong>forms</strong> or no arithmetic<br />

specializati<strong>on</strong> is a CM form (cf. Propositi<strong>on</strong> 6.9.11). In view of this result, we may and<br />

do speak of CM and n<strong>on</strong>-CM 2-adic Hida families.<br />

Recall that f is a primitive ℘-ordinary form of weight at least two. Furthermore, if<br />

f has complex multiplicati<strong>on</strong> (CM), then ρ f,℘ | Gp splits at p. R. Greenberg has asked<br />

whether the c<strong>on</strong>verse also holds.<br />

In the case of mod p cusp <strong>forms</strong>, there is an (almost) complete answer <strong>to</strong> the above<br />

questi<strong>on</strong> due <strong>to</strong> Gross [Gro90] and Coleman-Voloch. Let g = ∑ a n q n be a p-ordinary mod<br />

22


p cuspidal eigenform of Serre weight 2 ≤ k ≤ p, level N with (p, N) = 1, and nebentypus ψ.<br />

Deligne c<strong>on</strong>structed a Galois representati<strong>on</strong> ρ g associated <strong>to</strong> g with standard properties.<br />

It is a well-known result of Gross and Coleman-Voloch, that ρ g is tamely ramified at<br />

p if and <strong>on</strong>ly if g has a compani<strong>on</strong> form, when k ≠ 2 or k ≠ p. If the form g is p-<br />

distinguished, then ρ g is tamely ramified if and <strong>on</strong>ly if ρ g splits at p (cf. [Gha05]). Hence,<br />

if g is p-distinguished, then ρ g splits at p if and <strong>on</strong>ly if g has a compani<strong>on</strong> form.<br />

If p is prime <strong>to</strong> N, then it is a theorem of Serre and Tate that if a modular form f<br />

corresp<strong>on</strong>ds <strong>to</strong> an elliptic curve E defined over Q, then ρ f,℘ = ρ E,p splits at p if and <strong>on</strong>ly<br />

if E, and therefore f, has CM.<br />

In [GV04], Ghate and Vatsal have proved the c<strong>on</strong>verse for odd primes p and for primitive<br />

p-ordinary Λ-adic <strong>forms</strong> F, using a result of Buzzard [Buz03] for weight <strong>on</strong>e modular<br />

<strong>forms</strong> and under some c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the residual representati<strong>on</strong> ¯ρ F . As a c<strong>on</strong>sequence,<br />

they are able <strong>to</strong> deduce that all arithmetic specializati<strong>on</strong>s of a primitive p-ordinary n<strong>on</strong>-<br />

CM Hida family have n<strong>on</strong>-split <strong>local</strong> Galois representati<strong>on</strong>, except for a possible finite<br />

set of excepti<strong>on</strong>s. By Hida’s c<strong>on</strong>trol theorem for odd primes p, it is known that this<br />

excepti<strong>on</strong>al set does not c<strong>on</strong>tain any CM <strong>forms</strong>.<br />

Finally, we study the semisimplicity of the <strong>local</strong> Galois representati<strong>on</strong>s and prove a<br />

similar result for the case of p = 2, assuming a result of Buzzard (cf. Theorem 6.10.2)<br />

c<strong>on</strong>tinues <strong>to</strong> hold for p = 2 in the residually dihedral setting. We prove (cf. Theorem 6.10.4<br />

and Theorem 6.10.5):<br />

Theorem 2.0.13. Let p = 2. Let F be a primitive p-ordinary Hida family of eigen<strong>forms</strong><br />

with the property that<br />

1. ¯ρ F is p-distinguished,<br />

2. ¯ρ F is absolutely irreducible, when restricted <strong>to</strong> Gal( ¯Q/Q(i)),<br />

3. ¯ρ F (c) ≠ 1 and ¯ρ F is both α-modular and β-modular.<br />

Then,<br />

(a) F is CM if and <strong>on</strong>ly if ρ F | Gp<br />

splits.<br />

(b) If F is n<strong>on</strong>-CM, then for all but except possibly finitely many arithmetic specializati<strong>on</strong>s<br />

f of F, the representati<strong>on</strong> ρ f,℘ | Gp is n<strong>on</strong>-split. Moreover, the possible excepti<strong>on</strong>s<br />

are necessarily n<strong>on</strong>-CM <strong>forms</strong> by Theorem 2.0.12.<br />

23


Chapter 3<br />

Modular <strong>forms</strong> and Hecke algebras<br />

In this chapter, first we recall the definiti<strong>on</strong>s of modular <strong>forms</strong> and cusp <strong>forms</strong> of weight<br />

k for c<strong>on</strong>gruence subgroups. Then we define the abstract Hecke opera<strong>to</strong>rs for arbitrary<br />

c<strong>on</strong>gruence subgroups. Finally, we recall the c<strong>on</strong>cept of old<strong>forms</strong>, new<strong>forms</strong> and the<br />

noti<strong>on</strong> of complex multiplicati<strong>on</strong> (CM). We closely follow the expositi<strong>on</strong> in [DS05].<br />

3.1 Modular <strong>forms</strong><br />

Each element of the modular group SL 2 (Z) can be viewed as an au<strong>to</strong>morphism of the<br />

Riemann sphere Ĉ = C ∪ {∞} by the fracti<strong>on</strong>al linear transformati<strong>on</strong>:<br />

( )<br />

γ(τ) = aτ + b<br />

cτ + d , for γ = a b<br />

and τ ∈<br />

c d<br />

Ĉ.<br />

For every N ∈ N, we define<br />

{(<br />

a<br />

Γ 0 (N) :=<br />

c<br />

{(<br />

a<br />

Γ 1 (N) :=<br />

c<br />

{(<br />

a<br />

Γ(N) :=<br />

c<br />

)<br />

}<br />

b<br />

∈ SL 2 (Z) | c ≡ 0 (mod N) ,<br />

d<br />

)<br />

}<br />

b<br />

∈ Γ 0 (N) | a ≡ 1 (mod N) ,<br />

d<br />

)<br />

}<br />

b<br />

∈ Γ 1 (N) | b ≡ 0 (mod N) .<br />

d<br />

Definiti<strong>on</strong> 3.1.1. A subgroup Γ of SL 2 (Z) is a c<strong>on</strong>gruence subgroup, if Γ(N) ⊆ Γ for<br />

some N ∈ N, in which case Γ is a c<strong>on</strong>gruence subgroup of level N.<br />

Let H denote the upper half plane, and let GL + 2 (R) denote the set of matrices in<br />

GL 2 (R) with positive determinant.<br />

For γ = ( )<br />

a b<br />

c d ∈ GL<br />

+<br />

2 (R) and for any integer k, define the weight-k opera<strong>to</strong>r [γ] k <strong>on</strong><br />

functi<strong>on</strong>s f : H → C by<br />

(f[γ] k )(τ) = (det(τ)) k−1 (cτ + d) −k f(γ(τ)), for τ ∈ H.<br />

Since the term cτ + d is never zero or infinity, if f is meromorphic then f[γ] k is also<br />

meromorphic and has the same zeros and poles as f.<br />

25


Definiti<strong>on</strong> 3.1.2. Let Γ be a c<strong>on</strong>gruence subgroup of SL 2 (Z) and let k be an integer. A<br />

meromorphic functi<strong>on</strong> f : H → C is a weakly modular of weight k with respect <strong>to</strong> Γ, or<br />

simply weakly modular with respect <strong>to</strong> Γ, if for all γ ∈ Γ,<br />

f[γ] k = f.<br />

To define modular <strong>forms</strong> for c<strong>on</strong>gruence subgroups Γ, we need <strong>to</strong> make sense of the<br />

“holomorphy”c<strong>on</strong>diti<strong>on</strong> at ∞.<br />

Let D = {q ∈ C : |q| < 1} be the open complex unit disk, let D ′ = D − {0}. Each<br />

c<strong>on</strong>gruence subgroup Γ of SL 2 (Z) c<strong>on</strong>tains a translati<strong>on</strong> matrix of the form ( )<br />

1 h<br />

0 1 : τ ↦→<br />

τ + h for some minimal h ∈ N. Every functi<strong>on</strong> f : H → C that is weakly modular<br />

with respect <strong>to</strong> Γ is hZ-periodic and thus has a corresp<strong>on</strong>ding functi<strong>on</strong> g : D ′ → C, i.e.,<br />

f(τ) = g(exp( 2πiτ<br />

h<br />

)). If f is also holomorphic <strong>on</strong> H, then g is holomorphic <strong>on</strong> D′ and so<br />

it has a Laurent series expansi<strong>on</strong> at q = 0. Define such f <strong>to</strong> be holomorphic at ∞, if g<br />

extends holomorphically <strong>to</strong> D. Thus f has a Fourier expansi<strong>on</strong><br />

f(τ) =<br />

∞∑<br />

a n (f) exp(2πiτn/h).<br />

n=0<br />

A modular form with respect <strong>to</strong> a c<strong>on</strong>gruence subgroup Γ should be holomorphic not<br />

<strong>on</strong>ly at ∞ but also at some other points, namely the cusps.<br />

The group SL 2 (Z) acts <strong>on</strong> Q ∪ {∞}. We define the cusps of Γ <strong>to</strong> be the Γ-equivalence<br />

classes of Q ∪ {∞}. Since Γ is of finite index in SL 2 (Z), we see that the number of cusps<br />

is finite. Writing any s ∈ Q ∪ {∞} as s = α(∞), holomorphy at s is defined in terms<br />

of holomorphy at ∞ via the [α] k opera<strong>to</strong>r. Since f[α] k is holomorphic <strong>on</strong> H and weakly<br />

modular with respect <strong>to</strong> α −1 Γα, the noti<strong>on</strong> of its holomorphy at ∞ makes sense.<br />

Definiti<strong>on</strong> 3.1.3. Let Γ be a c<strong>on</strong>gruence subgroup of SL 2 (Z) and let k be an integer. A<br />

functi<strong>on</strong> f : H → C is a modular form of weight k with respect <strong>to</strong> Γ, if<br />

1. f is holomorphic, and weakly modular with respect <strong>to</strong> Γ,<br />

2. f[α] k is holomorphic at ∞ for all α ∈ SL 2 (Z).<br />

If in additi<strong>on</strong>, a 0 (f[α] k ) = 0 in the Fourier expansi<strong>on</strong> of f[α] k for all α ∈ SL 2 (Z), then f<br />

is a cusp form of weight k with respect <strong>to</strong> Γ. The modular <strong>forms</strong> and cusp <strong>forms</strong> of weight<br />

k with respect <strong>to</strong> Γ are denoted by M k (Γ) and S k (Γ), respectively.<br />

Let N be a natural number. For each Dirichlet character χ modulo N, define the<br />

χ-eigenspace of M k (Γ 1 (N)) and S k (Γ 1 (N)) as<br />

M k (N, χ) := {f ∈ M k (Γ 1 (N)) | f[γ] k = χ(d γ )f, for all γ ∈ Γ 0 (N)} , and<br />

S k (N, χ) := M k (N, χ) ∩ S k (Γ 1 (N)).<br />

(Here d γ denotes the lower right entry of γ.) In particular, the eigenspace M k (N, 1) is<br />

M k (Γ 0 (N)). The vec<strong>to</strong>r spaces M k (Γ 1 (N)) and S k (Γ 1 (N)) decomposes as the direct sum<br />

of the eigenspaces, i.e.,<br />

M k (Γ 1 (N)) = ⊕ χ M k (N, χ) and S k (Γ 1 (N)) = ⊕ χ S k (N, χ).<br />

26


3.2 Hecke algebras<br />

We now briefly recall the definiti<strong>on</strong> of the Hecke opera<strong>to</strong>rs, which play an important role<br />

in the study of modular <strong>forms</strong>, and cusp <strong>forms</strong>. For more details, refer <strong>to</strong> [Miy89, §2.8]<br />

For any c<strong>on</strong>gruence subgroup Γ of SL 2 (Z), we put<br />

˜Γ = {g ∈ GL + 2 (Q) | gΓg−1 and Γ are commensurable}.<br />

Let Γ 1 and Γ 2 be c<strong>on</strong>gruence subgroups of SL 2 (Z). It is easy <strong>to</strong> see that ˜Γ 1 = ˜Γ 2 . Let ∆<br />

be subsemigroup of ˜Γ 1 . For any α ∈ ∆, we set<br />

Γ 1 αΓ 2 = {γ 1 αγ 2 | γ 1 ∈ Γ 1 , γ 2 ∈ Γ 2 }<br />

is a double coset in GL + 2 (Q). Using these double cosets, we define Hecke opera<strong>to</strong>rs and<br />

they transform modular <strong>forms</strong> with respect <strong>to</strong> Γ 1 in<strong>to</strong> modular <strong>forms</strong> with respect <strong>to</strong> Γ 2 .<br />

Definiti<strong>on</strong> 3.2.1. For c<strong>on</strong>gruence subgroups Γ 1 and Γ 2 of SL 2 (Z) and α ∈ ∆, the weightk<br />

opera<strong>to</strong>r [Γ 1 αΓ 2 ] k takes functi<strong>on</strong>s f ∈ M k (Γ 1 ) <strong>to</strong><br />

f[Γ 1 αΓ 2 ] k = ∑ j<br />

f[β j ] k ∈ M k (Γ 2 )<br />

where {β j } are orbit representatives, i.e., Γ 1 αΓ 2 = ∪ j Γ 1 β j is a disjoint uni<strong>on</strong>.<br />

By [Miy89, Thm. 2.8.1], the weight-k opera<strong>to</strong>r is well-defined and it maps S k (Γ 1 ) in<strong>to</strong><br />

S k (Γ 2 ). Again by the same theorem, the weight-k opera<strong>to</strong>r maps the space of modular<br />

<strong>forms</strong> M k (Γ 1 , χ) (resp., S k (Γ 1 , χ)) <strong>to</strong> M k (Γ 2 , χ) (resp., S k (Γ 2 , χ)).<br />

3.2.1 Hecke opera<strong>to</strong>rs for Γ 1 (N)<br />

The group Γ 0 (N) acts <strong>on</strong> M k (Γ 1 (N)), and it induces an acti<strong>on</strong> of the quotient (Z/NZ) ∗ .<br />

The acti<strong>on</strong> of α = ( a b<br />

c d<br />

)<br />

, determined by d (mod N) and denoted 〈d〉, is<br />

〈d〉 : M k (Γ 1 (N)) → M k (Γ 1 (N))<br />

given by 〈d〉f = f[α] k for any α ∈ Γ 0 (N) such that d α ≡ d (mod N). This Hecke opera<strong>to</strong>r<br />

is called as diam<strong>on</strong>d opera<strong>to</strong>r. By definiti<strong>on</strong>, we see that<br />

M k (N, χ) = {f ∈ M k (Γ 1 (N)) | 〈d〉f = χ(d)f for all d ∈ (Z/NZ) ∗ }.<br />

Since the weight-k opera<strong>to</strong>r [ ] k preserves the space of cusp <strong>forms</strong>, we see that the diam<strong>on</strong>d<br />

opera<strong>to</strong>r preserves the spaces of cusp<strong>forms</strong> S k (Γ 1 (N)).<br />

The sec<strong>on</strong>d type of Hecke opera<strong>to</strong>r is also a weight-k opera<strong>to</strong>r [Γ 1 (N)αΓ 1 (N)] k , but<br />

now α = ( )<br />

1 0<br />

0 p , for a prime p. This opera<strong>to</strong>r is denoted Tp . For primes p dividing N,<br />

sometimes we write U p for T p . Thus<br />

is given by<br />

T p : M k (Γ 1 (N)) → M k (Γ 1 (N)),<br />

T p (f) = f[Γ 1 (N) ( 1 0<br />

0 p<br />

)<br />

Γ1 (N)] k .<br />

Using a left coset decompositi<strong>on</strong> of Γ 1 (N) ( )<br />

1 0<br />

0 p Γ1 (N), we can explicitly write down the<br />

acti<strong>on</strong> of [Γ 1 (N) ( )<br />

1 0<br />

0 p Γ1 (N)] k <strong>on</strong> modular <strong>forms</strong>.<br />

27


Propositi<strong>on</strong> 3.2.2. Let Γ 1 = Γ 2 = Γ 1 (N), and let α = ( )<br />

1 0<br />

0 p where p is a prime. The<br />

opera<strong>to</strong>r T p = [Γ 1 (N) ( )<br />

1 0<br />

0 p Γ1 (N)] k <strong>on</strong> M k (Γ 1 (N)) is given by<br />

⎧<br />

∑p−1<br />

f[ ( 1 j<br />

)<br />

0 p ]k if p | N,<br />

⎪⎨<br />

j=0<br />

T p (f) =<br />

∑p−1<br />

⎪⎩ f[ ( 1 j<br />

)<br />

0 p ]k + f[ ( m n<br />

)( p 0<br />

)<br />

N p 0 1 ]k if p ∤ N, where mp − nN = 1.<br />

j=0<br />

Letting Γ 1 = Γ 2 = Γ 0 (N) instead and keeping same α as above gives the same orbit<br />

representatives for Γ 1 αΓ 2 , but in this case ( m n<br />

)( p 0<br />

) (<br />

N p 0 1 can be replaced by p 0<br />

)<br />

0 1 .<br />

Using the propositi<strong>on</strong> above, we can describe the effect of T p <strong>on</strong> Fourier coefficients<br />

as follows: If f ∈ M k (N, χ) then also T p (f) ∈ M k (N, χ) and<br />

a n (T p f) = a np (f) + χ(p)p k−1 a n/p (f) for f ∈ M k (N, χ),<br />

where a n/p (f) = 0, if p ∤ n. Moreover, the acti<strong>on</strong> of T p preserves the subspaces S k (Γ 1 (N))<br />

and S k (N, χ).<br />

So far the Hecke opera<strong>to</strong>rs 〈d〉 and T p are defined for d ∈ (Z/NZ) ∗ and p prime. Now<br />

we extend the definiti<strong>on</strong>s <strong>to</strong> n and T n for all n ∈ N. For n ∈ N with (n, N) = 1, 〈n〉 is<br />

determined by n (mod N). For n ∈ N with (n, N) > 1, define 〈n〉 = 0, the zero opera<strong>to</strong>r.<br />

To define T n , set T 1 = 1 (the identity opera<strong>to</strong>r); T p is already defined for primes p.<br />

For prime powers, define inductively<br />

T p r = T p T p r−1 − p k−1 〈p〉T p r−2, for r ≥ 2.<br />

Extend the definiti<strong>on</strong> multiplicatively <strong>to</strong> T n for all n,<br />

T n = ∏ i<br />

T p e i<br />

where n = ∏ i<br />

p e i<br />

.<br />

Similar <strong>to</strong> the above, we can explicitly write the Fourier coefficients of T n (f), for any<br />

f ∈ M k (Γ 1 (N)). If f ∈ M k (Γ 1 (N)), then a m (T n f) = ∑ d|(m,n) dk−1 a mn/d 2(〈d〉f). In<br />

particular, if f ∈ M k (N, χ), then a m (T n f) = ∑ d|(m,n) χ(d)dk−1 a mn/d 2(f).<br />

For N ∈ N, we let h k (Γ 1 (N), C) denote the subring of End C (S k (Γ 1 (N))) generated over<br />

C by the Hecke opera<strong>to</strong>rs T p for all primes p and the opera<strong>to</strong>rs 〈d〉 acting <strong>on</strong> S k (Γ 1 (N)).<br />

Each element f in S k (Γ 1 (N)) has the Fourier expansi<strong>on</strong> f(z) = ∑ n a n(f)q n , for a n (f) ∈<br />

C. Hence, we may embed S k (Γ 1 (N)) in<strong>to</strong> the power series C[[q]]. One may then give<br />

a rati<strong>on</strong>al structure <strong>on</strong> S k (Γ 1 (N)) by defining the A-rati<strong>on</strong>al subspace S k (Γ 1 (N), A) for<br />

each subalgebra A of C or C p , by S k (Γ 1 (N), A) := S k (Γ 1 (N)) ∩ A[[q]]. Similar <strong>to</strong> above,<br />

<strong>on</strong>e can define the Hecke algebra over Z, and hence over A. We denote this Hecke algebra<br />

by h k (Γ 1 (N), A).<br />

3.2.2 Old<strong>forms</strong> and New<strong>forms</strong><br />

There is a way <strong>to</strong> move between levels is <strong>to</strong> observe that, if M|N then S k (Γ 1 (M)) ⊆<br />

S k (Γ 1 (N)). Another way <strong>to</strong> embed S k (Γ 1 (M)) in<strong>to</strong> S k (Γ 1 (N)) is by composing with the<br />

multiply-by-d map, where d is any fac<strong>to</strong>r of N/M. For any such d, let α d = ( d 0<br />

0 1<br />

)<br />

so that<br />

(f[α d ] k )(τ) = d k−1 f(dτ)<br />

28


for f : H → C. The injective linear map [α d ] k takes S k (Γ 1 (M)) <strong>to</strong> S k (Γ 1 (N)), lifting the<br />

level from M <strong>to</strong> N.<br />

Definiti<strong>on</strong> 3.2.3. For each divisor d of N, let i d be the map<br />

i d : (S k (Γ 1 (Nd −1 ))) 2 → S k (Γ 1 (N))<br />

given by (f, g) → f + g[α d ] k . The subspace of old<strong>forms</strong> of level N is given by<br />

S k (Γ 1 (N)) old = ∑ p|N<br />

i p ((S k (Γ 1 (Np −1 ))) 2<br />

and the subspace of new<strong>forms</strong> of level N is the orthog<strong>on</strong>al complement with respect <strong>to</strong><br />

the Peterss<strong>on</strong> inner product,<br />

S k (Γ 1 (N)) new = (S k (Γ 1 (N)) old ) ⊥ .<br />

For all n ∈ N, the Hecke opera<strong>to</strong>rs T n and 〈n〉 preserve the space of old<strong>forms</strong> and<br />

new<strong>forms</strong>. Moreover, the spaces S k (Γ 1 (N)) old and S k (Γ 1 (N)) new have orthog<strong>on</strong>al bases<br />

of eigen<strong>forms</strong> for the Hecke opera<strong>to</strong>rs away from the level, {T n , 〈n〉 : (n, N) = 1}.<br />

Definiti<strong>on</strong> 3.2.4. A n<strong>on</strong>zero modular form f ∈ M k (Γ 1 (N)) that is an eigenform for the<br />

Hecke opera<strong>to</strong>rs T n and 〈n〉 for all n ∈ N is a Hecke eigenform or simply an eigenform.<br />

The eigenform f(τ) = ∑ ∞<br />

n=0 a n(f)q n is normalized, when a 1 (f) = 1. A newform is a<br />

normalized eigenform in S k (Γ 1 (N)) new .<br />

Theorem 3.2.5 ([DS05]). Let f ∈ S k (Γ 1 (N)) new be a n<strong>on</strong>zero eigenform for the Hecke<br />

opera<strong>to</strong>rs T n and 〈n〉 for all n with (n, N) = 1. Then f is an eigenform.<br />

3.2.3 Complex multiplicati<strong>on</strong><br />

We briefly recall the definiti<strong>on</strong> of a newform <strong>to</strong> have complex multiplicati<strong>on</strong>. For more<br />

details, refer <strong>to</strong> [Rib77, §3].<br />

Let f ∈ S k (N, χ) be a newform and let ϕ be a Dirichlet character. We let f ⊗ ϕ be<br />

f ⊗ ϕ := ∑ n<br />

ϕ(n)a n (f)q n .<br />

By [Shi71, Prop. 3.64], f ⊗ ϕ is a modular form of weight k <strong>on</strong> Γ 1 (ND 2 ) of nebentypus<br />

χϕ 2 , if ϕ is defined mod D. We have (f ⊗ ϕ)| Tp = ϕ(p)a p (f)(f ⊗ ϕ) for p ∤ ND.<br />

Definiti<strong>on</strong> 3.2.6. Suppose ϕ ≠ 1. The form f has complex multiplicati<strong>on</strong> (or CM for<br />

short) by ϕ, if ϕ(p)a p (f) = a p (f) for all primes p in a set of primes of density 1.<br />

Remark 3.2.7. If f has CM by ϕ, then we have χϕ 2 = χ, and ϕ(p)a p (f) = a p (f) for<br />

all p ∤ DN. The first equati<strong>on</strong> implies that ϕ is a quadratic character. If the kernel of ϕ<br />

defines a imaginary quadratic field F , we say that f has CM by F .<br />

29


Chapter 4<br />

Galois Representati<strong>on</strong>s and<br />

Au<strong>to</strong>morphic Forms <strong>on</strong> GL n<br />

We start the chapter by stating the results (cf. §4.1) which motivated the first part of<br />

the thesis. Then we recall some definiti<strong>on</strong>s and some facts from p-adic Hodge theory (cf.<br />

§4.2). In §4.3, we reprove Theorem 4.1.1, using the work of Colmez-F<strong>on</strong>taine [CF00], and<br />

it serves <strong>to</strong> illustrate the techniques that will be used. In §4.4, we recall some generalities<br />

about Galois representati<strong>on</strong>s associated <strong>to</strong> au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ).<br />

4.1 Motivati<strong>on</strong><br />

For a global or a <strong>local</strong> field F , we set G F = Gal( ¯F /F ). For simplicity, we write G p for<br />

G Qp . Let ℘ be the prime of ¯Q determined by a fixed embedding of ¯Q in<strong>to</strong> ¯Q p .<br />

Let f = ∑ ∞<br />

n=1 a n(f)q n be a normalized eigenform (i.e., primitive form) of weight<br />

k ≥ 2, level Np r ≥ 1, with (N, p) = 1, and nebentypus χ. Let ℘ also denote the induced<br />

prime of K f = Q(a n (f)), the Hecke field of f, and let K f,℘ denote the completi<strong>on</strong> of K f<br />

at ℘. There is a global Galois representati<strong>on</strong><br />

ρ f,℘ : G Q → GL 2 (K f,℘ ) (4.1.1)<br />

associated <strong>to</strong> f (and ℘) by Deligne which has the property that for all primes l ∤ Np,<br />

trace(ρ f,℘ (Frob l )) = a l (f) and det(ρ f,℘ (Frob l )) = χ(l)l k−1 .<br />

Thus det(ρ f,℘ ) = χχ k−1<br />

cyc,p, where χ cyc,p is the p-adic cyclo<strong>to</strong>mic character.<br />

It is a well-known result of Ribet that the global representati<strong>on</strong> ρ f,℘ is irreducible.<br />

However, if f is ordinary at ℘, i.e., a p (f) is a ℘-adic unit, then an important theorem of<br />

Wiles, valid more generally for Hilbert modular <strong>forms</strong>, says that the corresp<strong>on</strong>ding <strong>local</strong><br />

representati<strong>on</strong> ρ f,℘ restricted <strong>to</strong> G p is reducible.<br />

Theorem 4.1.1 ([Wil88]). Let f be a ℘-ordinary primitive form as above. Then the<br />

restricti<strong>on</strong> of ρ f,℘ <strong>to</strong> the decompositi<strong>on</strong> subgroup G p is reducible. More precisely, there<br />

exists a basis in which<br />

(<br />

)<br />

χ p · λ(β/p k−1 ) · χ k−1<br />

cyc,p u<br />

ρ f,℘ | Gp ∼<br />

, (4.1.2)<br />

0 λ(α)<br />

31


where χ = χ p χ ′ is the decompositi<strong>on</strong> of χ in<strong>to</strong> its p and prime-<strong>to</strong>-p-parts, λ(x) : G p →<br />

K × f,℘ is the unramified character which takes arithmetic Frobenius <strong>to</strong> x, and u : G p → K f,℘<br />

is a c<strong>on</strong>tinuous functi<strong>on</strong>. Here α is (i) the unit root of X 2 − a p (f)X + p k−1 χ(p) if p ∤ N,<br />

(ii) the unit a p (f) if p||N, p ∤ c<strong>on</strong>d(χ) and k = 2, and (iii) the unit a p (f) if p|N,<br />

v p (N) = v p (c<strong>on</strong>d(χ)). In all cases αβ = χ ′ (p)p k−1 .<br />

Moreover, in case (ii), a p (f) is a unit if and <strong>on</strong>ly if k = 2, and <strong>on</strong>e can easily show that<br />

ρ f,℘ | Gp is irreducible when k > 2.<br />

Urban has generalized Theorem 4.1.1 <strong>to</strong> the case of primitive Siegel modular cusprepresentati<strong>on</strong>s<br />

of genus 2. We briefly recall this result here. Let π be a cuspidal au<strong>to</strong>morphic<br />

representati<strong>on</strong> of GSp 4 (A Q ) whose Archimedean comp<strong>on</strong>ent π ∞ bel<strong>on</strong>gs <strong>to</strong> the discrete<br />

series, with cohomological weights (a, b; a + b) with a ≥ b ≥ 0. For each prime p, Laum<strong>on</strong>,<br />

Taylor and Weissauer have defined a four-dimensi<strong>on</strong>al Galois representati<strong>on</strong><br />

ρ π,p : G Q → GL 4 ( ¯Q p )<br />

with standard properties. Let p be an unramified prime for π. Then Tilouine and Urban<br />

have generalized the noti<strong>on</strong> of ordinariness for such primes p in three ways <strong>to</strong> what they<br />

call Borel ordinary, Siegel ordinary, and Klingen ordinary (these terms come from the<br />

underlying parabolic subgroups of GSp 4 (A Q )). In the Borel case, the p-ordinariness of π<br />

implies that the Hecke polynomial of π p , namely<br />

(X − α)(X − β)(X − γ)(X − δ),<br />

has the property that the p-adic valuati<strong>on</strong>s of α, β, γ and δ are 0, b+1, a+2 and a+b+3,<br />

respectively.<br />

Theorem 4.1.2 ([Urb05], [TU99]). Say π is a Borel p-ordinary au<strong>to</strong>morphic cusp representati<strong>on</strong><br />

for GSp 4 (A Q ) which is stable at ∞ with cohomological weights (a, b; a + b).<br />

Then the restricti<strong>on</strong> of ρ π,p <strong>to</strong> the decompositi<strong>on</strong> subgroup G p is upper-triangular. More<br />

precisely, there is a basis in which ρ π,p | Gp<br />

⎛<br />

⎞<br />

λ(δ/p a+b+3 ) · χ a+b+3<br />

cyc,p ∗ ∗ ∗<br />

0 λ(γ/p a+2 ) · χ a+2<br />

cyc,p ∗ ∗<br />

∼ ⎜<br />

⎝ 0 0 λ(β/p b+1 ) · χ b+1 ⎟<br />

cyc,p ∗ ⎠ ,<br />

0 0 0 λ(α)<br />

where λ(x) is the unramified character which takes arithmetic Frobenius <strong>to</strong> x.<br />

We remark that ρ π,p above is the c<strong>on</strong>tragredient of the <strong>on</strong>e used in [Urb05] (we also use<br />

the arithmetic Frobenius in defining our unramified characters), so the theorem matches<br />

exactly with [Urb05, Cor. 1 (iii)]. Similar results in the Siegel and Klingen cases can be<br />

found in the other parts of [Urb05, Cor. 1].<br />

The <strong>local</strong> Galois representati<strong>on</strong>s appearing in Theorems 4.1.1 and 4.1.2 are sometimes<br />

referred <strong>to</strong> as (p, p)-Galois representati<strong>on</strong>s. The main point of our thesis is <strong>to</strong> prove<br />

structure theorems for the <strong>local</strong> (p, p)-Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic<br />

representati<strong>on</strong> of GL n (A Q ).<br />

In this study, <strong>on</strong>e of the key ingredients is p-adic Hodge theory, especially, the equivalence<br />

of categories between potentially semistable representati<strong>on</strong>s and filtered (ϕ, N)-<br />

modules with coefficients and descent data.<br />

32


4.2 p-adic Hodge theory<br />

We start by recalling some definiti<strong>on</strong>s from p-adic Hodge theory. For more details, see<br />

[F<strong>on</strong>94], [FO], and [GM09].<br />

Let p be a prime. Let F be a finite Galois extensi<strong>on</strong> of Q p and let F 0 be the maximal<br />

unramified extensi<strong>on</strong> of Q p c<strong>on</strong>tained in F . Let E be another finite extensi<strong>on</strong> of Q p .<br />

Definiti<strong>on</strong> 4.2.1. A filtered (ϕ, N, F, E)-module (with descent data, i.e., Gal(F/Q p )-<br />

acti<strong>on</strong>) is a free of finite rank (F 0 ⊗ Qp E)-module D endowed with<br />

1. the Frobenius endomorphism: an F 0 -semi-linear, E-linear, bijective map ϕ : D → D,<br />

2. the m<strong>on</strong>odromy opera<strong>to</strong>r: an F 0 ⊗ Qp E-linear, nilpotent endomorphism N : D → D<br />

which satisfies Nϕ = pϕN,<br />

3. an F 0 -semi-linear, E-linear acti<strong>on</strong> of Gal(F/Q p ) (the acti<strong>on</strong> <strong>on</strong> F 0 is via the projecti<strong>on</strong><br />

<strong>to</strong> Gal(F 0 /Q p )), which commutes with the acti<strong>on</strong> of ϕ and N,<br />

4. a decreasing filtrati<strong>on</strong> (Fil i D F ) i∈Z of F ⊗ Qp E-submodules of D F = F ⊗ F0 D satisfying<br />

Fil i D F = 0 for i ≫ 0 and Fil i D F = D F for i ≪ 0 and which are stable under<br />

the acti<strong>on</strong> of Gal(F/Q p ).<br />

For simplicity, we call a filtered (ϕ, N, F, E)-module as a filtered module or a crystal,<br />

if the parameters are clear from the c<strong>on</strong>text.<br />

4.2.1 F<strong>on</strong>taine’s rings<br />

We wish <strong>to</strong> recall briefly the definiti<strong>on</strong> of some of F<strong>on</strong>taine’s rings of periods.<br />

F<strong>on</strong>taine’s rings are <strong>to</strong>pological Q p -algebras B equipped with an acti<strong>on</strong> of G p such<br />

that B G F<br />

is a field for every finite extensi<strong>on</strong> F of Q p . For us the main example will be<br />

B st which sits (n<strong>on</strong>-can<strong>on</strong>ically) between B cris and B dR . Let<br />

Ẽ + = lim ←−<br />

x→x p O Cp = {x = (x (0) , x (1) , ..., ) | x (i) ∈ O Cp , (x (i+1) ) p = x (i) }.<br />

Additi<strong>on</strong> given by (x + y) (i) = lim<br />

n→∞ (x(i+n) + y (i+n) ) pn and comp<strong>on</strong>entwise multiplicati<strong>on</strong><br />

turn Ẽ+ in<strong>to</strong> a perfect ring of characteristic p. Let Ã+ = W (Ẽ+ ) be the ring of Witt<br />

vec<strong>to</strong>rs, and let ˜B + = Ã+ [1/p]. Elements of Ã+ , respectively ˜B + , may be written as<br />

∑ p k [x k ] where the sum is over k ≥ 0, respectively k ≥ −n, for some n ≥ 0, and [ ]<br />

denotes Teichmüller representative.<br />

There is a ring homomorphism θ : ˜B + → C p which maps ∑ p k [x k ] <strong>to</strong> ∑ p k x (0)<br />

k<br />

, and<br />

ker(θ) = (ω) is a principal ideal. We let B + dR be the completi<strong>on</strong> of ˜B + with respect <strong>to</strong><br />

ker(θ). So elements of B + dR can be written as ∑ b n ω n with b n ∈ ˜B + .<br />

Fix an element ɛ = (ɛ (0) , ɛ(1), . . .) ∈ Ẽ+ where ɛ (n) is a primitive p n -th root of unity.<br />

Then θ(1 − [ɛ]) = 0 and t := log[ ] c<strong>on</strong>verges as a series in B + dR . Define B dR = B + dR [1/t].<br />

Then B dR has a natural filtrati<strong>on</strong> given by Fil i B dR = t i B + dR<br />

. Also, under the natural<br />

Galois acti<strong>on</strong>, B G F<br />

dR = F for any finite extensi<strong>on</strong> F of Q p.<br />

Now set<br />

B + cris = {x = ∑ w n<br />

b n ∈ B +<br />

n!<br />

dR | b n ∈ ˜B + , b n → 0}<br />

33


where the c<strong>on</strong>vergence of the b n is in the p-adic <strong>to</strong>pology. Finally set B cris = B + cris [1/t].<br />

Then B cris has a Frobenius ϕ : B cris → B cris , and B G F<br />

cris = F 0.<br />

Now let B st = B cris [Y ] be the polynomial ring in <strong>on</strong>e variable over B cris . Extend<br />

the Frobenius <strong>to</strong> B st by defining ϕ(Y ) = pY . There is also the m<strong>on</strong>odromy opera<strong>to</strong>r<br />

N = − d<br />

dY<br />

<strong>on</strong> B st which satisfies Nϕ = pϕN. Finally the Galois acti<strong>on</strong> <strong>on</strong> Y may be<br />

specified, and again <strong>on</strong>e has B G F<br />

st = F 0 . Set ˜p = (p (0) , p (1) , ...) ∈ Ẽ+ where p (n) is a<br />

primitive p n -th root of p. We will think of B st as a sub-ring of B dR by mapping Y <strong>to</strong><br />

log[˜p], though the definiti<strong>on</strong> of this last element depends <strong>on</strong> a choice, that of log p (p),<br />

which we will take <strong>to</strong> be 0.<br />

4.2.2 Newt<strong>on</strong> and Hodge numbers<br />

We start by recalling the definiti<strong>on</strong>s of Newt<strong>on</strong> and Hodge numbers, and some results.<br />

Let D be a filtered (ϕ, N, F, E)-module. Then by forgetting the E-module structure,<br />

D is also a filtered (ϕ, N, F, Q p )-module. Let d = dim F0 D. Then Λ d F 0<br />

D is a filtered<br />

(ϕ, N, F, Q p )-module of dimensi<strong>on</strong> 1 over F 0 . Set<br />

t H (D) = max{i ∈ Z | Fil i (F ⊗ F0 Λ d F 0<br />

D) ≠ 0}, t N (D) = v p (λ),<br />

where for a n<strong>on</strong>-zero element x of Λ d F 0<br />

D, ϕ(x) = λx, with λ ∈ F 0 , where v p is a normalized<br />

valuati<strong>on</strong> such that v p (p) = 1. One says that D is admissible (originally weakly<br />

admissible), if t H (D) = t N (D), and<br />

• for any F 0 -submodule D ′ of D stable by ϕ and N, t H (D) ≤ t N (D), where D ′ F ⊂ D F<br />

is equipped with the induced filtrati<strong>on</strong>.<br />

It turns out that the filtered (ϕ, N, F, E)-module D is admissible, if the sec<strong>on</strong>d c<strong>on</strong>diti<strong>on</strong><br />

above is replaced by the following weaker c<strong>on</strong>diti<strong>on</strong>:<br />

• for any (F 0 ⊗ Qp E)-submodule D ′ of D stable by ϕ and N, t H (D) ≤ t N (D), where<br />

again D ′ F ⊂ D F is equipped with the induced filtrati<strong>on</strong>.<br />

From now, we shall assume that all the c<strong>on</strong>jugates of F are c<strong>on</strong>tained in E.<br />

Lemma 4.2.2. Suppose D 2 ⊆ D 1 are two free of finite rank modules over F ⊗ Qp E. Then<br />

D 1 /D 2 is also free of finite rank = rank(D 1 ) − rank(D 2 ).<br />

Proof. We start with a basis of D 2 . For any F ⊗ Qp E-module D, we have that D ≃<br />

∏<br />

σ:F ↩→E D σ, where D σ = D ⊗ F ⊗E,σ E, a E-vec<strong>to</strong>r space. In each projecti<strong>on</strong> D 1σ of D 1 ,<br />

we can extend the basis of D 2σ <strong>to</strong> D 1σ . Now pull back the extended basis vec<strong>to</strong>rs in each<br />

D 1σ , we get a basis of D 1 , which extends the basis of D 2 .<br />

Lemma 4.2.3 (Newt<strong>on</strong> number). Suppose D is a filtered (ϕ, N, F, E)-module of rank n,<br />

such that the acti<strong>on</strong> of ϕ is E-semisimple, i.e., there exists a basis {e 1 , · · · , e n } of D such<br />

that ϕ(e i ) = α i e i , for some α i ∈ E × . Then<br />

t N (D) = [E : Q p ] ·<br />

n∑<br />

v p (α i ).<br />

Proof. The proof is standard from the definiti<strong>on</strong> of the Newt<strong>on</strong> number.<br />

34<br />

i=1


Lemma 4.2.4 (Hodge number). Suppose D is a filtered (ϕ, N, F, E)-module of rank n.<br />

Then<br />

t H (D) = [E : Q p ] · ∑<br />

i · rank F ⊗Qp E gr i D F .<br />

i∈Z<br />

Proof. Since D is a filtered module, there exists a filtrati<strong>on</strong> (Fil i D F ) i∈Z of (F ⊗ Qp E)-<br />

submodules of D F . Then, by forgetting the E-module structure, D is also a filtered<br />

(ϕ, N, F, Q p )-module and each term of the filtrati<strong>on</strong> {Fil i D F } can also thought of as an<br />

F -module. By a standard formula (see, e.g., [FO, Prop. 6.45]), we have:<br />

t H (D) = ∑ i∈Z<br />

i · dim F gr i D F ,<br />

where gr i D F = Fil i D F /Fil i+1 D F with gr i D F thought of as an F -module. By [Sav05] and<br />

by Lemma 4.2.2, we see that each Fil i D F and gr i D F are free of finite rank over F ⊗ Qp E,<br />

respectively. Since dim F D = [E : Q p ] · rank F ⊗Qp ED, we obtain the lemma.<br />

Remark 4.2.5. By the last two lemmas, <strong>on</strong>e can drop the comm<strong>on</strong> fac<strong>to</strong>r of [E : Q p ]<br />

when checking the admissibility of a filtered (ϕ, N, F, E)-module.<br />

Corollary 4.2.6. Suppose D is a filtered (ϕ, N, F, E)-module of rank 1. Then<br />

t H (D) = [E : Q p ] · β,<br />

where β is the unique integer such that 0 = Fil β+1 D F Fil β D F = D F .<br />

Lemma 4.2.7. Let D 1 , D 2 be two filtered (ϕ, N, F, E)-modules, of rank r 1 , r 2 , respectively.<br />

Assume that the acti<strong>on</strong> of ϕ <strong>on</strong> D 1 , D 2 is semisimple. Then<br />

t N (D 1 ⊗ D 2 ) = rank(D 1 ) t N (D 2 ) + rank(D 2 ) t N (D 1 ),<br />

t H (D 1 ⊗ D 2 ) = rank(D 1 ) t H (D 2 ) + rank(D 2 ) t H (D 1 ).<br />

(4.2.1a)<br />

(4.2.1b)<br />

Proof. These formulas are well-known if E = Q p . The proof of (4.2.1a) is an easy check.<br />

It is enough <strong>to</strong> prove (4.2.1b) when D 1 , D 2 are of rank 1, since<br />

∧ r 1r 2<br />

(D 1 ⊗ D 2 ) = ∧ r 2<br />

(D 2 ) ⊗ · · · ⊗ ∧ r 2<br />

(D 2 ) ⊗ ∧ r 1<br />

(D<br />

} {{ }<br />

1 ) ⊗ · · · ⊗ ∧ r 1<br />

(D 1 ),<br />

} {{ }<br />

r 1 -times<br />

r 2 -times<br />

where the tensor products are taken over F ⊗ Qp E. In this case (4.2.1b) follows from<br />

Corollary 4.2.6.<br />

4.2.3 Potentially semistable representati<strong>on</strong>s<br />

Let V be a finite-dimensi<strong>on</strong>al vec<strong>to</strong>r space over E.<br />

Definiti<strong>on</strong> 4.2.8. A representati<strong>on</strong> ρ : G p → GL(V ) is said <strong>to</strong> be semistable over F , or<br />

F -semistable, if dim F0 D st,F (V ) = dim F0 (B st ⊗ Qp V ) G F<br />

= dim Qp V , where F 0 = B G F<br />

st . If<br />

such an F exists, ρ is said <strong>to</strong> be a potentially semistable representati<strong>on</strong>. If F = Q p , we<br />

say that ρ is semistable.<br />

Remark 4.2.9. If ρ is F -semistable, then ρ is F ′ -semistable for any finite extensi<strong>on</strong> of<br />

F ′ /F . Hence we may and do assume that F is Galois over Q p .<br />

35


The following fundamental theorem plays a key role in subsequent arguments.<br />

Theorem 4.2.10 ([CF00]). There is an equivalence of categories between F -semistable<br />

representati<strong>on</strong>s ρ : G p → GL n (E) with Hodge-Tate weights −β n ≤ · · · ≤ −β 1 and admissible<br />

filtered (ϕ, N, F, E)-module D of rank n over F 0 ⊗ Qp E such that the jumps in the<br />

Hodge filtrati<strong>on</strong> Fil i D F <strong>on</strong> D F := F ⊗ F0 D are at β 1 ≤ · · · ≤ β n .<br />

The jumps in the filtrati<strong>on</strong> <strong>on</strong> D F = F ⊗ F0 D st,F (ρ) are the negatives of the Hodge-<br />

Tate weights of ρ, i.e., if h is a Hodge-Tate weight, then Fil −h+1 (D F ) Fil −h (D F ). The<br />

equivalence of categories in the theorem is induced by F<strong>on</strong>taine’s func<strong>to</strong>r D st,F . The<br />

Frobenius ϕ, m<strong>on</strong>odromy N, and filtrati<strong>on</strong> <strong>on</strong> B st induce the corresp<strong>on</strong>ding structures <strong>on</strong><br />

D st,F (V ). There is also an induced acti<strong>on</strong> of Gal(F/Q p ) <strong>on</strong> D st,F (V ). As an illustrati<strong>on</strong><br />

of the power of the theorem we recall the following useful (and well-known) fact:<br />

Corollary 4.2.11. Every potentially semistable character χ : G p → E × is of the form<br />

χ = χ 0 · λ(a 0 ) · χ i cyc,p, where χ 0 is a finite order character of Gal(F/Q p ), for a cyclo<strong>to</strong>mic<br />

extensi<strong>on</strong> F of Q p , −i ∈ Z is the Newt<strong>on</strong> number of D st,F (χ), and λ(a 0 ) is the unramified<br />

character that takes arithmetic Frobenius <strong>to</strong> the unit a 0 = p −i /a ∈ O × E<br />

, where a = ϕ(v)/v<br />

for any vec<strong>to</strong>r v in D st,F (χ).<br />

Proof. Every potentially semistable χ : G Q → E × is F -semistable for a sufficiently large<br />

cyclo<strong>to</strong>mic extensi<strong>on</strong> of Q p . Let D st,F (χ) be the corresp<strong>on</strong>ding filtered (ϕ, N)-module with<br />

coefficients and descent data. Suppose that the induced Gal(F/Q p )-acti<strong>on</strong> <strong>on</strong> D st,F (χ)<br />

is given the character χ 0 . Now c<strong>on</strong>sider the F -semistable E-valued character χ ′ := χ 0 ·<br />

λ(a 0 ) · χ i cyc,p. One easily checks that D st,F (χ ′ ) = D st,F (χ). By Theorem 4.2.10, we have<br />

χ = χ ′ = χ 0 · λ(a 0 ) · χ i cyc,p.<br />

4.2.4 Weil-Deligne representati<strong>on</strong>s<br />

We now recall the definiti<strong>on</strong> of the Weil-Deligne representati<strong>on</strong> associated <strong>to</strong> an F -<br />

semistable representati<strong>on</strong> ρ : G p → GL n (E), due <strong>to</strong> F<strong>on</strong>taine. Let W F denote the Weil<br />

group of F , and when F = Q p , we denote W Qp by W p . For any (ϕ, N, F, E)-module D,<br />

we have the decompositi<strong>on</strong><br />

D ≃<br />

[F 0 :Q p]<br />

∏<br />

i=1<br />

D i , (4.2.2)<br />

where D i = D ⊗ (F0 ⊗ Qp E,σ i ) E, and σ is the arithmetic Frobenius of F 0 /Q p .<br />

Definiti<strong>on</strong> 4.2.12 (Weil-Deligne representati<strong>on</strong>). Let ρ : G p → GL n (E) be an F -<br />

semistable representati<strong>on</strong>. Let D be the corresp<strong>on</strong>ding filtered module. Noting W p /W F =<br />

Gal(F/Q p ), we let<br />

g ∈ W p act <strong>on</strong> D by (g mod W F ) ◦ ϕ −α(g) , (4.2.3)<br />

where the image of g in Gal(¯F p /F p ) is the α(g)-th power of the arithmetic Frobenius at p.<br />

We also have the an acti<strong>on</strong> of N via the m<strong>on</strong>odromy opera<strong>to</strong>r <strong>on</strong> D. These acti<strong>on</strong>s induce<br />

a Weil-Deligne acti<strong>on</strong> <strong>on</strong> each D i in (4.2.2) and the resulting Weil-Deligne representati<strong>on</strong>s<br />

are all isomorphic. This isomorphism class is defined <strong>to</strong> be the Weil-Deligne representati<strong>on</strong><br />

WD(ρ) associated <strong>to</strong> ρ.<br />

36


Remark 4.2.13. If F/Q p is <strong>to</strong>tally ramified and Frob p ∈ W p is the arithmetic Frobenius,<br />

then WD(ρ)(Frob p ) acts by ϕ −1 .<br />

Lemma 4.2.14. Let ρ : G p → GL n (E) be a potentially semistable representati<strong>on</strong>.<br />

WD(ρ) is irreducible, then so is ρ.<br />

If<br />

Proof. Suppose the space V which affords ρ is reducible. By Theorem 4.2.10, the reducibility<br />

of V is equivalent <strong>to</strong> the existence of a n<strong>on</strong>-trivial admissible filtered (ϕ, N, F, E)-<br />

submodule of D st,F (V ). From the definiti<strong>on</strong> of the Weil-Deligne acti<strong>on</strong> given above, this<br />

submodule is both W p and N stable. Thus WD(ρ) is reducible, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

4.3 The case of GL 2<br />

Let f be a primitive ℘-ordinary form. Let ρ f,℘ be the associated Galois representati<strong>on</strong>.<br />

In this secti<strong>on</strong>, we shall reprove Theorem 4.1.1 (reducibility of ρ f,℘ | Gp ).<br />

Wiles’ original proof in [Wil88] involves some amount of p-adic Hodge theory. More<br />

precisely it uses some Dieud<strong>on</strong>né theory for the abelian varieties associated by Shimura <strong>to</strong><br />

cusp <strong>forms</strong> of weight 2. The result for <strong>forms</strong> of weight greater than 2 is then deduced by<br />

a clever use of certain auxiliary Λ-adic Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> Hida families<br />

of ordinary <strong>forms</strong> [Hid86a] (see [BGK10, §6] for a detailed expositi<strong>on</strong> of the argument).<br />

The proof we give below avoids Hida theory completely, and (as the expert will note) is<br />

a simple extensi<strong>on</strong> of Wiles’ weight 2 argument. We remark that this proof could not<br />

have been given in [Wil88], since the equivalence of categories of Colmez and F<strong>on</strong>taine<br />

(Theorem 4.2.10) was of course unavailable at the time.<br />

A key ingredient in our proof is the fact that Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> primitive<br />

<strong>forms</strong> live in strictly compatible systems of Galois representati<strong>on</strong>s [Sai97]. The c<strong>on</strong>sequent<br />

ability <strong>to</strong> transfer informati<strong>on</strong> about the Weil-Deligne parameter between various<br />

members of the family has been used <strong>to</strong> great effect in recent times (e.g., in the Khare-<br />

Wintenberger proof of Serre’s c<strong>on</strong>jecture) and is important for us as well. We start by<br />

recalling the definiti<strong>on</strong> of such a system of Galois representati<strong>on</strong>s following [KW09, §5].<br />

Let K be a number field, l be a prime, and let ρ : G K → GL n ( ¯Q l ) be a c<strong>on</strong>tinuous<br />

Galois representati<strong>on</strong>.<br />

Definiti<strong>on</strong> 4.3.1. We say that ρ is geometric, if it is unramified outside a finite set<br />

of primes of K and its restricti<strong>on</strong>s <strong>to</strong> the decompositi<strong>on</strong> group at primes above l are<br />

potentially semistable.<br />

For every prime q of K, a geometric representati<strong>on</strong> defines a representati<strong>on</strong> of W ′ q,<br />

the Weil-Deligne group of Q q , with values in GL n ( ¯Q l ), well-defined up <strong>to</strong> c<strong>on</strong>jugacy.<br />

For primes q of characteristic not l, the definiti<strong>on</strong> comes from the theory of Deligne-<br />

Grothendieck, and for primes q of characteristic l, the definiti<strong>on</strong> comes from F<strong>on</strong>taine<br />

theory (cf. Definiti<strong>on</strong> 4.2.12).<br />

Definiti<strong>on</strong> 4.3.2. For a number field L, we call an L-rati<strong>on</strong>al, n-dimensi<strong>on</strong>al strictly<br />

compatible system of geometric representati<strong>on</strong>s (ρ l ) of G K the data of:<br />

1. For each prime l and each embedding i : L ↩→ ¯Q l , a c<strong>on</strong>tinuous, semisimple representati<strong>on</strong><br />

ρ l : G K → GL n ( ¯Q l ) that is geometric.<br />

37


2. For each prime q of K, an F -semisimple (Frobenius semisimple) representati<strong>on</strong><br />

r q : W ′ q → GL n (L) such that:<br />

• r q is unramified for all q outside a finite set.<br />

• for each l and each i : L ↩→ ¯Q l , the Frobenius semisimple Weil-Deligne representati<strong>on</strong><br />

W ′ q → GL n ( ¯Q l ) associated <strong>to</strong> ρ l | Gq is c<strong>on</strong>jugate <strong>to</strong> r q (via the<br />

embedding i : L ↩→ ¯Q l ).<br />

• There are n-distinct integers β 1 < · · · < β n , such that ρ l has Hodge-Tate<br />

weights {−β 1 , . . . , −β n } (the minus signs arise since the weights are the negatives<br />

of the jumps in the Hodge filtrati<strong>on</strong> <strong>on</strong> the associated filtered module).<br />

By work of Faltings, it is known that ρ f,℘ | Gp is a potentially semistable representati<strong>on</strong><br />

with Hodge-Tate weights {0, k − 1}. Let D be the admissible filtered (ϕ, N, F, E)-module<br />

associated <strong>to</strong> this representati<strong>on</strong> for a suitable choices of F , and E = K f,℘ . By Theorem<br />

4.2.10, the study of the structure of the (p, p)-Galois representati<strong>on</strong> ρ f,℘ | Gp reduces<br />

<strong>to</strong> that of the study of the filtered module D. In particular, ρ f,℘ | Gp is reducible if and<br />

<strong>on</strong>ly if D has a n<strong>on</strong>-trivial admissible submodule.<br />

As menti<strong>on</strong>ed above, a key ingredient in our proof of Theorem 4.1.1 is that the representati<strong>on</strong><br />

ρ f,℘ lives in a strictly compatible system of Galois representati<strong>on</strong>s (ρ f,λ ), where<br />

λ varies over the primes of K f . This result is the culminati<strong>on</strong> of the work of several<br />

people, including Langlands, Deligne, Carayol, Katz-Messing, and most recently Sai<strong>to</strong><br />

[Sai97]. In particular, <strong>on</strong>e may read off the Weil-Deligne representati<strong>on</strong> WD(ρ f,℘ | Gp ) <strong>on</strong><br />

D (cf. Definiti<strong>on</strong> 4.2.12) by looking at the Weil-Deligne representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> ρ f,λ | Gp<br />

for a place λ of K f with λ ∤ p. As a c<strong>on</strong>sequence, <strong>on</strong>e may read off, e.g., the characteristic<br />

polynomial of crystalline Frobenius ϕ purely in terms of a λ-adic member of the strictly<br />

compatible family for λ ∤ p.<br />

Let π be the cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL 2 (A Q ) corresp<strong>on</strong>ding <strong>to</strong> f. It is<br />

well-known that f is ordinary at ℘ <strong>on</strong>ly if the underlying <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong><br />

π p is in the principal series or (an unramified twist of) the Steinberg representati<strong>on</strong>. We<br />

obtain:<br />

Theorem 4.3.3. The characteristic polynomial P (X) of the (inverse of) crystalline<br />

Frobenius ϕ <strong>on</strong> D coincides with that of ρ f,λ (Frob p ) for a place λ of K f with λ ∤ p.<br />

More precisely, in the cases we need, P (X) is given by:<br />

• (Unramified principal series) If p ∤ N, then ρ f,℘ | Gp is crystalline and P (X) =<br />

X 2 − a p (f)X + χ(p)p k−1 .<br />

• (Steinberg) If p||N and v p (c<strong>on</strong>d(χ)) = 0, then ρ f,℘ | Gp is Q p -semistable and P (X) =<br />

(X − a p (f)) (X − pa p (f)).<br />

• (Ramified principal series) If p|N with v p (N) = v p (c<strong>on</strong>d(χ)), then ρ f,℘ | Gp is potentially<br />

crystalline and P (X) = (X − a p (f))(X − χ ′ (p)ā p (f)), where χ ′ denotes the<br />

prime-<strong>to</strong>-p part of the character χ.<br />

More generally, the complete rank 2 filtered (ϕ, N, F, E)-module D can be written down<br />

quite explicitly in all the above cases (cf. [Bre01], [GM09]). We now give a proof of<br />

Theorem 4.1.1 using this structure of D, which we first recall below in various cases.<br />

38


Good reducti<strong>on</strong>: p ∤ N<br />

In this case F = Q p and ρ f,℘ | Gp is crystalline (N = 0). Let D be the corresp<strong>on</strong>ding filtered<br />

(ϕ, N)-module. Let α and β be the two roots of P (X) = X 2 − a p (f)X + χ(p)p k−1 , with<br />

v p (α) = 0 and v p (β) = k − 1, since v p (a p (f)) = 0. The structure of the filtered module<br />

D is well-known (cf. [Bre01, p. 30-32], where the normalizati<strong>on</strong>s are a bit different).<br />

There are essentially two possibilities for D depending <strong>on</strong> whether D is decomposable or<br />

indecomposable. If D is decomposable, then D = Ee 1 ⊕ Ee 2 , and<br />

D =<br />

{<br />

ϕ(e1 ) = α −1 e 1 , ϕ(e 2 ) = β −1 e 2 ,<br />

Fil i (D F ) = 0 if i ≥ 1, Ee 1 if 2 − k ≤ i ≤ 0, D if i ≤ 1 − k.<br />

If D is indecomposable, then D = Ee 1 ⊕ Ee 2 , and<br />

D =<br />

{<br />

ϕ(e1 ) = α −1 e 1 + p 1−k e 2 , ϕ(e 2 ) = β −1 e 2 ,<br />

Fil i (D F ) = 0 if i ≥ 1, Ee 1 if 2 − k ≤ i ≤ 0, D if i ≤ 1 − k.<br />

Steinberg case: p ‖ N and p ∤ c<strong>on</strong>d(χ)<br />

In this case F = Q p , ρ f,℘ | Gp is semistable over Q p but n<strong>on</strong>-crystalline, and v p (a p (f)) =<br />

k−2<br />

2 . Note v p(a p (f)) = 0 if and <strong>on</strong>ly if k = 2. Let D be the corresp<strong>on</strong>ding filtered<br />

(ϕ, N)-module (cf. [GM09, §3.1]). Set α = a p (f) and β = pa p (f). Then D = Ee 1 ⊕ Ee 2 ,<br />

and<br />

⎧<br />

⎪⎨<br />

ϕ(e 1 ) = pβ −1 e 1 , ϕ(e 2 ) = β −1 e 2 ,<br />

D = N(e 1 ) = e 2 , N(e 2 ) = 0,<br />

⎪⎩<br />

Fil i (D F ) = 0 if i ≥ 1, E(e 1 − Le 2 ) if 2 − k ≤ i ≤ 0, D if i ≤ 1 − k,<br />

for some unique n<strong>on</strong>-zero L ∈ E.<br />

Ramified principal series: m = v p (c<strong>on</strong>d(χ)) = v p (N) ≥ 1<br />

In this case, ρ f,℘ | Gp becomes crystalline over the <strong>to</strong>tally ramified abelian extensi<strong>on</strong> F =<br />

Q p (µ p m) of Q p . Decompose χ = χ p χ ′ in<strong>to</strong> its p-part and prime-<strong>to</strong>-p part. Let D be the<br />

associated admissible filtered (ϕ, N, F, E)-module. An explicit descripti<strong>on</strong> of this module<br />

was given in [GM09, §3.2]. Set α = a p (f) and β = χ ′ (p)ā p (f). Then D = Ee 1 ⊕ Ee 2 , and<br />

D =<br />

{<br />

ϕ(e1 ) = α −1 e 1 , ϕ(e 2 ) = β −1 e 2 ,<br />

g(e 1 ) = e 1 , g(e 2 ) = χ p (g)e 2 ,<br />

for g ∈ Gal(F/Q p ). Since v p (a p (f)) = 0, the module D is either D ord-split or D ord-n<strong>on</strong>-split<br />

(cf. [GM09, §3.2]). The corresp<strong>on</strong>ding filtrati<strong>on</strong>s in these cases are given by<br />

Fil i (D F )<br />

= 0 if i ≥ 1, (F ⊗ E)e 1 if 2 − k ≤ i ≤ 0, D F if i ≤ 1 − k, and,<br />

Fil i (D F ) = 0 if i ≥ 1, (F ⊗ E)(xe 1 + ye 2 ) if 2 − k ≤ i ≤ 0, D F if i ≤ 1 − k,<br />

respectively, where x and y are explicit n<strong>on</strong>-zero quantities in F ⊗ E (cf. [GM09, §3.2]).<br />

39


4.3.1 Proof of Wiles’ theorem<br />

Let D n be the submodule of D generated by e n , for n = 1, 2. Since, in all cases, the ‘line’<br />

which determines the interesting step in the filtrati<strong>on</strong> <strong>on</strong> D F , is transverse <strong>to</strong> D 2,F , the<br />

induced filtrati<strong>on</strong> <strong>on</strong> D 2,F is given by<br />

· · · = Fil 2−k (D 2,F ) = 0 Fil 1−k (D 2,F ) = D 2,F (4.3.1)<br />

Thus t H (D 2 ) = 1 − k in all cases.<br />

In the principal series cases (i.e., the first and third cases above), we see that t N (D 2 ) =<br />

v p (β −1 ) = 1−k, so that D 2 is an admissible ϕ-submodule of D. In the Steinberg case, D 2 is<br />

the <strong>on</strong>ly (ϕ, N)-submodule of rank 1, since N(e 2 ) = 0. Moreover, t N (D 2 ) = v p (β −1 ) = − k 2<br />

which equals 1 − k = t H (D 2 ) if and <strong>on</strong>ly if k = 2. Thus D 2 is an admissible submodule<br />

if and <strong>on</strong>ly if k = 2, and D is irreducible if k > 2. Thus, in all (ordinary) cases, we have<br />

shown the existence of an admissible submodule D 2 of D, associated <strong>to</strong> ρ f,℘ | Gp , such that<br />

<strong>on</strong> D/D 2 , crystalline Frobenius ϕ acts by an explicit element α −1 of valuati<strong>on</strong> zero.<br />

Assume that we are in the first two cases, so that F = Q p . By Theorem 4.2.10, the<br />

representati<strong>on</strong> ρ f,℘ | Gp is clearly reducible, with a <strong>on</strong>e-dimensi<strong>on</strong>al submodule given by the<br />

character λ(β/p k−1 )χ k−1<br />

cyc,p, and quotient given by the unramified character λ(α) (see Corollary<br />

4.2.11), proving the theorem in these cases. In the last case (when F ≠ Q p ), again<br />

by Theorem 4.2.10, ρ f,℘ | Gp is reducible. Indeed, the module D 2 is a filtered (ϕ, N, F, E)-<br />

module with descent data given by the character χ p of Gal(F/Q p ). By Corollary 4.2.11,<br />

D 2 corresp<strong>on</strong>ds <strong>to</strong> the character ψ = χ p λ(β/p k−1 )χ k−1<br />

cyc,p of G p . Since D 2 ⊂ D as filtered<br />

modules with descent data, we see V (ψ) is a <strong>on</strong>e dimensi<strong>on</strong>al submodule of ρ f,℘ | Gp with<br />

unramified quotient given by λ(α), proving the theorem in this case as well.<br />

4.4 The case of GL n<br />

In the next chapter, we prove various generalizati<strong>on</strong>s of Theorem 4.1.1 for the <strong>local</strong> (p, p)-<br />

Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ).<br />

In this secti<strong>on</strong> we collect <strong>to</strong>gether some facts about such au<strong>to</strong>morphic representati<strong>on</strong>s<br />

and their Galois representati<strong>on</strong>s needed for the proof. The main results we need are the<br />

Local Langlands corresp<strong>on</strong>dence (now a theorem of Henniart [Hen00] and Harris-Taylor<br />

[HT01]), and the existence of a strictly compatible systems of Galois representati<strong>on</strong>s<br />

<strong>attached</strong> <strong>to</strong> cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (much progress has been made<br />

<strong>on</strong> this by Clozel, Harris, Kottwitz and Taylor [CHT08]).<br />

4.4.1 Local Langlands corresp<strong>on</strong>dence<br />

We state a few results c<strong>on</strong>cerning the Local Langlands corresp<strong>on</strong>dence. We follow Kudla’s<br />

article [Kud94], noting this article follows Rodier [Rod82], which in turn is based <strong>on</strong> the<br />

original work of Bernstein and Zelevinsky.<br />

Let F be a complete n<strong>on</strong>-Archimedean <strong>local</strong> field of residue characteristic p, let n ≥ 1,<br />

and let G = GL n (F ). For a partiti<strong>on</strong> n = n 1 +n 2 +· · ·+n r of n, let P be the corresp<strong>on</strong>ding<br />

parabolic subgroup of G, M the Levi subgroup of P , and N the unipotent radical of P . Let<br />

δ P denote the modulus character of the adjoint acti<strong>on</strong> of M <strong>on</strong> N. If σ = σ 1 ⊗σ 2 ⊗· · ·⊗σ r<br />

40


is a smooth representati<strong>on</strong> of M <strong>on</strong> V , we let<br />

I G P (σ) = {f : G → V | f smooth <strong>on</strong> G and f(nmg) = δ 1 2<br />

P<br />

(m)(σ(m)(f(g))},<br />

for n ∈ N, m ∈ M, g ∈ G. G acts <strong>on</strong> functi<strong>on</strong>s in IP G(σ) by right translati<strong>on</strong> and IG P<br />

(σ) is<br />

the usual induced representati<strong>on</strong> of σ. It is an admissible representati<strong>on</strong> of finite length.<br />

A result of Bernstein-Zelevinsky says that if all the σ i supercuspidal, and σ is irreducible,<br />

smooth and admissible, then IP G(σ) is reducible if and <strong>on</strong>ly if n i = n j and<br />

σ i = σ j (1) for some i ≠ j. For the partiti<strong>on</strong> n = m + m + · · · + m (r times), and for a<br />

supercuspidal representati<strong>on</strong> of σ of GL m (F ), call the data<br />

(σ, σ(1), . . . , σ(r − 1)) = [σ, σ(r − 1)] = ∆<br />

a segment. Clearly IP G (∆) is reducible. By [Kud94, Thm. 1.2.2], the induced representati<strong>on</strong><br />

IP G (∆) has a unique irreducible quotient Q(∆), which is essentially square-integrable.<br />

Two segments<br />

∆ 1 = [σ 1 , σ 1 (r 1 − 1)] and ∆ 2 = [σ 2 , σ 2 (r 2 − 1)]<br />

are said <strong>to</strong> be linked, if ∆ 1 ∆ 2 , ∆ 2 ∆ 1 , and ∆ 1 ∪ ∆ 2 is a segment. We say that ∆ 1<br />

precedes ∆ 2 if ∆ 1 and ∆ 2 are linked and if σ 2 = σ 1 (k), for some positive integer k.<br />

Theorem 4.4.1 (Langlands classificati<strong>on</strong>). Given segments ∆ 1 , . . . , ∆ r , assume that for<br />

i < j, ∆ i does not precede ∆ j . Then<br />

1. The induced representati<strong>on</strong> IP G(Q(∆ 1) ⊗ · · · ⊗ Q(∆ r )) admits a unique irreducible<br />

quotient Q(∆ 1 , . . . , ∆ r ), called the Langlands quotient. Moreover, r and the segments<br />

∆ i up <strong>to</strong> permutati<strong>on</strong> are uniquely determined by the Langlands quotient.<br />

2. Every irreducible admissible representati<strong>on</strong> of GL n (F ) is isomorphic <strong>to</strong> the Langlands<br />

quotient Q(∆ 1 , . . . , ∆ r ), for some ∆ i ’s.<br />

3. The induced representati<strong>on</strong> I G P (Q(∆ 1) ⊗ · · · ⊗ Q(∆ r )) is irreducible if and <strong>on</strong>ly if no<br />

two of the segments ∆ i and ∆ j are linked.<br />

We now turn <strong>to</strong> the Galois side.<br />

Representati<strong>on</strong>s of the Weil-Deligne group<br />

A representati<strong>on</strong> of W F is said <strong>to</strong> be Frobenius semisimple, if the arithmetic Frobenius<br />

acts semisimply. An admissible representati<strong>on</strong> of W<br />

F ′ , the Weil-Deligne group of F , is <strong>on</strong>e<br />

for which the acti<strong>on</strong> of W F is Frobenius semisimple. Let Sp(r) denote the Weil-Deligne<br />

representati<strong>on</strong> of order r with the usual definiti<strong>on</strong>. When F = Q p , there is a basis {f i }<br />

of Sp(r) for which ϕf i = p i−1 f i , and Nf i = f i−1 for i > 1 and Nf 1 = 0.<br />

Deligne classified all such admissible representati<strong>on</strong>s of W<br />

F ′ as the direct sum of the<br />

indecomposable representati<strong>on</strong>s τ m ⊗ Sp(r), where τ m is an irreducible admissible representati<strong>on</strong><br />

of dimensi<strong>on</strong> m of W F and r ≥ 1 (cf. [Roh94, §5, Cor. 2]).<br />

Theorem 4.4.2 (Local Langlands corresp<strong>on</strong>dence). ([HT01, VII.2.20], [Hen00], [Kut80]).<br />

There exists a bijecti<strong>on</strong> between isomorphism classes of irreducible admissible representati<strong>on</strong>s<br />

of GL n (F ) and isomorphism classes of admissible n-dimensi<strong>on</strong>al representati<strong>on</strong>s of<br />

W ′ F , the Weil-Deligne group of F . 41


The corresp<strong>on</strong>dence is given as follows. The key point is <strong>to</strong> c<strong>on</strong>struct a bijecti<strong>on</strong> Φ F<br />

between the set of isomorphism classes of supercuspidal representati<strong>on</strong>s of GL n (F ) and<br />

the set of isomorphism classes of irreducible admissible representati<strong>on</strong>s of W F . This is<br />

due <strong>to</strong> Henniart [Hen00] and Harris-Taylor [HT01]. Then, <strong>to</strong> Q(∆), for the segment ∆ =<br />

[σ, σ(r−1)], <strong>on</strong>e associates the indecomposable admissible representati<strong>on</strong> Φ F (σ)⊗Sp(r) of<br />

W<br />

F ′ . More generally, <strong>to</strong> the Langlands quotient Q(∆ 1, . . . , ∆ r ), where ∆ i = [σ i , σ i (r i −1)],<br />

for i = 1, . . . , k, <strong>on</strong>e associates the admissible representati<strong>on</strong> ⊕ k i=1 Φ F (σ i ) ⊗ Sp(r i ) of W<br />

F ′ .<br />

4.4.2 Au<strong>to</strong>morphic <strong>forms</strong> <strong>on</strong> GL n<br />

We now briefly recall what are (cuspidal) au<strong>to</strong>morphic <strong>forms</strong> <strong>on</strong> GL n (A Q ). More details<br />

can be found in [Tay04].<br />

The Harish-Chandra isomorphism identifies the center z n of the universal enveloping<br />

algebra of the complexified Lie algebra gl n of GL n , with the commutative C-algebra<br />

C[X 1 , X 2 , . . . , X n ] Sn , where the symmetric group S n acts by permuting the X i . Given a<br />

multiset H = {x 1 , x 2 , . . . , x n } of n complex numbers <strong>on</strong>e obtains an infinitesimal character<br />

of z n give by χ H : X i ↦→ x i .<br />

Cuspidal au<strong>to</strong>morphic <strong>forms</strong> with infinitesimal character χ H (or more simply just H)<br />

are smooth functi<strong>on</strong>s f : GL n (Q)\GL n (A Q ) → C satisfying the usual finiteness c<strong>on</strong>diti<strong>on</strong><br />

under a maximal compact subgroup, a cuspidality c<strong>on</strong>diti<strong>on</strong>, and a growth c<strong>on</strong>diti<strong>on</strong> for<br />

which we refer the reader <strong>to</strong> [Tay04]. In additi<strong>on</strong>, if z ∈ z n then z ·f = χ H (z)f. The space<br />

of such functi<strong>on</strong>s is denoted by A ◦ H (GL n(Q)\GL n (A Q )). This space is a direct sum of irreducible<br />

admissible GL n (A (∞)<br />

Q<br />

)×(gl n, O(n))-modules each occurring with multiplicity <strong>on</strong>e,<br />

and these irreducible c<strong>on</strong>stituents are referred <strong>to</strong> as cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

of GL n (A Q ) with infinitesimal character χ H . Let π be such an au<strong>to</strong>morphic representati<strong>on</strong>.<br />

By a result of Flath, π is a restricted tensor product π = ⊗ ′ pπ p (cf. [Bum97, Thm.<br />

3.3.3]) of <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong>s.<br />

4.4.3 Galois representati<strong>on</strong>s<br />

Let π be an au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) with infinitesimal character χ H ,<br />

where H is a multiset of integers. The following very str<strong>on</strong>g, but natural, c<strong>on</strong>jecture<br />

seems <strong>to</strong> be part of the folklore.<br />

C<strong>on</strong>jecture 4.4.3. Let H c<strong>on</strong>sist of n distinct integers. There is a strictly compatible<br />

system of Galois representati<strong>on</strong>s (ρ π,l ) associated <strong>to</strong> π, with Hodge-Tate weights H, such<br />

that Local-Global compatibility holds.<br />

Here Local-Global compatibility means that the underlying semisimplified Weil -<br />

Deligne representati<strong>on</strong> at p in the compatible system (which is independent of the residue<br />

characteristic l of the coefficients by hypothesis) corresp<strong>on</strong>ds <strong>to</strong> π p via the Local Langlands<br />

corresp<strong>on</strong>dence. C<strong>on</strong>siderable evidence <strong>to</strong>wards this c<strong>on</strong>jecture is available for self-dual<br />

representati<strong>on</strong>s thanks <strong>to</strong> the work of Clozel, Kottwitz, Harris and Taylor. We quote the<br />

following theorem from Taylor’s paper [Tay04], referring <strong>to</strong> that paper for the original<br />

references (e.g., [Clo91]).<br />

Theorem 4.4.4 (cf. [Tay04], Thm. 3.6). Let H c<strong>on</strong>sist of n distinct integers. Suppose<br />

that the c<strong>on</strong>tragredient representati<strong>on</strong> π ∨ = π ⊗ ψ for some character ψ : Q × \A × Q → C× ,<br />

42


and suppose that for some prime q, the representati<strong>on</strong> π q is square-integrable. Then there<br />

is a c<strong>on</strong>tinuous representati<strong>on</strong><br />

ρ π,l : G Q → GL n ( ¯Q l )<br />

such that ρ π,l | Gl is potentially semistable with Hodge-Tate weights given by H, and such<br />

that for any prime p ≠ l, the semisimplificati<strong>on</strong> of the Weil-Deligne representati<strong>on</strong> <strong>attached</strong><br />

<strong>to</strong> ρ π,l | Gp is the same as the Weil-Deligne representati<strong>on</strong> associated by the Local<br />

Langlands corresp<strong>on</strong>dence <strong>to</strong> π p , except possibly for the m<strong>on</strong>odromy opera<strong>to</strong>r.<br />

Taylor and Yoshida [TY07] show that the two Weil-Deligne representati<strong>on</strong>s in the<br />

theorem above are in fact the same (i.e., the m<strong>on</strong>odromy opera<strong>to</strong>rs also match).<br />

In any case, from now <strong>on</strong>, we shall assume that C<strong>on</strong>jecture 4.4.3 holds. In particular,<br />

we assume that the Weil-Deligne representati<strong>on</strong> at p associated <strong>to</strong> a p-adic member of the<br />

compatible system of Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> π using F<strong>on</strong>taine theory is the<br />

same as the Weil-Deligne representati<strong>on</strong> at p <strong>attached</strong> <strong>to</strong> an l-adic member of the family,<br />

for l ≠ p.<br />

4.4.4 A variant, following [CHT08]<br />

A variant of the above result can be found in [CHT08]. We state this now using the<br />

notati<strong>on</strong> and terminology from [CHT08, §4.3].<br />

Say π is an RAESDC (regular, algebraic, essentially self dual, cuspidal) au<strong>to</strong>morphic<br />

representati<strong>on</strong> if π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> such that<br />

• π ∨ = π ⊗ χ for some character χ : Q × \A × Q → C× .<br />

• π ∞ has the same infinitesimal character as some irreducible algebraic representati<strong>on</strong><br />

of GL n .<br />

Let a ∈ Z n satisfy<br />

a 1 ≥ · · · ≥ a n . (4.4.1)<br />

Let Ξ a denote the irreducible algebraic representati<strong>on</strong> of GL n with highest weight a. We<br />

say that an RAESDC au<strong>to</strong>morphic representati<strong>on</strong> π has weight a, if π ∞ has the same<br />

infinitesimal character as Ξ ∨ a . In this case there is an integer w a such that a i +a n+1−i = w a<br />

for all i.<br />

Let S be a finite set of primes of Q. For v ∈ S, let ρ v be an irreducible square<br />

integrable representati<strong>on</strong> of GL n (Q v ). Say that an RAESDC representati<strong>on</strong> π has type<br />

{ρ v } v∈S , if for each v ∈ S, π v is an unramified twist of ρ ∨ v .<br />

With this setup, Clozel, Harris, and Taylor <strong>attached</strong> a Galois representati<strong>on</strong> <strong>to</strong> an<br />

RAESDC π.<br />

Theorem 4.4.5 ([CHT08], Prop. 4.3.1). Let ι : ¯Q l ≃ C. Let π be an RAESDC au<strong>to</strong>morphic<br />

representati<strong>on</strong> as above of weight a and type {ρ v } v∈S . Then there is a c<strong>on</strong>tinuous<br />

semisimple Galois representati<strong>on</strong><br />

with the following properties:<br />

r l,ι (π) : Gal( ¯Q/Q) → GL n ( ¯Q l )<br />

43


1. For every prime p ∤ l, we have<br />

r l,ι (π)| ss<br />

G p<br />

= (r l (ι −1 π p ) ∨ )(1 − n) ss ,<br />

where r l is the reciprocity map defined in [HT01].<br />

2. If l = p, then the restricti<strong>on</strong> r l,ι (π)| Gp is potentially semistable and if π p is unramified<br />

then it is crystalline, with Hodge-Tate weights −(a j + n − j) for j = 1, . . . , n.<br />

4.4.5 Newt<strong>on</strong> and Hodge filtrati<strong>on</strong><br />

Let ρ π,p | Gp be the (p, p)-Galois representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> an au<strong>to</strong>morphic representati<strong>on</strong><br />

π and D be the corresp<strong>on</strong>ding filtered (ϕ, N, F, E)-module (for suitable choices of F and<br />

E).<br />

Note that there are are two natural filtrati<strong>on</strong>s <strong>on</strong> D F , the Hodge filtrati<strong>on</strong> Fil i D F<br />

and the Newt<strong>on</strong> filtrati<strong>on</strong> defined by ordering the slopes of the crystalline Frobenius (the<br />

valuati<strong>on</strong>s of the roots of ϕ.) To keep the analysis of the structure of the (p, p)-Galois<br />

representati<strong>on</strong> ρ π,p | Gp within reas<strong>on</strong>able limits in this thesis, we shall make the following<br />

assumpti<strong>on</strong>.<br />

Assumpti<strong>on</strong> 4.4.6. The Newt<strong>on</strong> filtrati<strong>on</strong> <strong>on</strong> D F is in general positi<strong>on</strong> (or transverse)<br />

with respect <strong>to</strong> the Hodge filtrati<strong>on</strong> Fil i D F .<br />

Here, if V is a space and Fil i 1V and Fil j 2V are two filtrati<strong>on</strong>s <strong>on</strong> V then we say they<br />

are in general positi<strong>on</strong> if the each Fil i 1V is as transverse as possible <strong>to</strong> each Fil j 2 V . (cf.<br />

(4.3.1)). We remark that the c<strong>on</strong>diti<strong>on</strong> above is in some sense generic, since two random<br />

filtrati<strong>on</strong>s <strong>on</strong> a space tend <strong>to</strong> be in general positi<strong>on</strong>.<br />

We end this chapter by recalling the noti<strong>on</strong> of ordinary and quasi-ordinary for p-adic<br />

representati<strong>on</strong>s.<br />

4.4.6 Ordinary and quasi-ordinary representati<strong>on</strong>s<br />

As menti<strong>on</strong>ed earlier, our goal is <strong>to</strong> prove that the (p, p)-Galois representati<strong>on</strong> <strong>attached</strong> <strong>to</strong><br />

π is ‘upper-triangular’ in several cases. To this end it is c<strong>on</strong>venient <strong>to</strong> recall the following<br />

terminology (see, e.g., Greenberg [Gre94, p. 152] or Ochiai [Och01, Def. 3.1]).<br />

Definiti<strong>on</strong> 4.4.7. Let F be a number field. A p-adic representati<strong>on</strong> V of G F is called<br />

ordinary (respectively quasi-ordinary), if the following c<strong>on</strong>diti<strong>on</strong>s are satisfied:<br />

1. For each places v of F over p, there is a decreasing filtrati<strong>on</strong> of G Fv -modules<br />

· · · Fil i vV ⊇ Fil i+1<br />

v V ⊇ · · ·<br />

such that Fil i vV = V for i ≪ 0 and Fil i vV = 0 for i ≫ 0.<br />

2. For each v and each i, I v acts <strong>on</strong> Fil i vV/Fil i+1<br />

v V via the character χ i cyc,p, where χ cyc,p<br />

is the p-adic cyclo<strong>to</strong>mic character (respectively, there exists an open subgroup of I v<br />

which acts <strong>on</strong> Fil i vV/Fil i+1<br />

v V via χ i cyc,p).<br />

44


Chapter 5<br />

On Local Galois Representati<strong>on</strong>s<br />

<strong>attached</strong> <strong>to</strong> Au<strong>to</strong>morphic Forms<br />

This chapter c<strong>on</strong>tains the main results of the first part of the thesis. We prove structure<br />

theorems for the <strong>local</strong> Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

of GL n (A Q ).<br />

5.1 Introducti<strong>on</strong><br />

Recall that we have assumed that the global p-adic Galois representati<strong>on</strong> ρ π,p <strong>attached</strong><br />

<strong>to</strong> π exists, and it satisfies several natural properties, e.g., it lives in a strictly compatible<br />

system of Galois representati<strong>on</strong>s, and satisfies Local-Global compatibility. Recently, much<br />

progress has been made <strong>on</strong> this fr<strong>on</strong>t: such Galois representati<strong>on</strong>s have been <strong>attached</strong> <strong>to</strong><br />

what are referred <strong>to</strong> as RAESDC au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) by Clozel,<br />

Kottwitz, Harris and Taylor, and for c<strong>on</strong>jugate self-dual au<strong>to</strong>morphic representati<strong>on</strong>s<br />

over CM fields these representati<strong>on</strong>s were shown <strong>to</strong> satisfy Local-Global compatibility by<br />

Taylor-Yoshida, away from p.<br />

Under some standard hypotheses (e.g., Assumpti<strong>on</strong> 4.4.6), we show that in several<br />

cases the corresp<strong>on</strong>ding <strong>local</strong> representati<strong>on</strong> ρ π,p | Gp has an ‘upper-triangular’ form, and<br />

completely determine the ‘diag<strong>on</strong>al’ characters. In other cases, and perhaps more interestingly,<br />

we give c<strong>on</strong>diti<strong>on</strong>s under which this <strong>local</strong> representati<strong>on</strong> is irreducible. For instance,<br />

we directly generalize the comment about irreducibility made just after Theorem 4.1.1.<br />

One of the main theorems is proved in §5.3 and §5.4, using methods from p-adic Hodge<br />

theory. It is well-known that the category of Weil-Deligne representati<strong>on</strong>s is equivalent<br />

<strong>to</strong> the category of (ϕ, N)-modules [BS07, Prop. 4.1]. In §5.4, we classify the (ϕ, N)-<br />

submodules of the (ϕ, N)-module associated <strong>to</strong> the indecomposable Weil-Deligne representati<strong>on</strong><br />

is the theorem. This classificati<strong>on</strong> plays a key role in analyzing the (p, p)-Galois<br />

representati<strong>on</strong> <strong>on</strong>ce the Hodge filtrati<strong>on</strong> is introduced. Al<strong>on</strong>g the way, we take a slight<br />

de<strong>to</strong>ur <strong>to</strong> write down explicitly the filtered (ϕ, N)-module <strong>attached</strong> <strong>to</strong> an m-dimensi<strong>on</strong>al<br />

‘unramified supercuspidal’ representati<strong>on</strong>, since this might be a useful additi<strong>on</strong> <strong>to</strong> the<br />

literature (cf. [GM09] for the two-dimensi<strong>on</strong>al case).<br />

Some results in the decomposable case (where the Weil-Deligne representati<strong>on</strong> is a<br />

direct sum of indecomposables) are given in §5.5, though the principal series case is<br />

45


treated completely a bit earlier, in §5.2 (in the spherical case our results overlap with<br />

those in D. Geraghty’s recent thesis).<br />

5.2 Principal series<br />

Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q ) with infinitesimal character<br />

H, for a set of distinct integers H. In this secti<strong>on</strong>, we study the behaviour of the (p, p)-<br />

Galois representati<strong>on</strong> assuming that π p , the <strong>local</strong> au<strong>to</strong>morphic representati<strong>on</strong>, is in the<br />

principal series.<br />

5.2.1 Spherical case<br />

Assume that π p is an unramified principal series representati<strong>on</strong>. Then there exist unramified<br />

characters χ 1 , . . . , χ n of Q × p such that π p is the Langland’s quotient Q(χ 1 , . . . , χ n ).<br />

We can parametrize the isomorphism class of this representati<strong>on</strong> by the Satake parameters<br />

α 1 , . . . , α n , for α i = χ i (ω), where ω is a uniformizer for Q p .<br />

Note that ρ π,p | Gp is crystalline with Hodge-Tate weights H. Let D be the corresp<strong>on</strong>ding<br />

filtered ϕ-module. Let the jumps in the filtrati<strong>on</strong> <strong>on</strong> D be β 1 < β 2 < · · · < β n (so<br />

that the Hodge-Tate weights H are −β 1 > · · · > −β n .<br />

Definiti<strong>on</strong> 5.2.1. Say that the au<strong>to</strong>morphic representati<strong>on</strong> π is p-ordinary, if β i +<br />

v p (α i ) = 0, for all i = 1, . . . , n.<br />

Theorem 5.2.2 (Spherical case). Let π be an au<strong>to</strong>morphic representati<strong>on</strong> of GL n (A Q )<br />

with infinitesimal character given by the integers −β 1 > · · · > −β n and such that π p is<br />

in the unramified principal series with Satake parameters α 1 , . . . , α n . If π is p-ordinary,<br />

then ρ π,p | Gp ∼<br />

⎛<br />

α<br />

λ( 1<br />

) · χ −β ⎞<br />

1<br />

p vp(α 1 ) cyc,p ∗ · · · ∗<br />

α 0 λ( 2<br />

) · χ −β 2<br />

p vp(α 2 ) cyc,p · · · ∗<br />

0 0 · · · ∗<br />

.<br />

⎜<br />

α<br />

⎝<br />

0 0 λ( n−1<br />

) · χ −β n−1<br />

p vp(α n−1 ) cyc,p<br />

∗ ⎟<br />

⎠<br />

α<br />

0 0 0 λ( n<br />

)) · χ −βn<br />

p vp(αn) cyc,p<br />

In particular, ρ π,p | Gp<br />

is ordinary.<br />

Proof. Since π p is p-ordinary, we have that v p (α n ) < v p (α n−1 ) < · · · < v p (α 1 ). By strict<br />

compatibility, the characteristic polynomial of the inverse of crystalline Frobenius of D n<br />

is equal <strong>to</strong> ∏ i (X − α i).<br />

Since the v p (α i ) are distinct, there exists a basis of eigenvec<strong>to</strong>rs of D n for the opera<strong>to</strong>r<br />

ϕ, say {e i }, with corresp<strong>on</strong>ding eigenvalues {αi<br />

−1 }. For any integer 1 ≤ i ≤ n, let D i be<br />

the ϕ-submodule generated by {e 1 , . . . , e i }. The filtrati<strong>on</strong> <strong>on</strong> D n is<br />

· · · ⊆ 0 Fil βn (D n ) ⊆ · · · Fil β 1<br />

(D n ) = D n ⊆ · · · (5.2.1)<br />

Since D n is admissible, we have that<br />

n∑<br />

β i = −<br />

i=1<br />

46<br />

n∑<br />

v p (α i ). (5.2.2)<br />

i=1


Clearly, we have that the jumps in the induced filtrati<strong>on</strong> <strong>on</strong> D n−1 are β 1 , . . . , β n−1 . By<br />

(5.2.2), we have<br />

n−1<br />

∑<br />

n−1<br />

∑<br />

t H (D n−1 ) = β i = − v p (α i ) = t N (D n−1 ), (5.2.3)<br />

i=1<br />

since β n = −v p (α n ) and hence the module D n−1 is admissible. Moreover, D n /D n−1 is<br />

also admissible, because t H (D n /D n−1 ) = β n = −v p (α n ) = t N (D n /D n−1 ), since ϕ acts <strong>on</strong><br />

D n /D n−1 by αn −1 . Therefore, the Galois representati<strong>on</strong> ρ π,p | Gp looks like<br />

( )<br />

ρn−1 ∗<br />

ρ ∼<br />

α<br />

0 λ( n<br />

,<br />

) · χ −βn<br />

p vp(αn) cyc,p<br />

where ρ n−1 is the (n − 1)-dimensi<strong>on</strong>al representati<strong>on</strong> of G p which corresp<strong>on</strong>ds <strong>to</strong> D n−1 .<br />

Repeating this argument successively for D n−1 , D n−2 , . . . D 1 , we obtain the theorem.<br />

Corollary 5.2.3. When n = 2, and π corresp<strong>on</strong>ds <strong>to</strong> f, we recover part (i) of Theorem<br />

4.1.1 (at least when k ≥ 3 is odd).<br />

Proof. Say 0 ≤ v p (α) ≤ v p (β) ≤ k − 1. It is well-known (cf. [Bum97]) that the Satake<br />

parameters at p satisfy the formulas α 1 = β · p 1−k<br />

2 and α 2 = α · p k−1<br />

2 . In fact L(s, π) =<br />

L(s + k−1<br />

2 , f) and ρ π,p = ρ f,℘ ⊗ χ 1−k<br />

2<br />

cyc,p, where (k − 1)/2 ∈ Z if k is odd. In particular, the<br />

Hodge-Tate weights of ρ π,p | Gp are −β 2 = 1−k<br />

2<br />

and −β 1 = k−1<br />

2<br />

, distinct integers if k ≥ 3 is<br />

odd. By the p-ordinariness c<strong>on</strong>diti<strong>on</strong> for π, we have that v p (α 2 ) = 1−k<br />

2<br />

and v p (α 1 ) = k−1<br />

2 .<br />

By the theorem above, we obtain<br />

⎛<br />

⎞<br />

ρ π,p | Gp ∼ ⎝ λ(α 1/p (k−1)/2 ) · χ k−1<br />

2<br />

cyc,p<br />

∗<br />

⎠ .<br />

0 λ(α 2 /p (1−k)/2 ) · χ 1−k<br />

2<br />

cyc,p<br />

Twisting both sides by χ k−1<br />

2<br />

cyc,p, we recover part (i) of Theorem 4.1.1.<br />

Variant, following [CHT08]<br />

Let π now be an RAESDC representati<strong>on</strong> of weight a as in §4.4.4 and let π p denote<br />

the <strong>local</strong> p-adic au<strong>to</strong>morphic representati<strong>on</strong> associated <strong>to</strong> π. For any i = 1, . . . , n, set<br />

β n+1−i ′ := a i + n − i, where a i ’s are as in (4.4.1). We have that β n ′ > β n−1 ′ > · · · > β′ 1 ,<br />

and the Hodge-Tate weights are −β n ′ < −β n−1 ′ < · · · < −β′ 1 .<br />

Assume that π p is in the unramified principal series, so π p = Q(χ 1 , χ 2 , . . . , χ n ), where<br />

χ i ’s are unramified characters of Q × p . Set α i ′ = χ i(ω)p n−1<br />

2 . Let t (j)<br />

p denote the eigenvalue<br />

of T p<br />

(j) <strong>on</strong> πp<br />

GLn(Zp) , where T p<br />

(j) is j-th Hecke opera<strong>to</strong>r as in [CHT08], and πp<br />

GLn(Zp) is<br />

spanned by GL n (Z p )-fixed vec<strong>to</strong>r, unique up <strong>to</strong> a c<strong>on</strong>stant. We would like <strong>to</strong> compute<br />

the right hand side in the display in part (1) of Theorem 4.4.5. By [CHT08, Cor. 3.1.2],<br />

in the spherical case, <strong>on</strong>e has<br />

(r l (ι −1 π p ) ∨ )(1 − n)(Frob −1<br />

p ) = ∏ i<br />

i=1<br />

(X − α ′ i)<br />

= X n − t (1)<br />

p X n−1 + · · · + (−1) j p j(j−1)<br />

2 t (j)<br />

p<br />

X n−j + · · · + (−1) n p n(n−1)<br />

2 t (n)<br />

p ,<br />

47


where Frob −1<br />

p is geometric Frobenius. Let s j denote the j-th elementary symmetric polynomial.<br />

Then from the equati<strong>on</strong> above, for any j = 1, · · · , n, we have p j(j−1)<br />

2 t (j)<br />

p =<br />

s j (α i ′) = p j(n−1)<br />

2 s j (χ i (p)) and hence t (j)<br />

p = s j (χ i (p))p j(n−j)<br />

2 . In this setting we make:<br />

Definiti<strong>on</strong> 5.2.4. Say that the au<strong>to</strong>morphic representati<strong>on</strong> π p is p-ordinary if β i ′ +<br />

v p (α i ′ ) = 0 for all i = 1, · · · , n.<br />

Note that by strict compatibility, crystalline Frobenius has characteristic polynomial<br />

exactly that above. The following theorem follows in a manner identical <strong>to</strong> that used <strong>to</strong><br />

prove Theorem 5.2.2.<br />

Theorem 5.2.5 (Spherical case, variant). Let π be a cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

of GL n (A Q ) of weight a, as in §4.4.4. Let r p,ι (π) be the corresp<strong>on</strong>ding p-adic Galois<br />

representati<strong>on</strong>, with Hodge-Tate weights −β n+1−i ′ := a i + n − i, for i = 1, . . . , n. Suppose<br />

π p is in the principal series with Satake parameters α 1 , . . . , α n , and set α i ′ = α ip n−1<br />

2 . If<br />

π is p-ordinary, then r p,ι (π)| Gp ∼<br />

⎛<br />

α<br />

λ(<br />

′ 1<br />

) · ⎞<br />

p vp(α′ 1 ) χ−β′ 1<br />

cyc,p ∗ · · · ∗<br />

α 0 λ(<br />

′ 2<br />

) · p vp(α′ 2 ) χ−β′ 2<br />

cyc,p · · · ∗<br />

.<br />

⎜<br />

⎝ 0 0 · · · ∗ ⎟<br />

⎠<br />

α<br />

0 0 0 λ(<br />

′ n<br />

)) · p vp(α′ n ) χ−β′ n<br />

cyc,p<br />

In particular, r p,ι (π)| Gp<br />

is ordinary.<br />

The result above was also obtained by D. Geraghty in the course of proving modularity<br />

lifting theorems for GL n (see Lem. 2.7.7 and Cor. 2.7.8 of [Ger10]).<br />

5.2.2 Ramified principal series case<br />

Returning <strong>to</strong> the case where π is an au<strong>to</strong>morphic representati<strong>on</strong> with infinitesimal character<br />

H, we assume now that π p = Q(χ 1 , . . . , χ n ), where χ i are possibly ramified characters<br />

of Q × p .<br />

By the Local Langlands corresp<strong>on</strong>dence, we can think of the χ i as characters of W p .<br />

In particular, χ i | Ip have finite image. By strict compatibility, WD(ρ)| Ip ≃ ⊕ i χ i| Ip . The<br />

characters χ i | Ip fac<strong>to</strong>r through Gal(Q nr<br />

p (ζ p m)/Q nr<br />

p ) ≃ Gal(Q p (ζ p m)/Q p ) for some m ≥ 1.<br />

Set F := Q p (ζ p m). Observe that F is a finite abelian <strong>to</strong>tally ramified extensi<strong>on</strong> of Q p .<br />

Note that ρ π,p | GF is crystalline. Let D be the corresp<strong>on</strong>ding filtered module. Then<br />

D = Ee 1 + · · · + Ee n , where g ∈ Gal(F/Q p ) acts by χ i <strong>on</strong> e i . A small computati<strong>on</strong> shows<br />

that ϕ(e i ) = αi −1 e i , where α i = χ i (ω F ), for ω F a uniformizer of F . Using Corollary 4.2.11,<br />

and following the proof of Theorem 5.2.2, we obtain:<br />

Theorem 5.2.6 (Ramified principal series). Say π p = Q(χ 1 , . . . , χ n ) is in the ramified<br />

principal series. If π is p-ordinary, then ρ π,p | Gp ∼<br />

⎛<br />

α<br />

χ 1 · λ( 1<br />

) · χ −β ⎞<br />

1<br />

p vp(α 1 ) cyc,p ∗ · · · ∗<br />

α<br />

0 χ 2 · λ( 2<br />

) · χ −β 2<br />

p<br />

⎜<br />

vp(α 2 ) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ .<br />

α<br />

0 0 0 χ n · λ( n<br />

)) · χ −βn<br />

p vp(αn) cyc,p<br />

48


In particular, ρ π,p | Gp is quasi-ordinary.<br />

5.3 Steinberg case<br />

In this secti<strong>on</strong> we treat the case where the Weil-Deligne representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> π p is<br />

a twist of the special representati<strong>on</strong> Sp(n).<br />

5.3.1 Unramified twist of Steinberg<br />

We start with the case where the Weil-Deligne representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> π p is of the<br />

form χ ⊗ Sp(n), where χ is an unramified character.<br />

Let D be the filtered (ϕ, N, Q p , E)-module <strong>attached</strong> <strong>to</strong> ρ π,p | Gp . Thus D is a vec<strong>to</strong>r<br />

space over E. Note N n = 0 and N n−1 ≠ 0 so that there is a basis {f i } of D with<br />

f i−1 := Nf i , for 1 < i ≤ n, and Nf 1 = 0. We set α := χ(Frob p ). Since Nϕ = pϕN,<br />

we may assume that ϕ(f i ) = αi<br />

−1 f i , ∀i, where αi<br />

−1 = pi−1<br />

α<br />

. When α = 1, D = Sp(n) as<br />

menti<strong>on</strong>ed in §4.4.1.<br />

For each 1 ≤ i ≤ n, let D i denote the subspace 〈f i , . . . , f 1 〉. Clearly, dim(D i ) = i and<br />

D 1 D 2 · · · D n = D. We have:<br />

Lemma 5.3.1. For every integer 1 ≤ r ≤ n, there is a unique N-submodule of D of rank<br />

r, namely D r .<br />

Proof. Let D ′ be a N-submodule of D of rank r. Say the order of nilpotency of N <strong>on</strong><br />

D ′ is i. Thus, D ′ ⊆ Ker(N i ). Since Ker(N i ) = 〈f i , . . . , f 1 〉, dim(Ker(N i )) = i and hence<br />

r ≤ i. Clearly, the order of nilpotency of N <strong>on</strong> D ′ is less than or equal <strong>to</strong> r. Hence i = r<br />

and D ′ = Ker(N r ) = D r .<br />

Let β n > · · · > β 1 be the jumps in the Hodge filtrati<strong>on</strong> <strong>on</strong> D. We assume that the<br />

Hodge filtrati<strong>on</strong> is in general positi<strong>on</strong> with respect <strong>to</strong> the Newt<strong>on</strong> filtrati<strong>on</strong> given by the<br />

D i (cf. Assumpti<strong>on</strong> 4.4.6). An example of such a filtrati<strong>on</strong> is<br />

〈f n 〉 〈f n , f n−1 〉 · · · 〈f n , . . . , f 2 〉 〈f n , . . . , f 1 〉.<br />

The following elementary lemma plays an important role in later proofs.<br />

Lemma 5.3.2. Let m be a natural number. Let {a i } n i=1 be an increasing (resp., decreasing)<br />

sequence of integers such that |a i+1 −a i | = m. Let {b i } n i=1 be another increasing (resp.,<br />

decreasing) sequence of integers, such that |b i+1 − b i | ≥ m. Assume that ∑ i a i = ∑ i b i.<br />

If a n = b n or a 1 = b 1 , then a i = b i , ∀ i.<br />

Proof. Let us prove the lemma when a n = b n and a i are increasing. The proof in the<br />

other cases is similar. We have:<br />

m(n − 1 + n − 2 + · · · + 1) ≤<br />

n∑<br />

(b n − b i ) =<br />

i=1<br />

n∑<br />

(a n − a i ) = m(n − 1 + n − 2 + · · · + 1)<br />

The first equality in the above expressi<strong>on</strong> follows from a n = b n . From the above equati<strong>on</strong>,<br />

we see that b n − b i = a n − a i , for every 1 ≤ i ≤ n. Since a n = b n , we have that a i = b i ,<br />

for every 1 ≤ i ≤ n.<br />

i=1<br />

49


By Lemma 5.3.1, the D i are the <strong>on</strong>ly (ϕ, N)-submodules of D. The following propositi<strong>on</strong><br />

shows that if two ‘c<strong>on</strong>secutive’ submodules D i and D i+1 are admissible then all the<br />

D i are admissible.<br />

Propositi<strong>on</strong> 5.3.3. Suppose there exists an integer 1 ≤ i ≤ n such that both D i and<br />

D i+1 are admissible. Then each D r , for 1 ≤ r ≤ n, is admissible. Moreover, the β i are<br />

c<strong>on</strong>secutive integers.<br />

Proof. Since D i and D i+1 are admissible, we have the following equalities:<br />

i∑<br />

β 1 + β 2 + · · · + β i = − v p (α r ),<br />

r=1<br />

i+1<br />

∑<br />

β 1 + β 2 + · · · + β i+1 = − v p (α r ).<br />

r=1<br />

(5.3.1)<br />

Define a r = −v p (α r ) and b r = β r , for 1 ≤ r ≤ n. Hence, we have<br />

a n > · · · > a i+2 > a i+1 > a i > · · · > a 1 ,<br />

b n > · · · > b i+2 > b i+1 > b i > · · · > b 1 .<br />

(5.3.2)<br />

By (5.3.1), we have a i+1 = −v p (α i+1 ) = β i+1 = b i+1 . By Lemma 5.3.2 and by (5.3.1), we<br />

have that a r = b r , for all 1 ≤ r ≤ i + 1. Since D n is admissible, we have<br />

t H (D n ) =<br />

n∑<br />

β r = −<br />

r=1<br />

From (5.3.1) and (5.3.3), we have that<br />

n∑<br />

r=i+1<br />

β r = −<br />

n∑<br />

v p (α r ) = t N (D n ). (5.3.3)<br />

r=1<br />

n∑<br />

r=i+1<br />

v p (α r ).<br />

Again, by (5.3.2) and Lemma 5.3.2, we have that a r = b r , for all i + 1 ≤ r ≤ n. Hence<br />

β r = −v p (α r ), for all 1 ≤ r ≤ n. This shows that all other D i ’s are admissible. Also, the<br />

β i are c<strong>on</strong>secutive integers since the v p (α i ) are c<strong>on</strong>secutive integers.<br />

Corollary 5.3.4. Keeping the notati<strong>on</strong> as above, the admissibility of D 1 or D n−1 implies<br />

the admissibility of all other D i .<br />

Theorem 5.3.5. Assume that the Hodge filtrati<strong>on</strong> <strong>on</strong> D is in general positi<strong>on</strong> with respect<br />

<strong>to</strong> the D i (cf. Assumpti<strong>on</strong> 4.4.6). Then the crystal D is either irreducible or reducible,<br />

in which case each D i , for 1 ≤ i ≤ n is admissible.<br />

Proof. If D is irreducible, then we are d<strong>on</strong>e. If not, there exists an i, such that D i<br />

is admissible. If D i−1 or D i+1 is admissible, then by Propositi<strong>on</strong> 5.3.3, all the D r are<br />

admissible. So, it is enough <strong>to</strong> c<strong>on</strong>sider the case where neither D i−1 nor D i+1 is admissible<br />

50


(and D i is admissible). We have:<br />

r=i−1<br />

∑<br />

β 1 + β 2 + · · · + β i−1 < − v p (α r ),<br />

r=1<br />

r=i<br />

∑<br />

β 1 + β 2 + · · · + β i = − v p (α r ),<br />

r=1<br />

r=i+1<br />

∑<br />

β 1 + β 2 + · · · + β i+1 < − v p (α r ).<br />

r=1<br />

(5.3.4a)<br />

(5.3.4b)<br />

(5.3.4c)<br />

Subtracting (5.3.4b) from (5.3.4a), we get −β i < v p (α i ). Subtracting (5.3.4b) from<br />

(5.3.4c), we get β i+1 < −v p (α i+1 ) = −v p (α i ) + 1. Adding these inequalities, we obtain<br />

β i+1 − β i < 1. But this is a c<strong>on</strong>tradicti<strong>on</strong>, since β i+1 > β i . This proves the theorem.<br />

Definiti<strong>on</strong> 5.3.6. Say π is p-ordinary, if β 1 + v p (α) = 0.<br />

Note that if π is p-ordinary, then D 1 is admissible, so the flag D 1 ⊂ D 2 ⊂ · · · ⊂ D n<br />

is an admissible flag by Theorem 5.3.5 (an easy check shows that if π is p-ordinary then<br />

Assumpti<strong>on</strong> 4.4.6 holds au<strong>to</strong>matically). Applying the above discussi<strong>on</strong> <strong>to</strong> the <strong>local</strong> Galois<br />

representati<strong>on</strong> ρ π,p | Gp , we obtain:<br />

Theorem 5.3.7 (Unramified twist of Steinberg). Say π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

with infinitesimal character given by the integers −β 1 > · · · > −β n . Suppose<br />

that π p is an unramified twist of the Steinberg representati<strong>on</strong>, i.e., WD(ρ π,p | Gp ) ∼<br />

χ ⊗ Sp(n), where χ is the unramified character mapping arithmetic Frobenius <strong>to</strong> α. If π<br />

is ordinary at p (i.e., v p (α) = −β 1 ), then the β i are necessarily c<strong>on</strong>secutive integers and<br />

ρ π,p | Gp ∼<br />

⎛<br />

α<br />

λ( ) · χ −β ⎞<br />

1<br />

p vp(α) cyc,p ∗ · · · ∗<br />

α<br />

0 λ( ) · χ −β 1−1<br />

p<br />

⎜<br />

vp(α) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ ,<br />

α<br />

0 0 0 λ( ) · χ −β 1−(n−1)<br />

p vp(α) cyc,p<br />

α<br />

where λ( ) is an unramified character taking arithmetic Frobenius <strong>to</strong> , and in<br />

p vp(α) p vp(α)<br />

particular, ρ π,p | Gp is ordinary. If π is not p-ordinary, and Assumpti<strong>on</strong> 4.4.6 holds, then<br />

ρ π,p | Gp is irreducible.<br />

Proof. By strict compatibility, D is the filtered (ϕ, N, Q p , E)-module <strong>attached</strong> <strong>to</strong> ρ π,p | Gp .<br />

If π is p-ordinary, then we are d<strong>on</strong>e and the characters <strong>on</strong> the diag<strong>on</strong>al are determined<br />

by Corollary 4.2.11.<br />

If π is not p-ordinary, then D is irreducible. Indeed, if D is reducible, then by Theorem<br />

5.3.5, all D i , and in particular D 1 , are admissible, so π is p-ordinary.<br />

5.3.2 Ramified twist of Steinberg<br />

Theorem 5.3.8 (Ramified twist of Steinberg). Let the notati<strong>on</strong> and hypotheses be as in<br />

Theorem 5.3.7, except that this time assume that WD(ρ π,p | Gp ) ∼ χ⊗Sp(n), where χ is an<br />

α<br />

51


arbitrary, possibly ramified, character. Write χ = χ 0 · χ ′ where χ 0 is the ramified part of<br />

χ, and χ ′ is an unramified character taking arithmetic Frobenius <strong>to</strong> α. If π is p-ordinary<br />

(β 1 = −v p (α)), then the β i are c<strong>on</strong>secutive integers and ρ π,p | Gp ∼<br />

⎛<br />

α<br />

χ 0 · λ( ) · χ −β ⎞<br />

1<br />

p vp(α) cyc,p ∗ · · · ∗<br />

α<br />

0 χ 0 · λ( ) · χ −β 1−1<br />

p<br />

⎜<br />

vp(α) cyc,p · · · ∗<br />

⎝ 0 0 · · · ∗<br />

⎟<br />

⎠ .<br />

α<br />

0 0 0 χ 0 · λ( ) · χ −β 1−(n−1)<br />

p vp(α) cyc,p<br />

If π is not p-ordinary, and Assumpti<strong>on</strong> 4.4.6 holds, then ρ π,p | Gp<br />

is irreducible.<br />

Proof. Let F be a <strong>to</strong>tally ramified abelian (cyclo<strong>to</strong>mic) extensi<strong>on</strong> of Q p such that χ 0 | IF =<br />

1. Then the reducibility of ρ π,p | GF over F can be shown exactly as in Theorem 5.3.7,<br />

and the theorem over Q p follows using the descent data of the underlying filtered module.<br />

If π is not p-ordinary, then by arguments similar those used in proving Theorem 5.3.7,<br />

ρ π,p | GF is irreducible, so that ρ π,p | Gp is also irreducible.<br />

5.4 Supercuspidal ⊗ Steinberg<br />

We now turn <strong>to</strong> the case where the Weil-Deligne representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> π p is indecomposable.<br />

We assume that WD(ρ π,p | Gp ) is Frobenius semisimple. Thus, it is of the<br />

form τ ⊗ Sp(n), where τ is an irreducible m-dimensi<strong>on</strong>al representati<strong>on</strong> corresp<strong>on</strong>ding <strong>to</strong><br />

a supercuspidal representati<strong>on</strong> of GL m , for m ≥ 1.<br />

We classify the (ϕ, N, F, E)-submodules of D, the crystal <strong>attached</strong> <strong>to</strong> the <strong>local</strong> representati<strong>on</strong><br />

ρ π,p | Gp , where WD(ρ π,p | Gp ) = τ⊗Sp(n), for m ≥ 1 and n ≥ 1. This classificati<strong>on</strong><br />

will be used later <strong>to</strong> study the structure of ρ π,p | Gp , taking the filtrati<strong>on</strong> <strong>on</strong> D in<strong>to</strong> account.<br />

Recall that there is a equivalence of categories between (ϕ, N)-modules with coefficients<br />

and descent data, and Weil-Deligne representati<strong>on</strong>s [BS07, Prop. 4.1]. Write D τ ,<br />

respectively D Sp(n) , for the (ϕ, N)-modules corresp<strong>on</strong>ding <strong>to</strong> τ, respectively Sp(n), etc.<br />

The main result of the first few subsecti<strong>on</strong>s is:<br />

Theorem 5.4.1. All the (ϕ, N, F, E)-submodules of D = D τ ⊗ D Sp(n) are of the form<br />

D τ ⊗ D Sp(r) , for some 1 ≤ r ≤ n.<br />

We prove the theorem in stages. However, the reader may turn straight <strong>to</strong> the §5.4.3,<br />

where the general case is treated. Note that the case m = 1 was treated in the previous<br />

secti<strong>on</strong> (twist of Steinberg), and the case n = 1 is vacuously true. The next simplest case<br />

is when m = 2 and n = 2, and we start with this case in the next subsecti<strong>on</strong>.<br />

The following lemma will be useful in our analysis throughout.<br />

Lemma 5.4.2. The theory of Jordan can<strong>on</strong>ical <strong>forms</strong> can be extended <strong>to</strong> nilpotent opera<strong>to</strong>rs<br />

<strong>on</strong> free of finite rank (F 0 ⊗ E)-modules, and we call the number of blocks in the<br />

Jordan decompositi<strong>on</strong> of the m<strong>on</strong>odromy opera<strong>to</strong>r N as the ‘index’ of N.<br />

Proof. One simply extends the usual theory of Jordan can<strong>on</strong>ical <strong>forms</strong> <strong>on</strong> each projecti<strong>on</strong><br />

under (4.2.2) <strong>to</strong> modules over F 0 ⊗ E-modules.<br />

52


5.4.1 m = 2 and n = 2<br />

We start with the case when τ corresp<strong>on</strong>ds <strong>to</strong> a supercuspidal representati<strong>on</strong> of GL 2 (Q p )<br />

whose Weil-Deligne representati<strong>on</strong> is the 2-dimensi<strong>on</strong>al representati<strong>on</strong> obtained by inducing<br />

a character from a quadratic extensi<strong>on</strong> K of Q p , and n = 2. The methods used in<br />

this case will be used <strong>to</strong> deal with more general cases in subsequent subsecti<strong>on</strong>s.<br />

We also assume, for simplicity, that the quadratic extensi<strong>on</strong> of Q p menti<strong>on</strong>ed above is<br />

K = Q p 2, the unramified quadratic extensi<strong>on</strong> of Q p . By abusing language a bit we shall<br />

say that τ corresp<strong>on</strong>ds <strong>to</strong> an unramified supercuspidal representati<strong>on</strong>. The argument in<br />

the ramified supercuspidal case (i.e., K/Q p ramified quadratic) was also worked out in<br />

detail, but is excluded here for the sake of brevity.<br />

Thus we assume that there is a character χ of W p 2, the Weil group of Q p 2, which does<br />

not extend <strong>to</strong> W p (i.e., χ ≠ χ σ <strong>on</strong> W p 2, where 1 ≠ σ ∈ Gal(Q p 2/Q p )) such that<br />

τ| Ip ≃ Ind Wp<br />

W p 2 χ| I p<br />

≃ χ| Ip ⊕ χ σ | Ip .<br />

The corresp<strong>on</strong>ding (ϕ, N)-module in this case can be written down quite explicitly (cf.<br />

[GM09, §3.3]). Briefly there is an abelian field F (depending <strong>on</strong> χ), generated by σ (a<br />

lift <strong>to</strong> F of the au<strong>to</strong>morphism σ above) and elements g of the inertia group I(F/K) of<br />

Gal(F/K), and an element t ∈ E such that D τ = 〈e 1 , e 2 〉, with N = 0, and satisfies:<br />

D τ = D unr−sc [a : b] =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ϕ(e 1 ) = 1 √<br />

t<br />

e 1 , ϕ(e 2 ) = 1 √<br />

t<br />

e 2 ,<br />

σ(e 1 ) = e 2 , σ(e 2 ) = e 1 ,<br />

g(e 1 ) = (1 ⊗ χ(g)) e 1 ,<br />

g(e 2 ) = (1 ⊗ χ σ (g)) e 2 .<br />

We do not write down the Hodge filtrati<strong>on</strong> since we do not need it here.<br />

For the sec<strong>on</strong>d fac<strong>to</strong>r, we recall that the module D Sp(2) has a basis f 1 , f 2 with properties<br />

described at the start of §5.3.1. Then D = D τ ⊗ D Sp(2) has a basis of 4 vec<strong>to</strong>rs<br />

{v i } 4 i=1 defined as follows v 1 = e 1 ⊗ f 2 v 2 = e 1 ⊗ f 1<br />

v 3 = e 2 ⊗ f 2 v 4 = e 2 ⊗ f 1<br />

Observe that <strong>on</strong> D, the m<strong>on</strong>odromy opera<strong>to</strong>r N = 1 ⊗ N + N ⊗ 1 = 1 ⊗ N has kernel of<br />

rank 2, and this space is generated by the vec<strong>to</strong>rs v 2 and v 4 .<br />

For notati<strong>on</strong>al simplicity, write z for 1 ⊗ z, if z ∈ E and note that for z = ∑ i z i ⊗ e i ∈<br />

F 0 ⊗ E, σ(z) = ∑ i σ(z i) ⊗ e i . Then the induced acti<strong>on</strong> <strong>on</strong> D, the tensor product of the<br />

two (ϕ, N)-modules D τ and D Sp(2) , is summarized in the following table:<br />

ϕ<br />

v 1 = e 1 ⊗ f 2 v 2 = e 1 ⊗ f 1 v 3 = e 2 ⊗ f 2 v 4 = e 2 ⊗ f 1<br />

√<br />

p<br />

t<br />

v 1 √t 1<br />

v 2 √t<br />

p<br />

v 3 √t 1<br />

v 4<br />

N v 2 0 v 4 0<br />

σ v 3 v 4 v 1 v 2<br />

g χ(g)v 1 χ(g)v 2 χ σ (g)v 3 χ σ (g)v 4<br />

Lemma 5.4.3. There are no rank 1 (ϕ, N, F, E)-submodules of D.<br />

53


Proof. Let 〈v〉 be a free module of rank-1 admissible (ϕ, N, F, E)-submodule of D. Write<br />

v = av 1 + bv 2 + cv 3 + dv 4 where a, b, c, d ∈ (F 0 ⊗ Qp E). Since the rank of 〈v〉 is 1, we have<br />

Nv is zero. From the above table, it is easy <strong>to</strong> see that v has <strong>to</strong> be equal <strong>to</strong> bv 2 + dv 4 , for<br />

some b, d. Assume that ϕ(v) = α ϕ v. Since ϕ is bijective, α ϕ is a unit. We compute:<br />

α ϕ (bv 2 + dv 4 ) = α ϕ v (1)<br />

= ϕv (2)<br />

= σ(b) 1 √<br />

t<br />

v 2 + σ(d) 1 √<br />

t<br />

v 4<br />

(equality (1) follows from the fact that 〈v〉 is ϕ-stable and equality (2) from the table).<br />

By comparing coefficients, we have<br />

α ϕ<br />

√<br />

tb = σ(b), αϕ<br />

√<br />

td = σ(d). (5.4.1)<br />

Lemma 5.4.4. Suppose x is a n<strong>on</strong>-zero and a n<strong>on</strong>-unit element of F 0 ⊗ E. Then σ(x) ≠<br />

cx, for every c ∈ F 0 ⊗ E.<br />

From the above relati<strong>on</strong>s for b (resp., d) and by lemma above, we c<strong>on</strong>clude that b<br />

(resp., d) is either zero or a unit.<br />

Suppose that σ(v) = c σ v, for some c σ ∈ (F 0 ⊗ E), with c 2m<br />

σ = 1 (this m is the m of<br />

[GM09, §3.3], and not the m of this paper which is presently 2). Then<br />

c σ (bv 2 + dv 4 ) = c σ v (1)<br />

= σv (2)<br />

= σ(b)v 4 + σ(d)v 2<br />

(equality (1) follows from the fact that 〈v〉 is σ-stable and equality (2) from the table).<br />

By comparing coefficients, we have<br />

c σ b = σ(d), c σ d = σ(b). (5.4.2)<br />

From these relati<strong>on</strong>s, we can c<strong>on</strong>clude that b is zero if and <strong>on</strong>ly if d is zero. Since v is<br />

n<strong>on</strong>-zero, we have that both b and d are both units.<br />

For every g ∈ I(F/K), we have<br />

c g (bv 2 + dv 4 ) = c g v (1)<br />

= g · v (2)<br />

= χ(g)bv 2 + χ σ (g)dv 4<br />

(equality (1) follows from the fact that 〈v〉 is I(F/K)-stable and equality (2) from the<br />

table). Now, by comparing coefficients, and using the fact that b and d are units, we have<br />

c g = χ(g),<br />

c g = χ σ (g).<br />

Hence χ(g) = χ σ (g), for every g ∈ I(F/K). This is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Remark 5.4.5. The above argument shows that there are no (ϕ, Gal(F/Q p ))-stable submodules<br />

of rank 1 of either 〈v 2 , v 4 〉 or, as <strong>on</strong>e can show similarly, 〈v 1 , v 3 〉. There is also a<br />

simpler proof of this Lemma which avoids working with the above explicit manipulati<strong>on</strong>s<br />

which works for general m and n (cf. the proof of Lemma 5.4.11).<br />

Lemma 5.4.6. The <strong>on</strong>ly rank 2 (ϕ, N, F, E)-submodule of D is 〈v 2 , v 4 〉 = D τ ⊗ D Sp(1) .<br />

54


Proof. Let D ′ be a filtered module of rank 2. Suppose the index of N = 1, i.e., D ′ =<br />

〈w 1 , N(w 1 )〉, such that N 2 (w 1 ) = 0. It is easy <strong>to</strong> see that 〈N(w 1 )〉 is a rank 1 (ϕ, N, F, E)-<br />

submodule of D, a c<strong>on</strong>tradicti<strong>on</strong> by Lemma 5.4.3. Therefore, the index of N ≠ 1.<br />

Suppose the index of N = 2, i.e., D ′ = 〈w 1 , w 2 〉 such that N(w 1 ) = N(w 2 ) = 0. We<br />

know that the kernel of N is 〈v 2 , v 4 〉. Therefore, we have that 〈w 1 , w 2 〉 ⊆ 〈v 2 , v 4 〉. But<br />

both are free modules of the same rank, hence the equality holds.<br />

Lemma 5.4.7. There are no rank 3 (ϕ, N, F, E)-submodules of D.<br />

Proof. Let D ′ be a filtered module of D of rank 3. The index of nilpotency of N cannot<br />

be 3, since the kernel of N has rank 2.<br />

Suppose the index of nilpotency of N is 2, that is, there exists a basis, say w 1 , w 2 ,<br />

and N(w 2 ), of D ′ such that N(w 1 ), N 2 (w 2 ) are both zero. Clearly 〈w 1 , N(w 2 )〉 = 〈v 2 , v 4 〉.<br />

Thus there is a vec<strong>to</strong>r w 2 ′ = a 1v 1 + a 3 v 3 such that D ′ = 〈w 2 ′ , v 2, v 4 〉. But 〈w 2 ′ 〉 is stable<br />

by ϕ. Indeed ϕ acts by a scalar <strong>on</strong> w 2 ′ since, a priori, ϕw′ 2 is a linear combinati<strong>on</strong> of<br />

w 2 ′ , v 2 and v 4 , but the v 2 and v 4 comp<strong>on</strong>ents do not appear since ϕ preserves the space<br />

〈v 1 , v 3 〉. Similarly 〈w 2 ′ 〉 is also Gal(F/Q p)-stable. But then 〈w 2 ′ 〉 ⊂ 〈v 1, v 3 〉 is a rank 1<br />

module stable by ϕ and Gal(F/Q p ), which is not possible (cf. Remark 5.4.5).<br />

Finally, suppose the index of nilpotency of N is 1. But this case does not arise since<br />

the index of nilpotency of N <strong>on</strong> D is 2.<br />

Proof of Theorem 5.4.1 when m = 2 and n = 2<br />

This follows immediately from Lemmas 5.4.3, 5.4.6, and 5.4.7, when τ is an unramified<br />

supercuspidal representati<strong>on</strong> of dimensi<strong>on</strong> m = 2, and n = 2. As we remarked earlier, the<br />

case when τ is a ramified supercuspidal representati<strong>on</strong> is proved in a very similar manner<br />

using the notati<strong>on</strong> in [GM09, §3.4] (the <strong>on</strong>ly difference in the computati<strong>on</strong>s are the role<br />

of σ is now played by the au<strong>to</strong>morphism ι there).<br />

We menti<strong>on</strong> some immediate corollaries of Theorem 5.4.1 in the present case. Let<br />

π be an au<strong>to</strong>morphic representati<strong>on</strong> of GL 4 (A Q ) with infinitesimal character c<strong>on</strong>sisting<br />

of distinct integers −β 4 < · · · < −β 1 . Let ρ = ρ π,p | Gp be the corresp<strong>on</strong>ding (p, p)-<br />

Galois representati<strong>on</strong>. Suppose that WD(ρ) ∼ τ ⊗ Sp(2), where τ is a supercuspidal<br />

representati<strong>on</strong> of dimensi<strong>on</strong> 2, as above. Let D = D(ρ) be the corresp<strong>on</strong>ding admissible<br />

filtered (ϕ, N, F, E)-module. Note that β 4 > β 3 > β 2 > β 1 are also the drops in the Hodge<br />

filtrati<strong>on</strong> <strong>on</strong> D F .<br />

Corollary 5.4.8. With notati<strong>on</strong> as above, the crystal D is irreducible if and <strong>on</strong>ly if<br />

〈v 2 , v 4 〉 is not an admissible (ϕ, N, F, E)-submodule of D.<br />

Proof. By Lemmas 5.4.3 and 5.4.7, there are no rank 1 and rank 3 filtered submodules<br />

of D. By Lemma 5.4.6, there exists a unique rank 2 (ϕ, N, F, E)-submodule of D, which<br />

is 〈v 2 , v 4 〉. Hence the admissibility of 〈v 2 , v 4 〉 is equivalent <strong>to</strong> the reducibility of D.<br />

Corollary 5.4.9. The crystal D is irreducible if no two of the four β i add up <strong>to</strong> −v p (t).<br />

In particular, ρ is irreducible in this case.<br />

Proof. By Corollary 5.4.8, D is irreducible if and <strong>on</strong>ly if D ′ = 〈v 2 , v 4 〉 is not an admissible<br />

submodule. The submodule D ′ is not admissible if no two of the four β i add up <strong>to</strong> t N (D ′ )<br />

which is −v p (t), from the table above.<br />

55


5.4.2 τ unramified supercuspidal of dim m ≥ 2 and n ≥ 2<br />

We now prove Theorem 5.4.1 for general m and n, assuming τ is an ‘unramified supercuspidal<br />

representati<strong>on</strong>’. Let us explain this terminology. We assume that τ is an induced<br />

representati<strong>on</strong> of dimensi<strong>on</strong> m, i.e., τ ≃ Ind Wp<br />

W K<br />

χ, where K is a p-adic field such that<br />

[K : Q p ] = m, and χ is a character of W K . This is known <strong>to</strong> always hold if (p, m) = 1 or<br />

p > m. For simplicity, we shall assume that K is the unique unramified extensi<strong>on</strong> of Q p ,<br />

namely Q p m. We refer <strong>to</strong> τ in this case as an unramified supercuspidal representati<strong>on</strong>.<br />

Following the methods of [GM09, §3.3], we explicitly write down the crystal D = D τ<br />

whose underlying Weil-Deligne representati<strong>on</strong> is an unramified supercuspidal representati<strong>on</strong><br />

τ of dimensi<strong>on</strong> m. This is d<strong>on</strong>e in the next few subsecti<strong>on</strong>s. The arguments are<br />

similar <strong>to</strong> those given in [GM09, §3.3], with some minor modificati<strong>on</strong>s. We outline the<br />

steps now.<br />

Let σ be the genera<strong>to</strong>r of Gal(Q p m/Q p ) and let I p m denote the inertia subgroup of<br />

Q p m. Then<br />

τ| Ip=Ip m ≃ (Ind Wp<br />

W χ)| p m I p m ≃ ⊕ m i=1χ σi | Ip m .<br />

Since τ is irreducible, by Mackey’s criteri<strong>on</strong>, we have that χ ≠ χ σi , for all i, <strong>on</strong> W p m<br />

also <strong>on</strong> I p m. Moreover, we have that χ σj ≠ χ σi , for any i ≠ j.<br />

and<br />

Descripti<strong>on</strong> of Gal(F/Q p )<br />

First, we need <strong>to</strong> c<strong>on</strong>struct a finite extensi<strong>on</strong> F over K such that τ| IF is trivial and which<br />

simultaneously has the property that F/Q p is Galois. The c<strong>on</strong>structi<strong>on</strong> of an explicit such<br />

field F is given in [GM09, §3.3.1], in the case K = Q p 2 using Lubin-Tate theory. The<br />

structure of Gal(F/Q p ) is described in the same place. The case K = Q p m may be treated<br />

in a very similar manner. Write d for what was called in m in [GM09, §3.3.1], since m<br />

already has meaning here. Then F may be chosen such that Gal(F/Q p ) is the semi-direct<br />

product of a cyclic group 〈σ〉 with σ md = 1, with the product of the cyclic groups ∆ = 〈δ〉,<br />

with δ pm−1 = 1, and Γ = ∏ m<br />

i=1 〈γ i〉, with each γ pn<br />

i<br />

= 1, for some n. Moreover, the maximal<br />

unramified extensi<strong>on</strong> F 0 of F is F 0 = Q md<br />

p and Gal(F 0 /Q p ) = 〈˜σ〉 = Z/md, such that ˜σ| K<br />

is the genera<strong>to</strong>r of Gal(K/Q p ). By abuse of notati<strong>on</strong>, we denote ˜σ by σ itself.<br />

Descripti<strong>on</strong> of the Galois acti<strong>on</strong><br />

Recall that D is a free module of rank m over F 0 ⊗ Qp E . Let D i = D ⊗ F0 ⊗E,σi E, for<br />

i = 0, 1, . . . , md−1, be the comp<strong>on</strong>ent of D corresp<strong>on</strong>ding <strong>to</strong> σ i . Each D i is a Weil-Deligne<br />

representati<strong>on</strong> with an acti<strong>on</strong> of W p .<br />

By the definiti<strong>on</strong> of the Weil-Deligne representati<strong>on</strong>, the acti<strong>on</strong> of I p matches with the<br />

acti<strong>on</strong> of the inertia subgroup of Gal(F/Q p ), namely ∆×Γ. The restricti<strong>on</strong> of χ <strong>to</strong> I p can<br />

be written as χ| Ip = ωm r ∏ m<br />

i=1 χ i, where ω m is the fundamental character of level m, r ≥ 1,<br />

and χ i is the character of Γ which takes γ i <strong>to</strong> a p n -th root of unity ζ i , for i = 1, . . . , m.<br />

We see that each D i has a basis v i,1 , v i,2 , . . . , v i,m such that if i ≡ k (mod m), for some<br />

0 ≤ k ≤ m − 1, then<br />

g · v i,j = χ σj−k−1 (g)v i,j , (5.4.3)<br />

56


for all j = 1, . . . , m. Since σ takes D i <strong>to</strong> D i+1 , using (5.4.3), we may assume that<br />

Descripti<strong>on</strong> of acti<strong>on</strong> of ϕ<br />

σ(v i,j ) = v i+1,j ∀i, j.<br />

The opera<strong>to</strong>r ϕ acts in a cyclic manner as well, taking D i <strong>to</strong> D i+1 . Since ϕ commutes<br />

with the acti<strong>on</strong> of inertia, we see that<br />

ϕ(v i,j ) = c j v i+1,j+1 ,<br />

for some c j , for all 1 ≤ j ≤ m. Observe that c j ’s does not depend <strong>on</strong> i, since ϕ commutes<br />

with σ.<br />

1<br />

For all 1 ≤ k ≤ m, define,<br />

t k<br />

:= ∏ k<br />

j=1 c j and 1 t 0<br />

= 1. Replace the extensi<strong>on</strong> E with a<br />

finite extensi<strong>on</strong>, again denoted by E, so that it c<strong>on</strong>tains all m-th roots of all c j . Let m√ c j<br />

denote a particular m-th root, for each j.<br />

We now write down a basis of D, say {e i } m i=1 , such that ϕ(e i) = 1 m √ e<br />

t i . First, we<br />

m<br />

shall define e 1 and the other e i ’s are defined by e i = σ i−1 e 1 . The vec<strong>to</strong>r e 1 is given by<br />

e 1 =<br />

md−1<br />

∑<br />

j=0<br />

j≡j 0 (mod m), 0≤j 0 ≤m−1<br />

(t m ) j 0<br />

m<br />

t j0<br />

v j,j+1 .<br />

Here we use the obvious c<strong>on</strong>venti<strong>on</strong> that if j is such that j ≡ j 0 (mod m), with 1 ≤ j 0 ≤ m,<br />

then v i,j := v i,j0 . A small computati<strong>on</strong> shows that ϕ(e 1 ) = 1 m √ t m<br />

e 1 . Since ϕ commutes<br />

with σ, we have ϕ(e i ) = 1 m √ e<br />

t i , for all 1 ≤ i ≤ m. We obtain the D τ is a free rank m<br />

m<br />

module over F 0 ⊗ E with basis e i , i = 1, . . . , m such that<br />

⎧<br />

1<br />

ϕ(e i ) = m √ e<br />

t i ,<br />

m<br />

⎪⎨<br />

N(e i ) = 0,<br />

D τ =<br />

(5.4.4)<br />

σ(e i ) = e i+1 ,<br />

⎪⎩<br />

g(e i ) = (1 ⊗ χ σi−1 (g))(e i ), g ∈ I(F/K),<br />

for all 1 ≤ i ≤ m.<br />

When m = 2, this (ϕ, N)-module is exactly the <strong>on</strong>e given in [GM09, §3.3] (though the<br />

e i used here differ by a scalar from the e i used there).<br />

Descripti<strong>on</strong> of the filtrati<strong>on</strong><br />

For the sake of completeness, let us make some brief comments about the filtrati<strong>on</strong> <strong>on</strong><br />

D τ , even though we shall not need <strong>to</strong> use the filtrati<strong>on</strong> later.<br />

Let D be a filtered (ϕ, N, F, E)-module and write D F = F ⊗ F0 D. It is known that<br />

every Galois stable line in D F is generated by a Galois stable vec<strong>to</strong>r v (cf. [GM09, Lem.<br />

3.1]). The proof uses the fact H 1 (Gal(F/Q p ), (F ⊗ Qp E) × ) = 0. In fact, for any n ≥ 1:<br />

∏<br />

H 1 (Gal(F/Q p ), GL n (F ⊗ Qp E)) = H 1 (Gal(F/Q p ), GL n (E)),<br />

F ↩→E<br />

=<br />

(1) H1 (Gal(F/Q p ), Ind Gal(F/Qp)<br />

{e}<br />

GL n (E)),<br />

=<br />

(2) H1 ({e}, GL n (E)) = {0},<br />

57


(where (1) follows from the permutati<strong>on</strong> acti<strong>on</strong> of Gal(F/Q p ) <strong>on</strong><br />

follows from Shapiro’s lemma). Now, we can prove:<br />

∏<br />

F ↩→E<br />

GL n (E) and (2)<br />

Lemma 5.4.10. Every Gal(F/Q p )-stable submodule of D F has a basis c<strong>on</strong>sisting of Galois<br />

invariant vec<strong>to</strong>rs.<br />

Proof. Let D ′ be a Galois stable submodule of D F . By [Sav05, Lem. 2.1], we have that<br />

any F ⊗ Qp E-submodule of a filtered module with descent data is free. Hence D ′ is a<br />

free module of finite rank, say r. If {v 1 , v 2 , . . . , v r } is a basis of D ′ , then for every g ∈<br />

Gal(F/Q p ), we have g ·(v 1 , v 2 , · · · , v n ) t = c g (v 1 , v 2 , · · · , v r ) t , for some c g ∈ GL n (F ⊗ Qp E).<br />

Moreover, c g is 1-cocycle, i.e., c g ∈ Z 1 (Gal(F/Q p ), GL n (F ⊗ Qp E)). By the vanishing result<br />

above, c g is coboundary, hence c g = cg(c) −1 , for some c ∈ GL n (F ⊗ Qp E). Replacing the<br />

basis (v 1 , v 2 , · · · , v r ) t with c · (v 1 , v 2 , · · · , v r ) t , we may assume that c g = 1 and that each<br />

vec<strong>to</strong>r in {v 1 , v 2 , . . . , v r } is invariant under Gal(F/Q p ).<br />

In particular each step Fil i (D F ) in the filtrati<strong>on</strong> <strong>on</strong> D F is spanned by Gal(F/Q p )-<br />

invariant vec<strong>to</strong>rs. In [GM09, §3.3.4] the Hodge filtrati<strong>on</strong> <strong>on</strong> D F was written down explicitly<br />

when D = D τ and τ is a 2-dimensi<strong>on</strong>al unramified supercuspidal representati<strong>on</strong>.<br />

Presumably this can be d<strong>on</strong>e also when τ has dimensi<strong>on</strong> m ≥ 2, but we refrain from<br />

pursuing this.<br />

Using the explicit descripti<strong>on</strong> of the crystal above, we can prove Theorem 5.4.1 in the<br />

case above, and for brevity, we skip the proof and prove it in the general case directly.<br />

5.4.3 General case: m ≥ 2 and n ≥ 2<br />

Now, we shall prove Theorem 5.4.1 in general. Thus, we show that the <strong>on</strong>ly (ϕ, N, F, E)-<br />

submodules of D = D τ ⊗ D Sp(n) , for any irreducible representati<strong>on</strong> τ of W p dimensi<strong>on</strong><br />

m ≥ 2, and n ≥ 2, are of the form D τ ⊗ D Sp(r) , for some 1 ≤ r ≤ n. The proof uses ideas<br />

introduced for the special cases proved so far.<br />

Recall that the module D Sp(n) has a basis {f n , f n−1 , . . . , f 1 }, with properties as in<br />

§5.3.1, and say that D τ has a basis {e 1 , e 2 , . . . , e m } over F 0 ⊗ E. Let {v i } mn<br />

i=1 denote the<br />

basis of D = D τ ⊗ D Sp(r) defined by the following table:<br />

v 1 = e 1 ⊗ f n v 2 = e 1 ⊗ f n−1 · · · v n = e 1 ⊗ f 1<br />

v n+1 = e 2 ⊗ f n v n+2 = e 2 ⊗ f n−1 · · · v 2n = e 2 ⊗ f 1<br />

.<br />

. · · ·<br />

v in+1 = e i+1 ⊗ f n v in+2 = e i+1 ⊗ f n−1 · · · v in = e i+1 ⊗ f 1<br />

.<br />

. · · ·<br />

v (m−1)n+1 = e m ⊗ f n v (m−1)n+2 = e m ⊗ f n−1 · · · v mn = e m ⊗ f 1<br />

.<br />

.<br />

Lemma 5.4.11. There are no rank r (ϕ, N, F, E)-submodules of D <strong>on</strong> which N acts<br />

trivially, for 1 ≤ r ≤ m − 1.<br />

Proof. Suppose there exists such a module, say ˜D, of rank r < m. Since N acts trivially<br />

<strong>on</strong> ˜D, we have ˜D ⊆ 〈v n , v 2n , . . . , v mn 〉 = D τ ⊗ D Sp(1) ≃ D τ . But τ is irreducible, so D τ is<br />

irreducible by Lemma 4.2.14, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

58


Corollary 5.4.12. The index of N <strong>on</strong> a (ϕ, N, F, E)-submodules of D is m.<br />

Proof of Theorem 5.4.1. Let D ′ be a (ϕ, N, F, E)-submodule of D = D τ ⊗ D Sp(n) . From<br />

the corollary above, there are m blocks in the Jordan can<strong>on</strong>ical form of N <strong>on</strong> D ′ . Without<br />

loss of generality assume that the blocks have sizes r 1 ≤ r 2 ≤ · · · ≤ r m with ∑ m<br />

i=1 r i =<br />

rank D ′ . Suppose w 1 , . . . , w m are the corresp<strong>on</strong>ding basis vec<strong>to</strong>rs in D ′ such that the<br />

order of nilpotency of N <strong>on</strong> w i is r i , so that the {N j (w i )} i,j form a basis of D ′ . If all the<br />

r i are equal <strong>to</strong> say r, then the usual argument shows D ′ = D τ ⊗ D Sp(r) . We show that<br />

this is indeed the case.<br />

Suppose <strong>to</strong>wards a c<strong>on</strong>tradicti<strong>on</strong> that r i ≠ r i+1 for some 1 ≤ i < m. For 1 ≤ i ≤ n,<br />

let D i be span of the vec<strong>to</strong>rs in the last i columns in the table at the start of this secti<strong>on</strong>.<br />

Observe that D i = D τ ⊗ Ker(N i ) = D τ ⊗ D Sp(i) .<br />

Now, arrange the basis vec<strong>to</strong>rs of D ′ , i.e., the N j w k , in such a way that the last<br />

column in the table c<strong>on</strong>tains the basis vec<strong>to</strong>rs <strong>on</strong> which N acts trivially and the last but<br />

<strong>on</strong>e column c<strong>on</strong>sists of basis vec<strong>to</strong>r which precisely spans Ker(N 2 ) <strong>on</strong> D ′ , and so <strong>on</strong> and<br />

so forth. With respect <strong>to</strong> this arrangement, denote the span of the vec<strong>to</strong>rs in the last i<br />

columns as A i . Since r i ≠ r i+1 , the rank of the space A ri +1/A ri is less than m. Moreover,<br />

A ri +1/A ri is a subspace of D ri +1/D ri , i.e., there is an inclusi<strong>on</strong> of (ϕ, N, F, E)-modules<br />

A ri +1/A ri ↩→ D ri +1/D ri .<br />

Now<br />

D ri +1/D ri = (D τ ⊗ D Sp(ri +1))/(D τ ⊗ D Sp(ri ))<br />

≃ D τ ⊗ (D Sp(ri +1)/D Sp(ri ))<br />

≃ D τ ⊗ D Sp(1)<br />

≃ D τ .<br />

All the isomorphisms above are isomorphism of (ϕ, N, F, E)-modules over F 0 ⊗ E. By<br />

Lemma 5.4.11, the above inclusi<strong>on</strong> is not possible! Hence all the r i are indeed equal. This<br />

finishes the proof of Theorem 5.4.1.<br />

Filtrati<strong>on</strong> <strong>on</strong> D = D τ ⊗ D Sp(n)<br />

We finally can apply the discussi<strong>on</strong> above <strong>to</strong> write down the structure of the (p, p)-<br />

representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> an au<strong>to</strong>morphic representati<strong>on</strong> of GL mn (A Q ).<br />

We start with some remarks. Suppose D 1 and D 2 are two admissible filtered modules.<br />

It is well-known (cf. [Tot96]) that the tensor product D 1 ⊗ D 2 is also admissible. The<br />

difficulty in proving this lies in the fact that <strong>on</strong>e does not have much informati<strong>on</strong> about<br />

the structure of the (ϕ, N)-submodules of the tensor product. If they are of the form<br />

D ′ ⊗ D ′′ , where D ′ and D ′′ are admissible (ϕ, N)-submodules of D 1 and D 2 respectively,<br />

then <strong>on</strong>e could use (4.2.1) <strong>to</strong> prove that D ′ ⊗ D ′′ is also admissible. But not all the<br />

submodules of D 1 ⊗ D 2 are of this form.<br />

However in the previous secti<strong>on</strong> we have just shown (cf. Theorem 5.4.1), that for<br />

D = D τ ⊗ D Sp(n) , all the (ϕ, N, F, E)-submodules of D are of the form D τ ⊗ D Sp(r) , for<br />

some 1 ≤ r ≤ n. This fact allows us <strong>to</strong> study the crystal D and its submodules, <strong>on</strong>ce we<br />

introduce the Hodge filtrati<strong>on</strong>.<br />

59


Filtrati<strong>on</strong> in general positi<strong>on</strong><br />

Assume that the Hodge filtrati<strong>on</strong> <strong>on</strong> D is in general positi<strong>on</strong> with respect <strong>to</strong> the Newt<strong>on</strong><br />

filtrati<strong>on</strong> (cf. Assumpti<strong>on</strong> 4.4.6). Let m be the rank of D τ . Let {β i,j } i=n,j=m<br />

i=1,j=1<br />

be the<br />

jumps in the Hodge filtrati<strong>on</strong> with β i1 ,j 1<br />

> β i2 ,j 2<br />

, if i 1 > i 2 , or if i 1 = i 2 and j 1 > j 2 . Thus<br />

β n,m > β n,m−1 > · · · > β n,1 > β n−1,m > · · · > β 1,m > · · · > β 1,1 .<br />

Define, for every 1 ≤ k ≤ n,<br />

and<br />

b k =<br />

j=m<br />

∑<br />

j=1<br />

β k,j ,<br />

a k = t N (D τ ⊗ D Sp(k) ) − t N (D τ ⊗ D Sp(k−1) ) = t N (D τ ) + m(k − 1),<br />

where the last equality follows from (4.2.1a). Clearly, we have that<br />

b n > · · · > b i+2 > b i+1 > b i > · · · > b 1 ,<br />

a n > · · · > a i+2 > a i+1 > a i > · · · > a 1 .<br />

(5.4.5)<br />

Observe that b i+1 −b i ≥ m 2 and a i+1 −a i = m, for every 1 ≤ i ≤ n. Since D is admissible,<br />

the submodule D τ ⊗ D Sp(i) of D is admissible if and <strong>on</strong>ly if ∑ i<br />

k=1 b k = ∑ i<br />

k=1 a k.<br />

The arguments below are similar <strong>to</strong> the <strong>on</strong>es used when analyzing the Steinberg case.<br />

We start with an analog of Lemma 5.3.2.<br />

Lemma 5.4.13. Let {a i } n i=1 be an increasing sequence of integers, such that a i+1−a i = m,<br />

for every i and for some fixed natural number m. Let {b i } n i=1 be an increasing sequence<br />

of integers, such that b i+1 − b i ≥ m 2 , for every i. Suppose that ∑ i a i = ∑ i b i. If a n = b n<br />

or a 1 = b 1 , then m = 1 and hence a i = b i , for all i.<br />

Theorem 5.4.14. If D τ ⊗D Sp(i) and D τ ⊗D Sp(i+1) are admissible submodules of D, then<br />

m = 1, in which case all the D τ ⊗ D Sp(i) , for 1 ≤ i ≤ n, are admissible.<br />

Proof. Since D τ ⊗ D Sp(i) and D τ ⊗ D Sp(i+1) are admissible, we have:<br />

b 1 + b 2 + · · · + b i =<br />

i∑<br />

a r ,<br />

r=1<br />

i+1<br />

∑<br />

b 1 + b 2 + · · · + b i+1 = a r .<br />

r=1<br />

(5.4.6)<br />

Clearly, we have b i+1 = a i+1 . By (5.4.5), (5.4.6), and by Lemma 5.4.13 we have m = 1<br />

and a i = b i , for all 1 ≤ i ≤ n. This shows that all the D τ ⊗ D Sp(i) are admissible.<br />

Theorem 5.4.15. Let D = D τ ⊗ D Sp(n) and assume that the Hodge filtrati<strong>on</strong> <strong>on</strong> D is in<br />

general positi<strong>on</strong> (cf. Assumpti<strong>on</strong> 4.4.6). Then either D is irreducible or D is reducible,<br />

in which case m = 1 and the (ϕ, N, F, E)-submodules D τ ⊗ D Sp(i) , for 1 ≤ i ≤ n are all<br />

admissible.<br />

60


Proof. Let D i = D τ ⊗ D Sp(i) , for 1 ≤ i ≤ n. If D is irreducible then we are d<strong>on</strong>e. If<br />

not, by Theorem 5.4.1, there exists an 1 ≤ i ≤ n such that D i is admissible. If D i−1 or<br />

D i+1 is also admissible, then by the above theorem m = 1 and hence all the (ϕ, N, F, E)-<br />

submodules of D are admissible. So, assume D i−1 and D i+1 are not admissible, but D i<br />

is admissible. We shall show that this is not possible. Indeed, we have:<br />

b 1 + b 2 + · · · + b i−1 <<br />

r=i−1<br />

∑<br />

r=1<br />

r=i<br />

a r ,<br />

∑<br />

b 1 + b 2 + · · · + b i = a r ,<br />

b 1 + b 2 + · · · + b i+1 <<br />

r=1<br />

r=i+1<br />

∑<br />

r=1<br />

a r .<br />

(5.4.7a)<br />

(5.4.7b)<br />

(5.4.7c)<br />

Subtracting (5.4.7b) from (5.4.7a), we get −b i < −a i . Subtracting (5.4.7b) from (5.4.7c),<br />

we get b i+1 < a i+1 . Adding these two inequalities, we get b i+1 − b i < a i+1 − a i = m. But<br />

this is a c<strong>on</strong>tradicti<strong>on</strong>, since b i+1 − b i ≥ m.<br />

For emphasis we state separately the following corollary:<br />

Corollary 5.4.16. With assumpti<strong>on</strong>s as above, for any m ≥ 2, the crystal D = D τ ⊗<br />

D Sp(n) is irreducible.<br />

Definiti<strong>on</strong> 5.4.17. Say π is ordinary at p if a 1 = b 1 , i.e., t N (D τ ) = ∑ m<br />

j=1 β 1,j.<br />

This c<strong>on</strong>diti<strong>on</strong> implies m = 1, and this definiti<strong>on</strong> then coincides with Definiti<strong>on</strong> 5.3.6.<br />

Applying the above discussi<strong>on</strong> <strong>to</strong> the <strong>local</strong> (p, p)-representati<strong>on</strong> in a strictly compatible<br />

system, we obtain:<br />

Theorem 5.4.18 (Indecomposable case). Say π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

with infinitesimal character c<strong>on</strong>sisting of distinct integers. Suppose that<br />

WD(ρ π,p | Gp ) ∼ τ m ⊗ Sp(n),<br />

where τ m is an irreducible representati<strong>on</strong> of W p of dimensi<strong>on</strong> m ≥ 1, and n ≥ 1. Assume<br />

that Assumpti<strong>on</strong> 4.4.6 holds.<br />

• If π is ordinary at p, then ρ π,p | Gp is reducible, in which case m = 1 and τ 1 is a<br />

character and ρ π,p | Gp is (quasi)-ordinary as in Theorems 5.3.7 and 5.3.8.<br />

• If π is not ordinary at p, then ρ π,p | Gp<br />

is irreducible.<br />

Tensor product filtrati<strong>on</strong><br />

One might w<strong>on</strong>der what happens if the filtrati<strong>on</strong> <strong>on</strong> D is not necessarily in general positi<strong>on</strong>.<br />

As an example, here we c<strong>on</strong>sider just <strong>on</strong>e case arising from the so called tensor<br />

product filtrati<strong>on</strong>.<br />

Assume that D τ and D Sp(n) are the usual filtered (ϕ, N, F, E)-modules and equip<br />

D τ ⊗ D Sp(n) with the tensor product filtrati<strong>on</strong>. By the formulas in Lemma 4.2.7 <strong>on</strong>e can<br />

prove:<br />

61


Lemma 5.4.19. Suppose that D = D τ ⊗ D Sp(n) has the tensor product filtrati<strong>on</strong>. Fix<br />

1 ≤ r ≤ n. Then D τ ⊗ D Sp(r) is an admissible submodule of D if and <strong>on</strong>ly if D Sp(r) is an<br />

admissible submodule of D Sp(n) .<br />

We recall that if the filtrati<strong>on</strong> <strong>on</strong> D Sp(n) is in general positi<strong>on</strong> (as in Assumpti<strong>on</strong> 4.4.6),<br />

then we have shown that furthermore D Sp(r) is an admissible submodule of D Sp(n) if and<br />

<strong>on</strong>ly if D Sp(1) is an admissible submodule.<br />

Remark 5.4.20. The lemma can be used <strong>to</strong> give an example where the tensor product<br />

filtrati<strong>on</strong> <strong>on</strong> D is not in general positi<strong>on</strong> (i.e., does not satisfy Assumpti<strong>on</strong> 4.4.6). Suppose<br />

τ is an irreducible representati<strong>on</strong> of dimensi<strong>on</strong> m = 2 and D Sp(2) has weight 2 (cf. [GM09,<br />

§3.1]). Note 〈f 1 〉 is an admissible submodule of D Sp(2) . Hence, by the lemma, D τ ⊗ 〈f 1 〉<br />

is an admissible submodule of D τ ⊗ D Sp(2) . If the tensor product filtrati<strong>on</strong> satisfies<br />

Assumpti<strong>on</strong> 4.4.6, then the admissibility of D τ ⊗ 〈f 1 〉 would c<strong>on</strong>tradict Theorem 5.4.15,<br />

since m = 2.<br />

In any case, we have the following applicati<strong>on</strong> <strong>to</strong> <strong>local</strong> Galois representati<strong>on</strong>s.<br />

Propositi<strong>on</strong> 5.4.21. Suppose that ρ π,p | Gp ∼ ρ τ ⊗ ρ Sp(n) is a tensor product of two (p, p)-<br />

representati<strong>on</strong>s, with underlying Weil-Deligne representati<strong>on</strong>s τ and Sp(n) respectively.<br />

If ρ Sp(n) is irreducible, then so is ρ π,p | Gp .<br />

5.5 General Weil-Deligne representati<strong>on</strong>s<br />

So far, we have studied the (p, p)-Galois representati<strong>on</strong> <strong>attached</strong> <strong>to</strong> π p when the underlying<br />

Weil-Deligne representati<strong>on</strong> is indecomposable. We now make some remarks in the<br />

general setting where the Weil-Deligne representati<strong>on</strong> is a direct sum of indecomposable<br />

representati<strong>on</strong>s.<br />

5.5.1 Sum of twisted Steinberg<br />

For simplicity we start with the case where the indecomposable pieces are twists of the<br />

Steinberg representati<strong>on</strong> by an unramified character. Thus we assume the underlying<br />

Weil-Deligne representati<strong>on</strong> is<br />

D χ1 ⊗ D Sp(n1 ) ⊕ D χ2 ⊗ D Sp(n2 ) ⊕ · · · ⊕ D χr ⊗ D Sp(nr),<br />

where n i ≥ 1 and χ i are unramified characters taking arithmetic Frobenius <strong>to</strong> α i . Let<br />

χ i (ω) = α i where ω is a uniformizer of Q × p . Without loss of generality we may assume<br />

that v p (α 1 ) ≥ v p (α 2 ) ≥ · · · ≥ v p (α r ).<br />

Let n = ∑ r<br />

i n i. Let {β i,j } r,n i<br />

i=1,j=1<br />

be the jumps in the Hodge filtrati<strong>on</strong> such that<br />

β i1 ,j 1<br />

> β i2 ,j 2<br />

, if i 1 > i 2 or i 1 = i 2 and j 1 > j 2 . Thus<br />

β r,nr > · · · > β r,1 > β r−1,nr−1 > · · · > β r−1,1 > · · · ><br />

β 2,n2 > · · · > β 2,1 > β 1,n1 > · · · > β 1,1 .<br />

(5.5.1)<br />

62


Let D be a filtered (ϕ, N, Q p , E)-module with associated Weil-Deligne representati<strong>on</strong><br />

as above. We now define a flag inside D as follows.<br />

⎧<br />

D χ1 ⊗ D Sp(i) if 1 ≤ i ≤ n 1 ,<br />

⎪⎨ D χ1 ⊗ D Sp(n1 ) ⊕ D χ2 ⊗ D Sp(i−n1 ) if n 1 + 1 ≤ i ≤ n 1 + n 2 ,<br />

D i =<br />

.<br />

⎪⎩<br />

⊕ r−1<br />

k=1 D χ i<br />

⊗ D Sp(ni ) ⊕ D χr ⊗ D Sp(i−(n−nr)) if n − n r + 1 ≤ i ≤ n.<br />

Clearly, D n is the full (ϕ, N)-module D. We now show that the above flag is admissible<br />

if and <strong>on</strong>ly if π is ordinary at p in the following sense:<br />

Definiti<strong>on</strong> 5.5.1. Say π is ordinary at p if β i,1 = −v p (α i ) for all 1 ≤ i ≤ r.<br />

We remark that the noti<strong>on</strong> of ordinariness extends the previous definiti<strong>on</strong>s given in<br />

Definiti<strong>on</strong> 5.2.1, when all the n i = 1 and Definiti<strong>on</strong> 5.3.6, when r = 1 and m = 1. We<br />

have:<br />

Theorem 5.5.2. Assume that Assumpti<strong>on</strong> 4.4.6 holds. Then the flag {D i } is an admissible<br />

flag in D (i.e., each D i is admissible) if and <strong>on</strong>ly if π is ordinary at p.<br />

Proof. The ‘<strong>on</strong>ly if’ part is clear. Indeed if the Hodge filtrati<strong>on</strong> is in general positi<strong>on</strong><br />

then the jump in the filtrati<strong>on</strong> <strong>on</strong> D 1 will be the last number in (5.5.1), i.e., β 1,1 , and the<br />

admissibility of D 1 shows that β 1,1 = −v p (α 1 ). Similarly, the jumps in the filtrati<strong>on</strong> <strong>on</strong><br />

D n1 (respectively D n1 +1) are the last n 1 numbers (respectively the last n 1 numbers al<strong>on</strong>g<br />

with β 2,1 ) in (5.5.1) above, and clearly t N (D n1 +1) = t N (D n1 )−v p (α 2 ), so the admissibility<br />

of D n1 and D n1 +1 <strong>to</strong>gether shows that β 2,1 = −v p (α 2 ), etc.<br />

Let us prove the ‘if’ part. Since β 1,1 = −v p (α 1 ), D 1 is admissible. Since D 2 is a<br />

(ϕ, N, Q p , E)-submodule of D we have that<br />

β 1,1 + β 1,2 ≤ (1 − v p (α 1 )) + (−v p (α 1 ))<br />

and hence β 1,2 ≤ 1 − v p (α 1 ) = 1 + β 1,1 . Thus β 1,2 − β 1,1 ≤ 1. But β 1,2 − β 1,1 ≥ 1, by<br />

(5.5.1), hence equality holds, i.e., β 1,2 = (1 − v p (α 1 )). Therefore,<br />

By a similar argument, we see that<br />

β 1,1 + β 1,2 = (1 − v p (α 1 )) + (−v p (α 1 )).<br />

∑n 1<br />

j=1<br />

∑n 1<br />

β 1,j = (j − 1 − v p (α 1 )). (5.5.2)<br />

j=1<br />

This shows that D n1 is admissible. Since D n1 +1 is an (ϕ, N, F, E)-submodule of D, we<br />

have that<br />

∑n 1<br />

∑n 1<br />

β 1,j + β 2,1 ≤ (j − 1 − v p (α 1 )) + (−v p (α 2 )),<br />

j=1<br />

j=1<br />

but this inequality is actually an equality, by (5.5.2), and since β 2,1 = −v p (α 2 ) by assumpti<strong>on</strong>.<br />

This shows that D n1 +1 is also admissible. The admissibility of the other D i is<br />

proved in a similar manner.<br />

63


5.5.2 General ordinary case<br />

We now assume that as a (ϕ, N, F, E)-module,<br />

D = D τ1 ⊗ D Sp(n1 ) ⊕ D τ2 ⊗ D Sp(n2 ) ⊕ · · · ⊕ D τr ⊗ D Sp(nr),<br />

where n i ∈ N and τ i ’s are irreducible representati<strong>on</strong>s of W p of degree m i . Without loss of<br />

generality we may assume t N (D τ1 ) ≤ t N (D τ2 ) ≤ · · · ≤ t N (D τr ).<br />

We now define a flag inside D τ1 ⊗ D Sp(n1 ) ⊕ · · · ⊕ D τr ⊗ D Sp(nr), and show that this<br />

flag is admissible if and <strong>on</strong>ly if there is a relati<strong>on</strong> between some numbers a i (depending<br />

<strong>on</strong> Newt<strong>on</strong> numbers) and b i (depending <strong>on</strong> Hodge numbers). More precisely, define the<br />

flag {D i } in D by<br />

⎧<br />

D τ1 ⊗ D Sp(i) if 1 ≤ i ≤ n 1 ,<br />

⎪⎨ D τ1 ⊗ D Sp(n1 ) ⊕ D τ2 ⊗ D Sp(i−n1 ) if n 1 + 1 ≤ i ≤ n 1 + n 2 ,<br />

D i =<br />

.<br />

⎪⎩<br />

⊕ r−1<br />

k=1 D τ k<br />

⊗ D Sp(nk ) ⊕ D τr ⊗ D Sp(i−(n−nr)) if n − n r + 1 ≤ i ≤ n.<br />

We now define the numbers a i and b i . Let {β i,j } be the jumps in the Hodge filtrati<strong>on</strong><br />

associated <strong>to</strong> D such that β i1 ,j 1<br />

> β i2 ,j 2<br />

, if i 1 > i 2 or if i 1 = i 2 but j 1 > j 2 . Thus, in the<br />

case r = 2, the jumps in the filtrati<strong>on</strong> are:<br />

β m1 +m 2 ,n 2<br />

> β m1 +m 2 −1,n 2<br />

> · · · > β m1 +1,n 2<br />

><br />

β m1 +m 2 ,n 2 −1 > β m1 +m 2 −1,n 2 −1 > · · · > β m1 +1,n 2 −1 > · · · ><br />

β m1 +m 2 ,1 > β m1 +m 2 −1,1 > · · · > β m1 +1,1 ><br />

β m1 ,n 1<br />

> β m1 −1,n 1<br />

> · · · > β 1,n1 ><br />

β m1 ,n 1 −1 > β m1 −1,n 1 −1 > · · · > β 1,n1 −1 > · · · ><br />

Define, for every 1 ≤ k ≤ n 1 ,<br />

b k =<br />

i=m<br />

∑ 1<br />

i=1<br />

β m1 ,1 > β m1 −1,1 > · · · > β 1,1 .<br />

β i,k ,<br />

a k = t N (D τ1 ⊗ D Sp(k) ) − t N (D τ1 ⊗ D Sp(k−1) ) = t N (D τ1 ) + m 1 (k − 1).<br />

Clearly, we have that<br />

b n1 > b n1 −1 > · · · > b 2 > b 1 ,<br />

a n1 > a n1 −1 > · · · > a 2 > a 1 .<br />

Observe that b i+1 − b i ≥ m 2 1 and a i+1 − a i = m 1 , for 1 ≤ i < n 1 . Under Assumpti<strong>on</strong> 4.4.6,<br />

the jumps in the induced Hodge filtrati<strong>on</strong> <strong>on</strong> D τ1 ⊗ D Sp(j) are β m1 ,j > · · · > β 1,1 , so that<br />

D τ1 ⊗ D Sp(j) is an admissible submodule of D if and <strong>on</strong>ly if ∑ j<br />

k=1 b k = ∑ j<br />

k=1 a k.<br />

Similarly define b k and a k for all 1 ≤ k ≤ n = ∑ r<br />

i n i. For example, if n 1 +1 ≤ n 1 +k ≤<br />

n 1 + n 2 , define<br />

b n1 +k =<br />

i=m<br />

∑ 2<br />

i=1<br />

β m1 +i,k,<br />

a n1 +k = t N (D τ2 ⊗ D Sp(k) ) − t N (D τ2 ⊗ D Sp(k−1) ) = t N (D τ2 ) + m 2 (k − 1).<br />

64


Again, we have<br />

b n1 +n 2<br />

> b n1 +n 2 −1 > · · · > b n1 +2 > b n1 +1,<br />

a n1 +n 2<br />

> a n1 +n 2 −1 > · · · > a n1 +2 > a n1 +1,<br />

and b i+1 − b i ≥ m 2 2 and a i+1 − a i = m 2 , for every n 1 + 1 ≤ i < n 1 + n 2 , etc.<br />

Definiti<strong>on</strong> 5.5.3. Say π is ordinary at p if a P i−1<br />

j=1 n j+1 = bP i−1<br />

j=1 n , for 1 ≤ i ≤ r.<br />

j+1<br />

Note that this definiti<strong>on</strong> of ordinariness reduces <strong>to</strong> Definiti<strong>on</strong> 5.4.17 when r = 1, but<br />

also <strong>to</strong> Definiti<strong>on</strong> 5.5.1 since it implies m i = 1, for 1 ≤ i ≤ r.<br />

Theorem 5.5.4. Assume that Assumpti<strong>on</strong> 4.4.6 holds. Then, the flag {D i } is admissible<br />

(i.e., each D i is an admissible submodule of D) if and <strong>on</strong>ly if π is ordinary at p.<br />

Proof. We prove the ‘<strong>on</strong>ly if’ directi<strong>on</strong> for r = 2, since the general case is similar, and <strong>on</strong>ly<br />

notati<strong>on</strong>ally more cumbersome. Thus we have <strong>to</strong> show that if the flag {D i } is admissible,<br />

then a 1 = b 1 and a n1 +1 = b n1 +1. The proof is an easy applicati<strong>on</strong> of Lemma 5.4.13.<br />

Indeed<br />

• The admissibility of D 1 shows that a 1 = b 1 .<br />

• The admissibility of D n1<br />

Lemma 5.4.13).<br />

and a 1 = b 1 shows m 1 = 1 and a i = b i for 1 ≤ i ≤ n 1 (by<br />

• The admissibility of D n1 +1 and D n1 <strong>to</strong>gether shows a n1 +1 = b n1 +1.<br />

• The admissibility of D n1 +n 2<br />

and D n1 and a n1 +1 = b n1 +1 shows m 2 = 1 and a n1 +i =<br />

b n1 +i for 1 ≤ i ≤ n 2 (by Lemma 5.4.13).<br />

Since all m i = 1, the proof of the ‘if’ part of the theorem is exactly the same as the ‘if’<br />

part of the proof of Theorem 5.5.2, noting b P i−1<br />

j=1 n j+1 = β i,1 and and a P i−1<br />

j=1 n j+1 = −v p(α i ),<br />

for 1 ≤ i ≤ r.<br />

Remark 5.5.5. The theorem does not tell us when D is irreducible, since there are a large<br />

number of (ϕ, N, F, E)-submodules of D which are not part of the flag c<strong>on</strong>sidered above.<br />

For instance, it seems hard <strong>to</strong> determine the admissibility of the submodule D τi ⊗D Sp(ni ),<br />

except when i = 1.<br />

Translating the above theorem in terms of the (p, p)-representati<strong>on</strong>, we obtain:<br />

Theorem 5.5.6 (Decomposable case). Suppose π is a cuspidal au<strong>to</strong>morphic representati<strong>on</strong><br />

of GL N (A Q ) with infinitesimal character given by the integers −β 1 > · · · > −β N .<br />

Suppose that N = ∑ r<br />

i=1 m in i and<br />

WD(ρ π,p | Gp ) ∼ ⊕ r i=1τ i ⊗ Sp(n i ),<br />

where τ i is an irreducible representati<strong>on</strong> of dimensi<strong>on</strong>s m i ≥ 1, and n i ≥ 1. If π is<br />

ordinary at p, then m i = 1 for all i, the β i occur in r blocks of c<strong>on</strong>secutive integers, of<br />

lengths n i , for 1 ≤ i ≤ r, and<br />

⎛<br />

⎞<br />

ρ n1 ∗ · · · ∗<br />

0 ρ n2 · · · ∗<br />

ρ π,p | Gp ∼ ⎜<br />

⎟<br />

⎝ 0 0 · · · ∗ ⎠ ,<br />

0 0 0 ρ nr<br />

65


where each ρ ni is an n i -dimensi<strong>on</strong>al representati<strong>on</strong> with shape similar <strong>to</strong> that in Theorem<br />

5.3.8. In particular, ρ π,p | Gp is quasi-ordinary.<br />

5.6 Further remarks<br />

Theorem 5.5.6 treats the general ordinary case. In the general n<strong>on</strong>-ordinary case, the<br />

behaviour of the (p, p)-Galois representati<strong>on</strong> is more complex and we do not have complete<br />

informati<strong>on</strong> about irreducibility (compare with Theorem 5.4.18). In this secti<strong>on</strong> we<br />

c<strong>on</strong>tent ourselves with a few c<strong>on</strong>cluding remarks about new issues that arise.<br />

To fix ideas we assume that the Weil-Deligne representati<strong>on</strong> associated <strong>to</strong> π p is of the<br />

form<br />

χ 1 ⊗ Sp(2) ⊕ χ 2 ⊗ Sp(2),<br />

where χ 1 and χ 2 are unramified characters of W p taking arithmetic Frobenius <strong>to</strong> α 1 and<br />

α 2 , respectively. Let D be the associated (ϕ, N, Q p , E)-module. Let β 4 > · · · > β 1 be the<br />

jumps in the Hodge filtrati<strong>on</strong> <strong>on</strong> D. We c<strong>on</strong>tinue <strong>to</strong> assume that Assumpti<strong>on</strong> 4.4.6 holds.<br />

Just as in previous secti<strong>on</strong>s, we ignore the filtrati<strong>on</strong>, and first classify the (ϕ, N, Q p , E)-<br />

submodules of D.<br />

Classificati<strong>on</strong> of (ϕ, N)-submodules of D<br />

Let e 1 , e 2 = N(e 1 ) be a basis of χ 1 ⊗ Sp(2) and f 1 , f 2 = N(f 1 ) be a basis of χ 2 ⊗ Sp(2).<br />

Sometimes we write 〈e 2 〉 for χ 1 ⊗ Sp(1), etc.<br />

If α 1 = α 2 , then any 1-dimensi<strong>on</strong>al subspace of 〈e 2 , f 2 〉 is a (ϕ, N)-submodule of<br />

D. In particular, there exists infinitely many 1-dimensi<strong>on</strong>al submodules of D. This is<br />

already in striking c<strong>on</strong>trast with the statement of Theorem 5.4.1, which says that in<br />

the indecomposable case there are <strong>on</strong>ly finitely many (ϕ, N)-submodules. So already we<br />

can expect that the analysis in the decomposable case might be much more complex.<br />

We remark, however, that if α 1 ≠ α 2 , then 〈e 2 〉 and 〈f 2 〉 are the <strong>on</strong>ly 1-dimensi<strong>on</strong>al<br />

submodules of D.<br />

Again, if α 1 = α 2 , then the 2-dimensi<strong>on</strong>al (ϕ, N)-submodule of D are of the form<br />

〈ae 1 + cf 1 , ae 2 + cf 2 〉, for some a, c ∈ E. If α 1 ≠ α 2 , but p/α 1 = 1/α 2 , then again<br />

there are again infinitely many 2-dimensi<strong>on</strong>al (ϕ, N)-submodules and they are given by<br />

〈e 1 + bf 2 , e 2 〉 or 〈f 1 + be 2 , f 2 〉, for some b ∈ E. If α 1 ≠ α 2 and p/α 1 ≠ 1/α 2 , then there<br />

are <strong>on</strong>ly finitely many 2-dimensi<strong>on</strong>al (ϕ, N)-submodules: they are χ 1 ⊗ Sp(2), χ 2 ⊗ Sp(2)<br />

and the diag<strong>on</strong>al <strong>on</strong>e χ 1 ⊗ Sp(1) ⊕ χ 2 ⊗ Sp(1).<br />

Finally, like the 1-dimensi<strong>on</strong>al case, if α 1 = α 2 , then all the 3-dimensi<strong>on</strong>al (ϕ, N)-<br />

submodules of D are of form 〈ae 1 + bf 1 , e 2 , f 2 〉, for any a, b ∈ E. If α 1 ≠ α 2 , there are<br />

exactly two 3-dimensi<strong>on</strong>al submodules, namely χ 1 ⊗ Sp(2) ⊕ χ 2 ⊗ Sp(1) and χ 1 ⊗ Sp(1) ⊕<br />

χ 2 ⊗ Sp(2).<br />

Hence, if we choose α 1 and α 2 generically (i.e., α 1 ≠ α 2 and α 1 ≠ pα 2 ), then there are<br />

<strong>on</strong>ly finitely many (ϕ, N)-submodules of D, otherwise there are infinitely many (ϕ, N)-<br />

submodules of D. The following table c<strong>on</strong>tains the possible Newt<strong>on</strong> numbers of the<br />

(ϕ, N)-submodules D ′ of D.<br />

66


dim E D ′ t N (D ′ ) when α 1 ≠ α 2 t N (D ′ ) when α 1 = α 2<br />

1 −v p (α 1 ), −v p (α 2 ) −v p (α 1 )<br />

2 −v p (α 1 ) − v p (α 2 ), 1 − 2v p (α 1 ), 1 − 2v p (α 2 ) 1 − 2v p (α 1 )<br />

3 1 − 2v p (α 1 ) − v p (α 2 ), 1 − v p (α 1 ) − 2v p (α 2 ) 1 − 3v p (α 1 )<br />

4 1 − 2v p (α 1 ) + 1 − 2v p (α 2 ) 2 − 4v p (α 1 )<br />

An irreducible example<br />

We can now easily c<strong>on</strong>struct examples such that the crystal D is irreducible. For instance,<br />

choose any α 1 ∈ E with v p (α 1 ) = 0 and take α 2 = α 1 . Take (β 4 , β 3 , β 2 , β 1 ) = (2, 1, 0, −1).<br />

Using the table above, <strong>on</strong>e can easily check that there are no admissible (ϕ, N)-submodules<br />

of D, except for D itself. We note that since α 1 = α 2 , there are infinitely many (ϕ, N)-<br />

submodules of D, but <strong>on</strong>ly finitely many c<strong>on</strong>diti<strong>on</strong>s <strong>to</strong> check for n<strong>on</strong>-admissibility.<br />

All complete flags cannot be reducible<br />

In proving Theorem 5.5.6 we showed that ordinariness implies that a particular complete<br />

flag is admissible. We now wish <strong>to</strong> point out that not all complete flags in D are necessarily<br />

admissible, even under the ordinariness assumpti<strong>on</strong>. Indeed, in the setting of the example<br />

of this secti<strong>on</strong>, if we choose α 1 and α 2 such that v p (α 1 ) ≠ v p (α 2 ), then any two complete<br />

flags whose 1-dimensi<strong>on</strong>al subspaces are 〈e 2 〉 and 〈f 2 〉, respectively, cannot be admissible<br />

simultaneously, since (under Assumpti<strong>on</strong> 4.4.6) we have both β 1 = −v p (α 1 ) and β 1 =<br />

−v p (α 2 ).<br />

Intermediate cases<br />

Finally, in the general decomposable case, the regularity (distinct Hodge-Tate weights) of<br />

the (p, p)-Galois representati<strong>on</strong> ρ π,p | Gp does not imply that it is either (quasi)-ordinary<br />

in the sense of Definiti<strong>on</strong> 4.4.7 or irreducible (compare with Theorem 5.4.18). We now<br />

give an example of such an ‘intermediate case’, i.e., an example for which the (p, p)-<br />

Galois representati<strong>on</strong> is reducible, but such that there is no complete flag of reducible<br />

submodules.<br />

Let D be as above. Choose α 1 and α 2 such that v p (α 1 ) = 1 and v p (α 2 ) = −10.<br />

Take (β 4 , β 3 , β 2 , β 1 ) = (17, 4, 0, −1). From the table above, we see that χ 1 ⊗ Sp(1),<br />

χ 1 ⊗Sp(2), and D, are admissible and all the other (ϕ, N)-submodules satisfy the c<strong>on</strong>diti<strong>on</strong><br />

that their Hodge numbers are less than or equal <strong>to</strong> their Newt<strong>on</strong> numbers. So D is<br />

reducible. However, since α 1 ≠ α 2 and α 1 ≠ pα 2 , there are <strong>on</strong>ly two 3-dimensi<strong>on</strong>al<br />

(ϕ, N)-submodules of D, and again from the table we see that neither is admissible.<br />

Hence, there is no admissible complete flag of (ϕ, N)-submodules of D.<br />

67


Chapter 6<br />

2-adic Hida theory and<br />

Applicati<strong>on</strong>s<br />

Hida theory for the prime p is the theory [Hid86b], [Hid86a] that deals with p-ordinary<br />

cuspidal families. While generalizati<strong>on</strong>s are now available, for au<strong>to</strong>morphic <strong>forms</strong> <strong>on</strong><br />

groups other than GL 2 and base fields other than Q, many authors tend <strong>to</strong> shy away from<br />

the prime p = 2. We show that the basic results in the literature stated for odd primes p<br />

remain valid for the prime p = 2. We apply these results <strong>to</strong> study the <strong>local</strong> semisimplicity<br />

of ordinary modular Galois representati<strong>on</strong>s.<br />

In §6.1, we briefly recall some useful results about group and sheaf cohomology. In<br />

§6.2, we study the relati<strong>on</strong>s between various cohomology groups with coefficients. In<br />

§6.3, we state a c<strong>on</strong>trol theorem for cohomology groups of modular curves and §6.4, §6.5<br />

c<strong>on</strong>tain its proof. Since some results that we need from the theory of mod 2 modular<br />

<strong>forms</strong> are not known, we replace them with other ingredients (cf. Theorem 6.5.3 and<br />

§6.6) <strong>to</strong> prove the c<strong>on</strong>trol theorem above for p = 2. Finally, in §6.8, we show that Hida’s<br />

c<strong>on</strong>trol theorem for the ordinary Λ-adic Hecke algebra holds in this setting.<br />

In §6.9, we deduce a uniqueness theorem for 2-stabilized ordinary cuspidal new<strong>forms</strong><br />

in Hida families. Namely, we show that such <strong>forms</strong> live in unique primitive 2-ordinary<br />

cuspidal families, up <strong>to</strong> Galois c<strong>on</strong>jugacy, a well-known result when p is odd.<br />

Towards the end (cf. §6.10), we show that a recent pretty applicati<strong>on</strong> of Hida theory<br />

for odd primes p, namely <strong>to</strong> understanding the <strong>local</strong> semisimplicity of p-ordinary modular<br />

Galois representati<strong>on</strong>s, c<strong>on</strong>tinues <strong>to</strong> hold for the prime p = 2. Following the approach<br />

of [GV04] for odd primes p, and assuming that a modularity result of Buzzard [Buz03] for<br />

Artin-like representati<strong>on</strong>s holds in sufficient generality for the prime p = 2, we show that<br />

almost all arithmetic members of a primitive n<strong>on</strong>-CM 2-ordinary cuspidal family have<br />

<strong>local</strong>ly n<strong>on</strong>-split Galois representati<strong>on</strong>s. The uniqueness result menti<strong>on</strong>ed above implies<br />

that n<strong>on</strong>e of these possibly finitely many excepti<strong>on</strong>s are CM <strong>forms</strong>.<br />

6.1 Background<br />

In this secti<strong>on</strong>, we closely follow the expositi<strong>on</strong> in [Hid86a]. Let GL 2 (R) act <strong>on</strong> the upper<br />

half plane H as follows. If α ∈ GL + 2 (R), then we let α act <strong>on</strong> H through linear fracti<strong>on</strong>al<br />

transformati<strong>on</strong>s. Let ɛ = ( )<br />

1 0<br />

0 −1 act <strong>on</strong> H by ɛ(z) = −¯z. If A ∈ GL2 (R) with det(A) < 0,<br />

69


then we let A act H using the decompositi<strong>on</strong> A = ɛ(ɛA). Let ι : M 2 (R) → M 2 (R) be<br />

the involuti<strong>on</strong> defined by α + α ι = Tr(α), i.e., α ι = Adj(α). Let ∆ be a semi-group in<br />

GL 2 (Q) and ∆ ι denote ι(∆). Let M be Z[∆ ι ]-module and Φ be a c<strong>on</strong>gruence subgroup<br />

of SL 2 (Z) c<strong>on</strong>tained in ∆ ∩ ∆ ι . Thus M becomes a left Φ-module. The abstract Hecke<br />

ring is denoted by R(Φ, ∆) (cf. [Shi71, Chap. 4], for more details).<br />

6.1.1 Group and sheaf cohomology<br />

A map u of Φ <strong>to</strong> M is called a 1-cocycle, if u satisfies u(αβ) = u(α) + α · u(β), for all<br />

α, β ∈ Φ. Let Z(Φ, M) denote the group of all 1-cocycles of Φ with values in M, and<br />

B(Φ, M) the subgroup of Z(Φ, M) c<strong>on</strong>sisting of maps of the form u(α) = (α − 1)x, for<br />

x ∈ M. Then the usual first cohomology group for M is defined by<br />

H 1 (Φ, M) := Z(Φ, M)/B(Φ, M).<br />

Now we shall define the parabolic cohomology group H 1 p(Φ, M) as follows: Let U be<br />

any unipotent subgroup of SL 2 (Q) and put Φ U = {±1}U ∩Φ. Then we have the restricti<strong>on</strong><br />

map res U : H 1 (Φ, M) → H 1 (Φ U , M). We shall define<br />

H 1 p(Φ, M) := {c ∈ H 1 (Φ, M) | res U (c) = 0 for all unipotent subgroups U}.<br />

Let U ∞ be the standard unipotent subgroup { ( 1 u<br />

0 1<br />

)<br />

| u ∈ Q}. Every unipotent subgroup<br />

U of SL 2 (Q) can be written as αU ∞ α −1 with α ∈ SL 2 (Z). Then, the corresp<strong>on</strong>dence<br />

U ↦→ α(∞) ∈ P 1 (Q) gives a bijecti<strong>on</strong> between unipotent subgroups and cusps for SL 2 (Z).<br />

For each cusp s ∈ P 1 (Q), we denote the corresp<strong>on</strong>ding unipotent subgroup by U s . We<br />

write Φ s for Φ Us . Another useful descripti<strong>on</strong> of Φ s , which we use more frequently, is given<br />

by Φ s = {α ∈ Φ | α(s) = s}.<br />

Let C(Φ) be a representative (finite) set for the Φ-equivalence classes of cusps. For<br />

each cusp s ∈ P 1 (Q), there exists γ ∈ Φ such that s 0 = γ(s) ∈ C(Φ), hence γΦ s γ −1 = Φ s0 .<br />

This observati<strong>on</strong> simplifies the definiti<strong>on</strong> of the parabolic cohomology group, i.e., there<br />

exists a short exact sequence<br />

0 → H 1 p(Φ, M) → H 1 (Φ, M) → G 1 (Φ, M), (6.1.1)<br />

where G i (Φ, M) = ⊕ s∈C(Φ) H i (Φ s , M), and the last arrow sends each cohomology class <strong>to</strong><br />

the sum of its restricti<strong>on</strong>s <strong>to</strong> Φ s .<br />

To define the sheaf cohomology, we assume that Φ is <strong>to</strong>rsi<strong>on</strong>-free, e.g., Φ = Γ 1 (M)<br />

with M ≥ 4. Write Y for the open complex manifold Φ\H. We give the Φ-module M the<br />

discrete <strong>to</strong>pology and define F (M) = Φ\(H × M). Then F (M) is an étale covering of Y ,<br />

and we can c<strong>on</strong>sider the sheaf of c<strong>on</strong>tinuous secti<strong>on</strong>s of F (M) over Y , which we denote by<br />

the same symbol F (M). Then, we c<strong>on</strong>sider the usual cohomology group H 1 (Y, F (M)) and<br />

that of compact support H 1 c(Y, F (M)). We shall define the parabolic sheaf cohomology<br />

group H 1 p(Y, F (M)) by the image of H 1 c(Y, F (M)) in H 1 (Y, F (M)).<br />

There are well-known isomorphisms (cf. [Hid81, Prop. 1.1]), which make the following<br />

diagram commutative:<br />

H 1 (Y, F (M))<br />

∼ H 1 (Φ, M)<br />

(6.1.2)<br />

H 1 p(Y, F (M))<br />

∼<br />

H 1 p(Φ, M).<br />

70


6.1.2 Hecke acti<strong>on</strong> <strong>on</strong> the cohomology groups<br />

We shall define the acti<strong>on</strong> of the Hecke ring R(Φ, ∆) <strong>on</strong> the cohomology groups H 1 (Φ, M),<br />

H 1 p(Φ, M), and G 1 (Φ, M). Let Φ ′ be another c<strong>on</strong>gruence subgroup c<strong>on</strong>tained in ∆ ∩ ∆ ι .<br />

We shall define an opera<strong>to</strong>r [ΦαΦ ′ ] : H 1 (Φ, M) → H 1 (Φ ′ , M) for each double coset ΦαΦ ′<br />

in ∆. Decompose the double coset ΦαΦ ′ = ∪ i Φα i . The number of left cosets of Φ in<br />

ΦαΦ ′ is finite and for each γ ∈ Φ ′ , by definiti<strong>on</strong>, we can find γ i ∈ Φ such that γ i α j = α i γ<br />

for some α j . Then we can define a map v : Φ ′ → M by v(γ) = ∑ i αι i · u(γ i). Thus the<br />

corresp<strong>on</strong>dence [u] ↦→ [v] defines a morphism:<br />

[ΦαΦ ′ ] : H 1 (Φ, M) → H 1 (Φ ′ , M),<br />

such that it preserves parabolic cocyles, and hence [ΦαΦ ′ ] acts <strong>on</strong> H 1 p(Φ, M). In particular<br />

when Φ ′ = Φ, the Hecke ring R(Φ, ∆) acts <strong>on</strong> H 1 (Φ, M) and H 1 p(Φ, M). Similarly, <strong>on</strong>e<br />

can define an opera<strong>to</strong>r [ΦαΦ ′ ] : H 0 (Φ, M) → H 0 (Φ ′ , M) by x|[ΦαΦ ′ ] = ∑ i αι i · x, for each<br />

x ∈ H 0 (Φ, M). Hence, the Hecke ring R(Φ, ∆) acts <strong>on</strong> H i (Φ, M) for each i = 0, 1.<br />

Now we introduce a morphism [ΦαΦ ′ ] : G i (Φ, M) → G i (Φ ′ , M) for i = 0, 1. If the<br />

number of left Φ t -cosets in Φ t αΦ ′ s for t ∈ C(Φ) and s ∈ C(Φ ′ ) is finite, we can define a<br />

morphism [Φ t αΦ ′ s] : H i (Φ t , M) → H i (Φ ′ s, M) for i = 0, 1 in the same manner as above. Fix<br />

s ∈ C(Φ ′ ) and write ΦαΦ ′ = ∪ disj Φβ i Φ ′ s, for some β i ’s and write each Φβ i Φ ′ s = ∪ disj Φβ i π j ,<br />

for some π j ∈ Φ ′ s.<br />

Lemma 6.1.1 ([Hid86a], Lem. 4.1). Let t = β i (s). Then the uni<strong>on</strong> ∪ j Φ t β i π j coincides<br />

with Φ t β i Φ ′ s and is disjoint. Especially, the number of left cosets in Φ t β i Φ ′ s is finite.<br />

For a given s ∈ C(Φ ′ ), decompose ΦαΦ ′ as above. By definiti<strong>on</strong>, we can find γ ∈ Φ<br />

so that γβ i (s) ∈ C(Φ). Thus, we may assume that β i (s) ∈ C(Φ) by substituting γβ i for<br />

β i , if necessary. Then, by the last Lemma, we can define a morphism<br />

[Φ t βΦ ′ s] : H i (Φ t , M) → H i (Φ ′ s, M),<br />

for t = β i (s). For c ∈ G i (Φ, M) (resp., G i (Φ ′ , M)), let us write c t (resp., c s ) for the<br />

comp<strong>on</strong>ent of c in H i (Φ t , M) (resp., H i (Φ ′ s, M)). Then, we shall define<br />

(c|[ΦαΦ ′ ]) s = ∑ i<br />

c βi (s)|[Φ βi (s)β i Φ ′ s].<br />

The opera<strong>to</strong>r defined above depends <strong>on</strong>ly <strong>on</strong> the double coset ΦαΦ ′ and via this acti<strong>on</strong><br />

the module G i (Φ, M) becomes an R(Φ, ∆)-module.<br />

We now briefly recall the acti<strong>on</strong> of double cosets <strong>on</strong> sheaf cohomology groups (cf.<br />

[Hid81, §3], for more details). Assume that Φ ′ is <strong>to</strong>rsi<strong>on</strong>-free. For each α ∈ ∆, we put<br />

Φ α = Φ ′ ∩ α −1 Φα, Φ α = αΦ α α −1 ,<br />

and Y ′ = Φ ′ \H, Y α = Φ α \H, Y α = Φ α \H. Then the map α : H × M → H × M defined by<br />

α(z, v) = (α −1 (z), α ι v) induces a morphism [α] : F (M)| Y α → F (M)| Yα , which gives rise<br />

<strong>to</strong> a morphism [α] : H i (Y α , F (M)) → H i (Y α , F (M)). Since Y α /Y ′ is an étale covering,<br />

we have the trace map Tr Yα/Y ′ : Hi (Y α , F (M)) → H i (Y ′ , F (M)) and the restricti<strong>on</strong> map<br />

Res Y α /Y : H i (Y, F (M)) → H i (Y α , F (M)). We shall define the acti<strong>on</strong> of double coset<br />

[ΦαΦ ′ ] : H i (Y, F (M)) → H i (Y ′ , F (M))<br />

by Tr Yα/Y ′ ◦ [α] ◦ Res Y α /Y . In exactly the same manner, we define the acti<strong>on</strong> of [ΦαΦ ′ ] <strong>on</strong><br />

H i c(Y, F (M)) and H i (Y, F (M)). These acti<strong>on</strong>s are compatible with the isomorphism (6.1.2).<br />

71


6.1.3 Geometry of Riemann surfaces<br />

As before, assume that Φ is <strong>to</strong>rsi<strong>on</strong>-free. Take a point y ∈ Y . Then Φ can be identified<br />

with the fundamental group π 1 (Y ) of Y with the base point y. Let X be the smooth<br />

compactificati<strong>on</strong> of Y at cusps. Let g denote the genus of X. We choose 2g-curves<br />

{α 1 , β 1 , . . . , α g , β g } passing through y, but not crossing any cusps of X, which form a<br />

system of can<strong>on</strong>ical genera<strong>to</strong>rs of the group π 1 (X). Namely, π 1 (X) is isomorphic <strong>to</strong> the<br />

quotient of the free group generated by {α 1 , β 1 , . . . , α g , β g } by the unique relati<strong>on</strong><br />

[α g , β g ] . . . [α 1 , β 1 ] = 1,<br />

where [α g , β g ] denote the commuta<strong>to</strong>r of α g and β g . By cutting X al<strong>on</strong>g these 2g-curves,<br />

we have a simply c<strong>on</strong>nected polyg<strong>on</strong> of 4g-sides, and inside the polyg<strong>on</strong>, there are cusps<br />

of X. Write X − Y = {x 1 , . . . , x d }, and draw curves π i <strong>on</strong> the polyg<strong>on</strong> from y encircling<br />

each cusp x i and assume that they intersect <strong>on</strong>ly at y. Then, Φ = π 1 (Y ) is generated by<br />

{π 1 , . . . , π d } and {α 1 , β 1 , . . . , α g , β g }, with the <strong>on</strong>ly relati<strong>on</strong> π d · · · π 1 · [α g , β g ] · · · [α 1 , β 1 ] =<br />

1. Let Φ ab be the free Z-module generated by {π 1 , . . . , π d , α 1 , β 1 , . . . , α g , β g } and Φ ∞ ab be<br />

the free submodule of Φ ab generated by {π 1 , . . . , π d }. For each Z-module A, let Φ act <strong>on</strong><br />

A trivially. Then we have a natural commutative diagram<br />

H 1 (Y, A)<br />

∼ H 1 (Φ, A)<br />

∼<br />

{ϕ ∈ Hom(Φ ab , A) | ∑ d<br />

i=1 ϕ(π i) = 0}<br />

(6.1.3)<br />

H 1 (X, A)<br />

∼<br />

H 1 p(Φ, A)<br />

∼<br />

{ϕ ∈ Hom(Φ ab , A) | ϕ(π i ) = 0 ∀ i}<br />

Put P (Φ) = {π 1 , . . . , π d }. By definiti<strong>on</strong>, we can identify P (Φ) with the set of genera<strong>to</strong>rs<br />

of (the free part of) Φ s for s ∈ C(Φ). Then, we have<br />

H 1 (Φ, A) ≃ H 1 (Φ, Z) ⊗ Z A, H 1 p(Φ, A) ≃ H 1 p(Φ, Z) ⊗ Z A, and,<br />

G(Φ, A) = H 1 (Φ, A)/H 1 p(Φ, A) ≃ {ϕ ∈ Hom(Φ ∞ ab , A) |<br />

6.1.4 Hida’s idempotent opera<strong>to</strong>r<br />

∑<br />

π∈P (Φ)<br />

ϕ(π) = 0}.<br />

Let us now introduce the idempotent opera<strong>to</strong>r <strong>attached</strong> <strong>to</strong> T p in the Hecke algebra. Suppose<br />

R is a commutative sub-algebra of an endomorphism algebra End(M), where M is a<br />

finite free Z p -module. Let T be an element of R. The algebra R/pR is finite-dimensi<strong>on</strong>al<br />

over F p . Hence, the image ˜T of T in R/pR can be decomposed in<strong>to</strong> the unique sum s + n<br />

of a semisimple element s and a nilpotent element n. Thus, for a sufficiently large r, the<br />

element ˜T pr coincides with s pr and becomes semisimple. Then, we can choose a positive<br />

integer u so that ˜T pru gives an idempotent of R/pR. This idempotent can be lifted <strong>to</strong> a<br />

unique idempotent e of R. In fact, this idempotent can be given as a p-adic limit in R by<br />

e = lim<br />

r→∞<br />

T pru .<br />

This idempotent is independent of the choice of the integer u.<br />

Let K be a finite extensi<strong>on</strong> of Q p and O K be the integral closure of Z p in K. For r ≥ 1<br />

and k ≥ 2, let h k (Γ 1 (Np r ), O K ) denote the Hecke algebra of level Np r and of weight k.<br />

72


Applying the above discussi<strong>on</strong> with R = h k (Γ 1 (Np r ), O K ), we get an idempotent opera<strong>to</strong>r<br />

e r which is compatible with the opera<strong>to</strong>r e r−1 . Thus we can define an idempotent e of<br />

lim<br />

←−r≥1 h k(Γ 1 (Np r ), O K ). For modules M over the Hecke algebras, we define the ordinary<br />

part of M <strong>to</strong> be eM. Sometimes, we denote the ordinary part of M by M 0 .<br />

6.2 Relati<strong>on</strong>s between cohomology groups with coefficients<br />

When we study the ordinary parts of the cohomology groups of Γ 1 (Np r ) with (p, N) =1,<br />

for different r’s, we also need <strong>to</strong> work with the ordinary parts of cohomology groups of<br />

Φ s r, for r ≥ s ≥ 0, where<br />

{( )<br />

}<br />

Φ s r := Γ 1 (Np s ) ∩ Γ 0 (p r a b<br />

) = ∈ SL 2 (Z) | c ≡ 0 (mod Np r ), a ≡ 1 (mod Np s ) ,<br />

c d<br />

{( )<br />

}<br />

∆ s a b<br />

r := ∈ M 2 (Z) | ad − bc > 0, c ≡ 0 (mod Np r ), a ≡ 1 (mod Np s ) .<br />

c d<br />

When studying the acti<strong>on</strong> of the Hecke opera<strong>to</strong>rs <strong>on</strong> (usual or parabolic) cohomology<br />

groups, often <strong>on</strong>e needs <strong>to</strong> decompose them in<strong>to</strong> disjoint uni<strong>on</strong> of left cosets with a clever<br />

choice of coset representatives. Such useful decompositi<strong>on</strong>s can be found in [Hid86a, Lem.<br />

4.3]. We recall with proof <strong>on</strong>ly part (ii) of that lemma, since the hypotheses of the original<br />

statement are mildly misstated and the remaining parts are stated as in that lemma.<br />

Lemma 6.2.1. Let r, m ≥ 1, r ≥ s. For every integer u ∈ Z, let α u ∈ M 2 (Z) be such<br />

that<br />

α u ≡ ( 1 u<br />

(mod Np max(m,r) ) and det(α u ) = p m .<br />

0 p m )<br />

Then we have a disjoint decompositi<strong>on</strong><br />

Φ s ( 1 u<br />

)<br />

r 0 p m Φ<br />

s<br />

r = ⋃<br />

Φ s rα u .<br />

u mod p m<br />

Proof. Suppose that m ≥ r. The proof in the other case is similar. Take Γ ′ in (3.3.2) of<br />

[Shi71, p. 67], as Φ s r, h <strong>to</strong> be the kernel of (Z/Np r ) × → (Z/Np s ) × and N <strong>to</strong> be Np r .<br />

By [Shi71, Prop. 3.33], we have that Φ s ( 1 0<br />

)<br />

r 0 p m Φ<br />

s<br />

r = {β ∈ ∆ ′ | det(β) = p m }, where ∆ ′<br />

is as in [Shi71, p. 68]. Since the number of left cosets of Φ s r in Φ s ( 1 u<br />

)<br />

r 0 p m Φ<br />

s<br />

r is p m , and<br />

u ≡ u ′ (mod p m ) if and <strong>on</strong>ly if α u ≡ α u ′ (mod p m ), we see that the lemma follows.<br />

Lemma 6.2.2 ( [Hid86a], Lem. 4.3). 1. For each r, s and m satisfying r − s ≥ m > 0<br />

and s ≥ 1, we have: Φ s ( 1 0<br />

)<br />

r 0 p m Φ<br />

s<br />

r = Φ s ( 1 0<br />

)<br />

r 0 p m Φ<br />

s<br />

r−m . In particular, we have<br />

Φ s ( 1 0<br />

)<br />

r 0 p r−s Φ<br />

s<br />

r = Φ s ( 1 0<br />

)<br />

r 0 p r−s Φ<br />

s<br />

s .<br />

2. For each prime l, we have a disjoint decompositi<strong>on</strong><br />

⎧ (<br />

Φ s 1 0<br />

) ⎨ ∪<br />

r(<br />

0 l Φ<br />

s u mod l Φs 1 u<br />

) ( )<br />

r 0 l ∪ Φ<br />

s<br />

r σ l 0 l 0 1 if l ∤ Np,<br />

r =<br />

)<br />

⎩ ∪<br />

if l | Np,<br />

and<br />

u mod l Φs r<br />

( 1 u<br />

0 l<br />

Φ s rlσ l Φ s r = Φ s rlσ l if l ∤ Np,<br />

where σ l is an element of SL 2 (Z) satisfying σ l ≡ ( l −1 ∗<br />

0 l<br />

)<br />

(mod Np r ).<br />

73


3. Take δ ∈ SL 2 (Z) such that δ ≡ ( )<br />

0 1<br />

−1 0 (mod p 2r ) and δ ≡ 1 (mod N 2 ). We have a<br />

disjoint decompositi<strong>on</strong>:<br />

Φ 0 rδΦ 0 r = ∪ rδ ( )<br />

1 u<br />

u mod p rΦ0 0 1 .<br />

We now introduce certain important modules and we later study the relati<strong>on</strong>s between<br />

cohomology groups with these as coefficients. Firstly, we c<strong>on</strong>sider the column vec<strong>to</strong>r space<br />

L n (Z) = Z n+1 for each n<strong>on</strong>-negative integer n. Let (x, y) t be a variable vec<strong>to</strong>r in L 1 (Z)<br />

and define<br />

( ) x n<br />

= (x n , x n−1 y, . . . , y n ) ∈ L n (Z).<br />

y<br />

We let M 2 (Z) act <strong>on</strong> L n (Z) through the symmetric n-th tensor representati<strong>on</strong> explicitly<br />

given by ( ) ( )<br />

a b x n ( ) ax + by n<br />

· =<br />

.<br />

c d y cx + dy<br />

For any Z-module A, put L n (A) = L n (Z) ⊗ Z A with the natural acti<strong>on</strong> of M 2 (Z) <strong>on</strong> the<br />

left fac<strong>to</strong>r. For Φ = Γ 1 (Np r ), we take ∆ = M 2 (Z) ∩ GL 2 (Q) (cf. §6.1). Let K be a finite<br />

extensi<strong>on</strong> of Q p and let O denote the integral closure of Z p in K. For a natural number<br />

t, we define the map χ t from (Z/p r Z) × → (Z/p r Z) × ⊂ (O/p r O) × by χ t (a) = a t . Finally,<br />

let χ be a character from (Z p /p r Z p ) × <strong>to</strong> either O × or (O/p t O) × .<br />

We shall define a twisted acti<strong>on</strong> of α = ( )<br />

a b<br />

c d ∈ (∆<br />

s<br />

r ) ι <strong>on</strong> L n (O/p t O) by α · x =<br />

χ(d)(αx) for x ∈ L n (O/p t O), where αx is the usual acti<strong>on</strong>. We denote this twisted<br />

module by L n (χ, O/p t O). In the theorem below, we relate the cohomology groups for the<br />

module L n (O/p r O) with those of the module L 0 (χ n , O/p r O). For every natural number<br />

r, we define<br />

i r : L n (O/p r O) → L 0 (χ n , O/p r O)<br />

and<br />

(x 0 , . . . , x n ) → x n<br />

j r : L 0 (χ −n , O/p r O) → L n (O/p r O)<br />

x 0 → (x 0 , 0, . . . , 0)<br />

These are Γ 0 (p r )-module homomorphisms and they covariantly induces the maps:<br />

ι r := (i r ) ∗ : H 1 (Φ s r, L n (O/p r O)) → H 1 (Φ s r, L 0 (χ n , O/p r O))<br />

and<br />

(j r ) ∗ : H 1 (Φ s r, L 0 (χ −n , O/p r O)) → H 1 (Φ s r, L n (O/p r O)).<br />

Let τ ∈ M 2 (Z) such that det(τ) = p r and,<br />

τ ≡ ( )<br />

0 −1<br />

p r 0<br />

(mod p 2r ) and τ ≡ ( 1 0<br />

0 p r )<br />

(mod N 2 ).<br />

One checks that [τ] induces an isomorphism between the groups H 1 (Φ s r, L 0 (χ, O/p r O))<br />

and H 1 (Φ s r, L 0 (χ −1 , O/p r O)) defined as follows: For each cocycle u, let (u|[τ])(γ) =<br />

θ(u(τγτ −1 )), where θ is an isomorphism between L 0 (χ, O/p r O) ≃ L 0 (χ −1 , O/p r O). Let<br />

δ ∈ SL 2 (Z) be such that<br />

δ ≡ ( )<br />

0 1<br />

−1 0<br />

(mod p 2r ) and δ ≡ ( )<br />

1 0<br />

0 1<br />

74<br />

(mod N 2 ).


We define a new morphism H 1 (Φ s r, L 0 (χ n , O/p r O)) → πr<br />

H 1 (Φ s r, L n (O/p r O)), which is the<br />

compositi<strong>on</strong> of the following maps<br />

[τ]<br />

H 1 (Φ s r, L 0 (χ n , O/p r O)) H 1 (Φ s r, L 0 (χ −n , O/p r O))<br />

<br />

(j r) ∗<br />

H 1 (Φ s r, L n (O/p r O)) H 1 (Φ s r, L n (O/p r O)).<br />

[Φ s rδΦ s r]<br />

The abstract Hecke ring R(Φ s r, ∆ s r) acts <strong>on</strong> the cohomology groups for L n (A) as follows.<br />

For each prime l, the Hecke opera<strong>to</strong>rs T (l) and T (l, l) act <strong>on</strong> the cohomology groups for<br />

L n (A) by the acti<strong>on</strong> of double cosets (cf. §6.1.2), i.e., T (l) := [ Φ s 1 0<br />

) ]<br />

r(<br />

0 l Φ<br />

s<br />

r and<br />

{<br />

[Φ<br />

s<br />

r lσ l Φ s r] if l ∤ Np r ,<br />

T (l, l) :=<br />

0 if l | Np r ,<br />

where σ l is an element of SL 2 (Z) such that σ l ≡ ( l −1 ∗<br />

0 l<br />

)<br />

(mod Np r ).<br />

Theorem 6.2.3. For each positive integer r, with r > s ≥ 1, we have:<br />

π r ◦ ι r = T (1, p r ) <strong>on</strong> H 1 (Φ s r, L n (χ, O/p r O)),<br />

and<br />

ι r ◦ π r = T (1, p r ) <strong>on</strong> H 1 (Φ s r, L 0 (χ n , O/p r O)).<br />

Moreover, the maps ι r , π r preserve parabolic classes and the map ι r is T p -equivariant.<br />

Proof. We show that ι r is equivariant under the acti<strong>on</strong> of T = T (l) or T (l, l), for all l.<br />

By Lemma 6.2.2 (2), we can decompose T as disjoint uni<strong>on</strong> of left cosets:<br />

T = ∪ i Φ s rα i with α i ≡ ( )<br />

1 ∗<br />

0 ∗<br />

(mod p r ).<br />

If l | Np, then T (l, l) is zero. If l ∤ Np, then T (l, l) = [Φ s rlσ l Φ s r] = [Φ s rlσ l ] = Φ s rlσ l .<br />

Now, by the choice of σ l , we see the above decompositi<strong>on</strong>. A similar argument holds for<br />

T (l) also. Then, <strong>on</strong> L n (O/p r O), αi ι acts by the matrix of the form:<br />

⎛<br />

⎞<br />

∗ ∗ · · · ∗<br />

⎜<br />

⎟<br />

⎝· · · · · · · · · ∗⎠ ∈ M n+1 (O/p r O).<br />

0 0 · · · 1<br />

To check the map ι r is T p -equivariant, we need <strong>to</strong> show that ι r ◦ (u|T ) = (ι r ◦ u)|T . For<br />

each 1-cocycle u : Φ s r → L n (O/p r O), we have<br />

ι r ((u|T )(γ)) = ι r ( ∑ i<br />

α ι i.u(γ i )) = ∑ i<br />

ι r (u(γ i )) = ∑ i<br />

(ι r ◦ u)(γ i ) = ((ι r ◦ u)|T )(γ),<br />

where γ i ∈ Φ s r is defined by the relati<strong>on</strong> α i γ = γ i α j for some j.<br />

We now prove the identity π r ◦ ι r = T (1, p r ). By definiti<strong>on</strong>, we have:<br />

(π r ◦ ι r (u))(γ) = ([Φ s rδΦ s r] ◦ (j r ) ∗ ◦ [τ] ◦ ι r (u))(γ) =<br />

p∑<br />

r −1<br />

a=0<br />

δ ι a · j r (ι r (τγ a τ −1 )),<br />

(∗)<br />

75


where δ a = δ ( )<br />

1 a<br />

0 1 for δ ∈ SL2 (Z) such that δ ≡ ( )<br />

0 1<br />

−1 0 (mod p 2r ) and δ ≡ 1 (mod N 2 ).<br />

The element γ a is defined by the equati<strong>on</strong> δ a γ = γ a δ b for some b with 0 ≤ b < p r . Since<br />

τ ≡ ( )<br />

0 −1<br />

0 0 (mod p r ), we have τ ι · x = (x n , . . . , 0) t , for x = (x 0 , . . . , x n ) ∈ L n (O/p r O),<br />

and therefore τ ι · x = j r (i r (x)). The expressi<strong>on</strong> in (∗) reduces <strong>to</strong><br />

(π r ◦ ι r (u))(γ) =<br />

p r −1<br />

∑<br />

(τδ a ) ι · j r (ι r (τγ a τ −1 )).<br />

a=0<br />

We have τδ a ≡ ( )<br />

1 a<br />

0 p r (mod Np r ), det(α a ) = p r , and (τδ a )γ = (τγ a τ −1 )(τδ b ). By<br />

Lemma 6.2.1, we see that the required identity holds.<br />

We now check the identity ι r ◦ π r = T (1, p r ) <strong>on</strong> H 1 (Φ s r, L 0 (χ n , O/p r O)). For each<br />

1-cocycle u : Φ s r → L 0 (χ n , O/p r O), we have<br />

p∑<br />

r −1<br />

((ι r ◦ π r )(u))(γ) = ι r ( δa ι · j r (τγ a τ −1 )) =<br />

a=0<br />

p∑<br />

r −1<br />

a=0<br />

ι r (δ ι a · j r (u(τγ a τ −1 ))).<br />

Assume that ι r (δ ι a · j r (x)) = x. Then the expressi<strong>on</strong> in (∗∗) implies the identity, because<br />

((ι r ◦ π r )(u))(γ) =<br />

p∑<br />

r −1<br />

a=0<br />

ι r (δ ι a · j r (u(τγ a τ −1 ))) =<br />

p∑<br />

r −1<br />

a=0<br />

u(τγ a τ −1 ) = (u|T (1, p r ))(γ),<br />

by the decompositi<strong>on</strong> of T (1, p r ). The identity ι r (δa ι · j r (x)) = x follows from the fact that<br />

the matrix δa ι ≡ ( )<br />

−a −1<br />

1 0 (mod p r ) acts <strong>on</strong> L n (O/p r O) by a matrix of the form:<br />

⎛<br />

⎞<br />

∗ ∗ · · · ∗<br />

⎜<br />

⎟<br />

⎝· · · · · · · · · ∗⎠ ∈ M n+1 (O/p r O).<br />

1 0 · · · 0<br />

(∗∗)<br />

6.3 Main theorems<br />

We start this secti<strong>on</strong> by introducing some notati<strong>on</strong>s, and then we state <strong>on</strong>e of the main<br />

theorems of this chapter. From now <strong>on</strong> p = 2, q = 4 and (2, N) = 1, unless explicitly<br />

stated. Let Γ 0 = Γ 1 = Z × p and for r ≥ 2, let Γ r denote the subgroup 1 + p r Z p of Γ, where<br />

Γ = Γ 2 = 1 + qZ p = 〈u〉. For r ≥ s ≥ 0, there is a short exact sequence of groups<br />

0 → Γ 1 (Np r ) → Φ s r → Γ s /Γ r → 0, (6.3.1)<br />

induced by Φ s r ∋ ( a b<br />

c d<br />

)<br />

↦→ ¯d ∈ Γs /Γ r . We write Φ r for Φ 0 r, for r ≥ 0. In Hida theory for<br />

odd primes p, the c<strong>on</strong>gruence group Φ 1 plays an important role, but when p = 2, the role<br />

of this group is played by the group Φ 2 = Γ 0 (4) ∩ Γ 1 (N), which is <strong>to</strong>rsi<strong>on</strong>-free, if N > 1.<br />

Let K be a finite extensi<strong>on</strong> of Q p and O K be the integral closure of Z p in K. By<br />

definiti<strong>on</strong>, there is a tau<strong>to</strong>logical character ι : Γ ↩→ Λ K = O K [[Γ]], which takes u <strong>to</strong> itself<br />

in Λ K . For each character χ : Γ → O × K , the element P χ = ι(u) − χ(u) is a prime element,<br />

and the quotient Λ K /P χ Λ K is isomorphic <strong>to</strong> O K . If χ(u) = ɛ(u)u k , where ɛ is a finite<br />

order character of Γ, we write P k,ɛ for P χ , and simply write P k , if ɛ is trivial. We may<br />

identify Λ K with O K [[X]] sending u <strong>to</strong> 1 + X. When K = Q p , we denote Λ Qp by Λ.<br />

76


Finally, let ω denote the mod 4 cyclo<strong>to</strong>mic character, that is, ω is the mod 4 character<br />

defined by ω(x) = ±1, for x ≡ ±1 (mod 4).<br />

Recall that p = 2, and N is odd. We <strong>on</strong>ly use the c<strong>on</strong>gruence subgroup Γ 1 (Np r ) with<br />

r ≥ 2, which is a <strong>to</strong>rsi<strong>on</strong>-free group. We denote the corresp<strong>on</strong>ding complex Riemann<br />

surface by Y r and its compactificati<strong>on</strong> by X r . Let H i (Y r , M) and H i (X r , M) denote the<br />

corresp<strong>on</strong>ding sheaf cohomology groups for each c<strong>on</strong>stant sheaf M of Z-modules. It is<br />

well-known that<br />

S 2 (Γ 1 (Np r )) ≃ H 1 (X r , R),<br />

where the right hand side of the isomorphism, the sheaf cohomology with R coefficients,<br />

can be identified with de Rham cohomology. The above isomorphism is invariant under<br />

the Hecke acti<strong>on</strong>. The Hecke algebra h 2 (Γ 1 (Np r ), Z) acts <strong>on</strong> H 1 (X r , Z) and therefore<br />

h 2 (Γ 1 (Np r ), Z p ) acts <strong>on</strong> H 1 (X r , Z p ), H 1 (X r , Q p ), H 1 (X r , T p ), where H 1 (X r , M) =<br />

H 1 (X r , Z) ⊗ Z M and T p := Q p /Z p .<br />

For every positive integer r ≥ 2, we simply write<br />

V r = H 1 (X r , T p ), W r = H 1 (Y r , T p ).<br />

Since H 1 (X r , T p ) ≃ H 1 (X r , Q p )/H 1 (X r , Z p ), we see that V r and W r are p-divisible modules<br />

of finite Z p -corank. Therefore End(V r ) and End(W r ) are free of finite rank. By §6.1.4, we<br />

can define Hida’s idempotent opera<strong>to</strong>r e r <strong>attached</strong> <strong>to</strong> the Hecke opera<strong>to</strong>r T p in End(V r )<br />

and End(W r ). Define the ordinary parts of V r <strong>to</strong> be V 0 r = e r V r and similarly for W r .<br />

Therefore, V 0 r is a module for h 0 2 (Γ 1(Np r ), Z p ), the ordinary part of h 2 (Γ 1 (Np r ), Z p ).<br />

There is also an acti<strong>on</strong> of Γ 0 (Np r )/Γ 1 (Np r ) <strong>on</strong> V 0 r and W 0 r . Let V denote the direct<br />

limit of V r and define similarly W, V 0 and W 0 . Since (Z/Np r Z) × acts <strong>on</strong> V 0 r and W 0 r ,<br />

hence the inverse limit, over r ≥ 2, of (Z/Np r Z) × acts <strong>on</strong> V 0 and W 0 . In particular V 0<br />

and W 0 become c<strong>on</strong>tinuous modules over the Iwasawa algebra Λ = Z p [[Γ]], if we equip<br />

them with the discrete <strong>to</strong>pology. Let V 0 and W 0 denote the P<strong>on</strong>tryagin dual modules of<br />

V 0 and W 0 , respectively. Then V 0 and W 0 are compact Λ-modules. We can now state<br />

<strong>on</strong>e of the main theorems of this chapter.<br />

Theorem 6.3.1. Let p = 2. We have:<br />

1. For each positive integer r ≥ 2, the restricti<strong>on</strong> morphism of cohomology groups<br />

induces an isomorphism of V 0 r <strong>on</strong><strong>to</strong> (V 0 ) Γr . The same result also holds for W 0 .<br />

2. Let N > 1. The modules V 0 and W 0 are free modules of finite rank over Λ.<br />

The first part of Theorem 6.3.1 gives c<strong>on</strong>trol of the ordinary parts of the cohomology<br />

modules associated with the decreasing sequence of c<strong>on</strong>gruence subgroups Γ 1 (N2 r ), for<br />

r ≥ 2, and we refer <strong>to</strong> such a result as a c<strong>on</strong>trol theorem (for cohomology).<br />

6.4 C<strong>on</strong>trol theorem for cohomology<br />

Before we start the proof of part (1) of Theorem 6.3.1, we shall state a lemma.<br />

Lemma 6.4.1. Let {M r } r≥2 be an inductive system of compatible modules over Z p [Γ/Γ r ],<br />

respectively. Assume that for all r ≥ t ≥ 2, Mr<br />

Γt = M t . Then (lim M −→r r ) Γt = M t .<br />

77


Proof. Clearly, lim M −→r r is a Z p [[Γ]]-module. Since H q (Γ t , lim M −→r r ) = lim H q (Γ −→r t , M r ), for<br />

q ≥ 0, we have (lim M −→r r ) Γt = M t , where the last equality follows from the assumpti<strong>on</strong>.<br />

Now, we start the proof of the c<strong>on</strong>trol theorem for cohomology.<br />

Lemma 6.4.2. If Φ s r/Γ 1 (Np r ) acts <strong>on</strong> T p trivially, then H 2 (Φ s r/Γ 1 (Np r ), T p ) = 0.<br />

Proof. Since Φ s r/Γ 1 (Np r ) is a finite cyclic group, H 2 (Φ s r/Γ 1 (Np r ), T p ) = T p /N T p , where<br />

N denote the norm map from T p <strong>to</strong> itself. Since Φ s r/Γ 1 (Np r ) acts <strong>on</strong> T p trivially, N is<br />

multiplicati<strong>on</strong> by the index of Γ 1 (Np r ) in Φ s r, hence is surjective.<br />

Lemma 6.4.3. For each r ≥ s ≥ 2, eH 1 (Γ 1 (Np s ), T p ) ≃ eH 1 (Φ s r, T p ).<br />

Proof. Since Φ s r ⊆ Γ 1 (Np s ), there is a restricti<strong>on</strong> map H 1 (Γ 1 (Np s ), T p ) → H 1 (Φ s r, T p ).<br />

We have the following commutative diagram<br />

H 1 (Γ 1 (Np s ), T p )<br />

H 1 (Φ s r, T p )<br />

Tp<br />

r−s<br />

Tp<br />

<br />

r−s<br />

[Φr( s 1 0<br />

0 p<br />

)Φ r−s s s]<br />

H 1 (Γ 1 (Np s ), T p ) H 1 (Φ s r, T p ).<br />

By applying the idempotent opera<strong>to</strong>r, we get that the vertical morphisms are isomorphisms<br />

and hence the diag<strong>on</strong>al map is an isomorphism.<br />

res <br />

For each r ≥ s ≥ 2, we have the inflati<strong>on</strong>-restricti<strong>on</strong> sequence<br />

0 → H 1 (Φ s r/Γ 1 (Np r ), T p )<br />

res<br />

ι<br />

→ H 1 (Φ s r, T p )<br />

→ H 1 (Γ 1 (Np r ), T p ) Γs → H 2 (Φ s r/Γ 1 (Np r ), T p ) = 0<br />

where the last term vanishes by Lemma 6.4.2. The image of the group H 1 (Φ s r/Γ 1 (Np r ), T p )<br />

inside H 1 (Φ s r, T p ) is annihilated by the idempotent e <strong>attached</strong> <strong>to</strong> T p by [Hid86a, Lem. 6.1].<br />

Therefore,<br />

eH 1 (Φ s r, T p ) ≃ eH 1 (Γ 1 (Np r ), T p ) Γs = (W 0 r ) Γs .<br />

By Lemma 6.4.3, we have that Ws<br />

0<br />

these isomorphisms, we get<br />

= eH 1 (Γ 1 (Np s ), T p ) ≃ eH 1 (Φ s r, T p ). By combining<br />

W 0 s ≃ (W 0 r ) Γs .<br />

By Lemma 6.4.1, for any r ≥ 2, we have that (W 0 ) Γr ≃ Wr 0 . This finishes the proof of<br />

the c<strong>on</strong>trol theorem for W 0 . Note that so far the proof works for all primes p ≥ 2.<br />

Now, we prove the c<strong>on</strong>trol theorem for V 0 , c<strong>on</strong>centrating <strong>on</strong> what changes need <strong>to</strong> be<br />

made in Hida’s original proof when p = 2. By (6.1.3), for r ≥ 2, the module W r is given<br />

by {ϕ ∈ Hom(Γ 1 (Np r ), T p ) | ∑ π∈P (Γ 1 (Np r )) ϕ(π) = 0}, and V r is the submodule of W r<br />

given by<br />

{<br />

}<br />

V r = ϕ ∈ Hom(Γ 1 (Np r ), T p ) | ϕ(π) = 0 for π ∈ P (Γ 1 (Np r )) ,<br />

since the group Γ 1 (Np r ) acts trivially <strong>on</strong> T p .<br />

By Lemma 6.4.1, it is enough <strong>to</strong> prove that Vs 0 = (Vr 0 ) Γs , for r ≥ s ≥ 2. Since<br />

Ws 0 ≃ (Wr 0 ) Γs , we have Vs 0 ↩→ (Vr 0 ) Γs . Therefore, it is enough <strong>to</strong> prove the surjectivity of<br />

78


this map. Since (W 0 r ) Γs = W 0 s , given a homomorphism ϕ : Γ 1 (Np r ) → T p invariant under<br />

Γ s and satisfying ϕ| e = ϕ, there exists a homomorphism ψ : Γ 1 (Np s ) → T p satisfying<br />

ψ| e = ψ such that ψ = ϕ <strong>on</strong> Γ 1 (Np r ). Thus, we need <strong>to</strong> show that ψ(π) = 0, for all π ∈<br />

P (Γ 1 (Np s )), assuming the same holds for ϕ with r instead of s. Let [ψ] denote the equivalence<br />

class of ψ in the module eG(Γ 1 (Np s ), T p ) := eH 1 (Γ 1 (Np s ), T p )/eH 1 p(Γ 1 (Np s ), T p ).<br />

We need <strong>to</strong> show that [ψ] = 0. We know that [ψ]| e = [ψ]. If [ψ]| 1−e = [ψ], then [ψ] = 0,<br />

since e is an idempotent. Hence, it is enough <strong>to</strong> show that<br />

[ψ]| 1−e = [ψ]<br />

holds. By following the strategy in [Hid86a], this reduces <strong>to</strong> proving [Hid86a, Thm. 5.8],<br />

which characterizes the elements of (1 − e)G(Γ 1 (Np s ), T p ) as elements of the set<br />

V (T p ) := {ψ ∈ Hom(Γ 1 (Np s ) ∞ ab , T p) | ψ(π) = 0, for all π ∈ P (Γ 1 (Np s ))<br />

corresp<strong>on</strong>ding <strong>to</strong> the unramified cusps},<br />

where the module Γ 1 (Np s ) ∞ ab as in §6.1.3. Under the above equality, if ψ ∈ V (T p), then<br />

[ψ] = (1 − e)[ψ ′ ] and hence [ψ]| 1−e = [ψ] holds. Thus it suffices <strong>to</strong> show that ψ ∈ V (T p ).<br />

Since every unramified cusp of X s over X 0 is under an unramified cusp of X r over X 0 ,<br />

the elements of P (Γ 1 (Np s )) corresp<strong>on</strong>ding <strong>to</strong> unramified cusps in X s can be taken <strong>to</strong><br />

be am<strong>on</strong>g the elements of P (Γ 1 (Np r )) corresp<strong>on</strong>ding <strong>to</strong> unramified cusps in X r . Then<br />

ψ(π) = ϕ(π) = 0, for all π ∈ P (Γ 1 (Np s )), which corresp<strong>on</strong>ds <strong>to</strong> unramified cusps of<br />

Γ 1 (Np s ), as desired.<br />

The proof of [Hid86a, Thm. 5.8] depends, firstly, <strong>on</strong> various relati<strong>on</strong>s between the<br />

dimensi<strong>on</strong>s of the space of Eisenstein series for Γ 1 (Np r ) with coefficients in A and the<br />

boundary cohomology G 1 (Γ 1 (Np r ), L n (A)) (cf. §6.1.1), for any subalgebra A of C or C p ,<br />

and sec<strong>on</strong>dly, <strong>on</strong> the validity of [Hid86a, Prop. 5.7]. The results <strong>on</strong> the dimensi<strong>on</strong>s of<br />

the space of Eisenstein series and the space G 1 (Γ 1 (Np r ), L n (A)) also hold for the prime<br />

p = 2. But, in the proof of [Hid86a, Prop. 5.7], <strong>on</strong>e crucially uses the fact that p ≠ 2.<br />

Thus <strong>to</strong> finish the proof of the c<strong>on</strong>trol theorem for V 0 when p = 2, it suffices <strong>to</strong> check<br />

that the propositi<strong>on</strong> holds.<br />

The difference between [Hid86a, Prop. 5.7] and the analogous result for p = 2 (Propositi<strong>on</strong><br />

6.4.5 below) is that in the former case, i.e., when Φ = Γ 1 (Np r ) for p ≥ 5 and<br />

r ≥ 1, the group Φ is <strong>to</strong>rsi<strong>on</strong>-free with regular cusps, whereas in the latter case, i.e., when<br />

Φ = Γ 1 (Np r ), for p = 2 and r ≥ 2, the group Φ is <strong>to</strong>rsi<strong>on</strong>-free, but its cusps are not<br />

necessarily regular, for example, when N = 1 and r = 2. When p = 2, these irregular<br />

cusps create problems in the proof given in [Hid86a, Prop. 5.7].<br />

Definiti<strong>on</strong> 6.4.4. Let Φ be a c<strong>on</strong>gruence subgroup of Γ 1 (Np r ) for r ≥ 2. Let s ∈ C(Φ)<br />

be a cusp and s 0 be the image of s in C(Γ 1 (N)). We say that s is unramified, if s is<br />

unramified over s 0 , in the sense of finite covers of Riemann surfaces.<br />

Propositi<strong>on</strong> 6.4.5. Let Φ = Γ 1 (Np r ) with r ≥ 2. Let A be either Z p , Z p /p i Z p or any field<br />

of characteristic 0. Let s be any unramified cusp of Φ and ρ s : G 1 (Φ, A) → H 1 (Φ s , A)<br />

be the natural projecti<strong>on</strong> map. Then for any c ∈ G 1 (Φ, A), we have that ρ s (c|e) = ρ s (c).<br />

Proof. For any positive integer M ≥ 3 with M ≠ 4, all the cusps of Γ 1 (M) are regular.<br />

Hence, when p = 2, all cusps of Γ 1 (Np r ), for N ≥ 3 or r ≥ 3 are regular (so in particular<br />

are the unramified <strong>on</strong>es). So, it is enough <strong>to</strong> c<strong>on</strong>sider the case when Φ = Γ 1 (4).<br />

79


By [Hid86a, Lem. 5.1], Γ 1 (4) has an unique unramified cusp, namely ∞. We see that this<br />

cusp is also regular since otherwise we would have<br />

π s = π ∞ = − ( 1 u<br />

0 1<br />

)<br />

,<br />

for some u > 0, which is not an element of Γ 1 (4). Hence, when N = 1 and r = 2, the<br />

unique unramified cusp is also regular.<br />

For any cusp s ∈ C(Φ), the group Φ s is an infinite cyclic group and generated by π s .<br />

The evaluati<strong>on</strong> of 1-cocyles at πs<br />

N gives an isomorphism between H 1 (Φ s , A) and A. Thus<br />

H 1 (Φ s , A) ≃ H 1 (Φ s , Z p ) ⊗ Zp A.<br />

Thus, we may assume that A = Z p . Take an integer m ≥ r such that p m ≡ 1 (mod N).<br />

By replacing s by another cusp in the Φ-equivalence of s if necessary, we may suppose<br />

that α(∞) = s with α ∈ Γ 0 (p m ), by [Hid86a, Lem. 5.1]. Then α −1 π s α = ( )<br />

1 u<br />

0 1 with<br />

positive u prime <strong>to</strong> p, since all the unramified cusps of Φ are regular. We shall choose a<br />

disjoint decompositi<strong>on</strong>:<br />

Φ ( 1 0<br />

0 p m )<br />

Φ = ∪<br />

p m −1<br />

j=0 Φβ j and Φ s β 0 Φ s = ∪ pm −1<br />

j=0 Φ sβ j<br />

with β j ∈ Φ s , for all j, β j π N = β j+1 , if 0 ≤ j < p m − 1, and β p m −1π N = π N β 0 .<br />

Take β j ′ = ( 1 jNu<br />

)<br />

0 p , for 0 ≤ j < p m m . Then, β j ′ ≡ ( )<br />

1 0<br />

0 1 (mod N). If we put βj =<br />

αβ j ′ α−1 , then β j ≡ 1 (mod N). Since α = ( )<br />

a b<br />

c d ∈ Γ0 (p m ), we have β j ≡ ( )<br />

1 −ab+a 2 Nuj<br />

0 0<br />

(mod p m ) and det(β j ) = p m . Since a, N and u are relatively prime <strong>to</strong> p, we see that<br />

−ab + a 2 Nuj runs over all residues modulo p m , as j varies over all residues modulo p m .<br />

By Lemma 6.2.1 and using the fact that m ≥ r, we have the equality<br />

Φ ( 1 0<br />

0 p m )<br />

Φ = ∪<br />

p m −1<br />

j=0 Φβ j.<br />

Since β ′ j (∞) = ∞, we see that β j(s) = s, for all j. If 0 ≤ j < p m − 1, then<br />

(α −1 β j α)(α −1 πα) N = β j( ′ 1 u<br />

) N (<br />

0 1 = 1 (j+1)Nu<br />

)<br />

0 p = β<br />

′ m j+1 ,<br />

and therefore β j π N = β j+1 . When j = p m − 1, a similar calculati<strong>on</strong> shows that β j π N =<br />

π N β 0 holds. Using the properties of β j ’s, we see that Φβ 0 Φ s = Φ ( )<br />

1 0<br />

0 p m Φ = ∪<br />

p m −1<br />

j=0 Φβ j.<br />

Now, by Lemma 6.1.1, we have the disjoint decompositi<strong>on</strong>:<br />

Φ s β 0 Φ s = ∪ pm −1<br />

j=0 Φ sβ j . (6.4.1)<br />

From the above decompositi<strong>on</strong>, we see that, for each 1-cocycle ϕ : Φ s → A, we have<br />

ϕ|[Φ s β 0 Φ s ](π N ) = ϕ(π N ), which shows that ϕ|[Φ s β 0 Φ s ] = ϕ. Since the Hecke opera<strong>to</strong>r<br />

T (p m ) acts <strong>on</strong> G 1 (Φ, A) by ρ s (c|T (p m )) = ρ s (c)|[Φ s β 0 Φ s ] (cf. §6.1.2), we see that<br />

ρ s (c|T (p m )) = ρ s (c), and hence the propositi<strong>on</strong>.<br />

This finishes the proof of the c<strong>on</strong>trol theorem for cohomology. We remark that subsequently<br />

we will <strong>on</strong>ly need <strong>to</strong> c<strong>on</strong>sider N ≥ 3, for applicati<strong>on</strong>s <strong>to</strong> p-adic families.<br />

Before proving the part (2) of Theorem 6.3.1, we prove an important result. The<br />

following propositi<strong>on</strong> was proved in [Hid88a, Prop. 2.3] for Γ 1 (Np r ) when p ≥ 5. We<br />

shall prove a similar result for Φ s r for the prime p = 2 and with N ≥ 3.<br />

80


Propositi<strong>on</strong> 6.4.6. For r ≥ 2, the quotient module eH 1 (Φ s r, L n (Z p ))/eH 1 p(Φ s r, L n (Z p )) is<br />

Z p -free.<br />

Proof. We write ∆ for Φ s r. If eG 1 (∆, L n (Z p )) is Z p -free, then the propositi<strong>on</strong> follows,<br />

since the maps in (6.1.1) are invariant under the acti<strong>on</strong> of the Hecke opera<strong>to</strong>rs. C<strong>on</strong>sider<br />

the l<strong>on</strong>g exact sequence of cohomology groups<br />

G 0 (∆, L n (Q p )) β → G 0 (∆, L n (T p )) → G 1 (∆, L n (Z p )) → G 1 (∆, L n (Q p )),<br />

induced by the short exact sequence 0 → L n (Z p ) → L n (Q p ) → L n (T p ) → 0.<br />

Since (2, N) = 1 and N ≥ 3, all the cusps of ∆ are regular, because irregularity for<br />

∆ implies the irregularity for Γ 1 (N), but there are no irregular cusps for Γ 1 (N). Let<br />

s ∈ C(∆) be a cusp of ∆. Let α s = ( )<br />

a b<br />

c d ∈ SL2 (Z) such that α s (∞) = s. If π s denotes a<br />

genera<strong>to</strong>r for ∆ s , we may write<br />

(<br />

π s = α 1 u<br />

)<br />

s 0 1 α<br />

−1<br />

s = ( )<br />

1−cau a 2 u<br />

−c 2 u 1+cau ∈ ∆, with u ≠ 0. (6.4.2)<br />

We shall show that the idempotent e annihilates G 0 (∆, L n (T p ))/β(G 0 (∆, L n (Q p ))). Since<br />

the image of β is p-divisible, it is sufficient <strong>to</strong> know that if x ∈ G 0 (∆, L n (T p ))[p], then<br />

x|T (p) m ∈ Im(β) for sufficiently large m. We shall divide our argument in<strong>to</strong> the following<br />

three cases: case 1: p ∤ u; case 2: p | u and p | c, and case 3: p | u but p ∤ c. Since<br />

c 2 u ≡ 0 mod Np r , c is au<strong>to</strong>matically divisible by p in case 1. We have the following<br />

decompositi<strong>on</strong>:<br />

∆ ( {<br />

)<br />

1 0 ∐<br />

p−1<br />

i=0 ∆( 1 0<br />

0 p<br />

0 p ∆ =<br />

)<br />

π<br />

i<br />

s = ∆ ( 1 0<br />

0 p<br />

)<br />

∆s , in case 1,<br />

∐ p−1<br />

i=0 ∆( 1 i<br />

0 p<br />

)<br />

∆s , in case 2 and 3.<br />

(6.4.3)<br />

The decompositi<strong>on</strong>s follow from the proof of the Propositi<strong>on</strong> 6.4.5, since p | c and hence<br />

α s ∈ Γ 0 (p). For an element x ∈ G 0 (∆, L n (T p )), we let x s denote the comp<strong>on</strong>ent of x in<br />

H i (∆ s , L n (T p )).<br />

For an element x ∈ G 0 (∆, L n (T p ))[p], we would like <strong>to</strong> write down the comp<strong>on</strong>ent<br />

(x|T (p)) s . In order <strong>to</strong> write down this, first we choose γ ∈ ∆ in case 1 and γ i ∈ ∆ in<br />

)<br />

(s) ∈ C(∆) and γi<br />

( 1 i<br />

0 p<br />

)<br />

(s) ∈ C(∆) and we denote them by<br />

cases 2 and 3, so that γ ( 1 0<br />

0 p<br />

ν i (s) and t respectively. From the definiti<strong>on</strong> of acti<strong>on</strong> of T (p) <strong>on</strong> x, we see that<br />

⎧<br />

∑p−1<br />

(γ ( )<br />

1 0<br />

⎪⎨<br />

0 p π<br />

i<br />

s ) ι · x t = (γ ( )<br />

1 0<br />

0 p )ι · x t , in case 1,<br />

i=0<br />

(x|T (p)) s =<br />

∑p−1<br />

(<br />

⎪⎩ (γ 1 i<br />

)<br />

i 0 p )ι · x γi (s), in case 2 and 3.<br />

i=0<br />

(6.4.4)<br />

In case 1, (x|T (p)) s acts <strong>on</strong> p-<strong>to</strong>rsi<strong>on</strong> points by the nilpotent matrix<br />

⎛<br />

⎞<br />

0 0 · · · ∗<br />

0 0 · · · ∗<br />

⎜<br />

⎟<br />

⎝· · · · · · · · · ∗⎠ , (6.4.5)<br />

0 0 · · · 0<br />

and hence (x|T (p) 2 ) s is zero.<br />

81


In case 2, since a is prime <strong>to</strong> p, for any i 0 , i 1 , . . . , i m ∈ Z, we see that<br />

( 1 im<br />

0 p<br />

)( 1 im−1<br />

0 p<br />

) (<br />

· · ·<br />

1 i0<br />

) a + c ∑ m<br />

j=0 pj i j<br />

0 p (s) =<br />

p m c<br />

∈ Q.<br />

Define ν ij := ( 1 i j<br />

)<br />

0 p . The numera<strong>to</strong>r of the above number is prime <strong>to</strong> p, and thus if m ≥ r,<br />

the cusp ν = ν im ◦ ν im−1 ◦ · · · ◦ ν i0 (s) as a cusp of Γ 1 (Np r ) is unramified over X 1 (N) and<br />

hence as a cusp of ∆. Then we have<br />

1. L n (p −1 Z/Z) ∆ν ⊆ {(y, 0) t | y ∈ (p −1 Z/Z) n }. Let α ν = ( )<br />

a b<br />

c d ∈ SL2 (Z) such that<br />

α ν (∞) = ν. Since ν is an unramified regular cusp, we can choose α ν ∈ Γ 0 (p m ) such<br />

that αν<br />

−1 π ν α ν = ( )<br />

1 u<br />

0 1 with (u, p) = 1. If x = (x0 , . . . , x n ) ∈ L n (p −1 Z/Z) ∆ν , then<br />

αν<br />

−1 x is fixed by ( )<br />

1 u<br />

0 1 , which implies that (n + 1)-th co-ordinate of the tuple α<br />

−1<br />

ν x<br />

is zero. Therefore, x n = 0 (here use the fact that α ν ∈ Γ 0 (p m )).<br />

(<br />

2. (γ 1 i<br />

)<br />

i 0 p ) ι x ν = 0, if x ν ∈ L n (p −1 Z/Z) ∆ν = H 0 (∆ ν , L n (T p ))[p]. If γ i = ( )<br />

a b<br />

c d , then<br />

( ) ι<br />

(<br />

(γ 1 i<br />

)<br />

i 0 p ) ι a ia + pb<br />

=<br />

acts <strong>on</strong> a point as above by the matrix<br />

c ci + pd<br />

⎛<br />

⎞<br />

0 0 · · · (ia) n<br />

0 0 · · · ∗<br />

⎜<br />

⎟<br />

⎝· · · · · · · · · ∗ ⎠ . (6.4.6)<br />

0 0 · · · ∗<br />

Therefore, the element (x|T (p) r+1 ) s = 0. In the last case, the proof is similar <strong>to</strong> the proof<br />

of [Hid88a, Prop. 2.3].<br />

6.5 Freeness<br />

In this secti<strong>on</strong>, we prove that the modules V 0 and W 0 are free of finite rank over Z p [[X]],<br />

completing the proof of Theorem 6.3.1. We restate this formally as:<br />

Theorem 6.5.1. Let p = 2, N > 1 be odd, and Λ = Z p [[X]]. The modules V 0 and W 0<br />

are free modules of finite rank over Λ.<br />

A proof of the freeness of W 0 is proved in Appendix A (cf. Theorem A.5.3). The claim<br />

for V 0 is more subtle and requires more machinery and results. We start by recalling<br />

without proof a lemma [Hid86a, Lem. 6.3] which is useful in proving the freeness of V 0 .<br />

Lemma 6.5.2. A compact c<strong>on</strong>tinuous Λ-module M is free of finite rank r over Λ if and<br />

<strong>on</strong>ly if there is a subset I of positive integers and infinitely many elements {P n } n∈I in<br />

Λ such that M[P n ] ≃ T r p, for all n ∈ I, where M is the P<strong>on</strong>tryagin dual of M and<br />

M[P n ] = {m ∈ M|P n .m = 0}.<br />

We know that the group Z × p (recall p = 2) acts <strong>on</strong> V 0 . In particular, µ 2 = (Z/qZ) ×<br />

acts <strong>on</strong> V 0 (recall q = 4). Write<br />

V 0 = V 0 (0) ⊕ V 0 (1),<br />

82


where V 0 (a) = {v ∈ V 0 | v|ζ = ζ a v, for ζ ∈ µ 2 }. Since the acti<strong>on</strong> of Γ commutes with the<br />

acti<strong>on</strong> of µ 2 , V 0 (a) is also a Λ-module, for a = 0, 1. Let V 0 (a) denote the P<strong>on</strong>tryagin<br />

dual of V 0 (a). We shall show V 0 (a) is a free module of rank 2r(a) over Λ, where r(a) is<br />

the rank of the Hecke algebra h 0 2 (Φ 2, ω a , Z p ).<br />

By part (1) of Theorem 6.3.1, we have that V 0 (a)/a 2 V 0 (a) ≃ V2 0(a),<br />

where a 2 is the<br />

augmentati<strong>on</strong> ideal of Z p [[Γ]]. Since V2 0(a)<br />

is a free module of rank 2r(a) over Z p, by<br />

Nakayama’s lemma, we see that V 0 (a) is a finitely generated Λ-module with minimal<br />

number of genera<strong>to</strong>rs 2r(a). Hence there is a surjecti<strong>on</strong> from Λ 2r(a) ↠ V 0 (a). Hence, by<br />

duality, we have<br />

V 0 (a)[P n ] ↩→ T 2r(a)<br />

p ,<br />

where P n is the prime ideal of Λ defined in §6.3. Now define<br />

H 1 (Γ 1 (Np r ), n; Z p /p r Z p ) := {v ∈ H 1 (Γ 1 (Np r ), Z p /p r Z p ) | v|z = z n v for z ∈ Z × p },<br />

H 1 p(Γ 1 (Np r ), n; Z p /p r Z p ) := H 1 (Γ 1 (Np r ), n; Z p /p r Z p ) ∩ H 1 p(Γ 1 (Np r ), Z p /p r Z p ).<br />

Suppose that the following inclusi<strong>on</strong>s and isomorphisms are true for r ≥ 2:<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /p r Z p ↩→<br />

(1)<br />

eH 1 p(Φ 2 , L n (Z p /p r Z p ))<br />

≃<br />

(2) eH1 p(Φ r , L n (Z p /p r Z p )) ≃ eH 1<br />

(3)<br />

p(Φ r , Z p /p r Z p (n))<br />

↩→<br />

(4)<br />

eH 1 p(Γ 1 (Np r ), n; Z p /p r Z p ) ↩→<br />

(5)<br />

V 0 (a)[P n ],<br />

(6.5.1)<br />

where the last inclusi<strong>on</strong> holds <strong>on</strong>ly if n ≡ a (mod 2). Then we have<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /p r Z p ↩→ V 0 (a)[P n ] ↩→ T 2r(a)<br />

p .<br />

Taking direct limits with respect <strong>to</strong> r, we have that<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ T p ↩→ V 0 (a)[P n ] ↩→ T 2r(a)<br />

p . (6.5.2)<br />

In the next secti<strong>on</strong>, we prove that eH 1 p(Φ 2 , L n (Z p )) is Z p -free (cf. Lemma 6.6.2). More<br />

precisely, we prove in Theorem 6.6.1 that:<br />

Theorem 6.5.3. The Z p -rank of the module eH 1 p(Φ 2 , L n (Z p )) is 2r(a), for n ≡ a (mod 2).<br />

Proof. For p ≥ 5, the theorem follows from [Hid86b, Thm. 3.1 and Cor. 3.2], but<br />

their proofs use results from the theory of Katz modular <strong>forms</strong> and the theory of mod p<br />

modular <strong>forms</strong>. For the prime p = 2, we need different arguments <strong>to</strong> prove the theorem<br />

(cf. Theorem 6.6.1) and we postp<strong>on</strong>e the proof <strong>to</strong> the next secti<strong>on</strong>.<br />

We complete the proof of Theorem 6.5.1, assuming Theorem 6.5.3.<br />

Proof. By Theorem 6.5.3, we have that T 2r(a)<br />

p ≃ eH 1 p(Φ 2 , L n (Z p ))⊗T p . Hence, for all n ≡<br />

a (mod 2), we have V 0 (a)[P n ] ≃ Tp 2r(a) . The theorem now follows from Lemma 6.5.2.<br />

Now, we shall show that the inclusi<strong>on</strong>s and isomorphisms in (6.5.1) hold. This is the<br />

c<strong>on</strong>tent of the next few lemmas and propositi<strong>on</strong>s. The following propositi<strong>on</strong> proves the<br />

inclusi<strong>on</strong> (1) in (6.5.1).<br />

83


Propositi<strong>on</strong> 6.5.4. For all r ≥ 1 and n ≥ 0, we have<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /p r Z p ↩→ eH 1 p(Φ 2 , L n (Z p /p r Z p )).<br />

Proof. For any Z p -module A, the short exact sequence of modules<br />

0 → eH 1 p(Φ 2 , L n (Z p )) → eH 1 (Φ 2 , L n (Z p )) → eH 1 (Φ 2 , L n (Z p ))/eH 1 p(Φ 2 , L n (Z p )) → 0<br />

induces the l<strong>on</strong>g exact sequence<br />

Tor(M, A) → eH 1 p(Φ 2 , L n (Z p )) ⊗ A α → eH 1 (Φ 2 , L n (Z p )) ⊗ A,<br />

where M = eH 1 (Φ 2 , L n (Z p ))/eH 1 p(Φ 2 , L n (Z p )). If M is Z p -free, then the map α is injective.<br />

Now, for any c<strong>on</strong>gruence subgroup Φ, we have:<br />

eH 1 (Φ, L n (Z p )) ⊗ A ∼ → eH 1 (Φ, L n (A)).<br />

Under this identificati<strong>on</strong>, the map α preserves parabolic classes, proving the theorem.<br />

The Z p -freeness of eH 1 (Φ 2 , L n (Z p ))/eH 1 p(Φ 2 , L n (Z p )) follows from Propositi<strong>on</strong> 6.4.6.<br />

The isomorphisms (2) and (3) in (6.5.1) follows from [Hid86a, Cor. 4.5], noting that<br />

the argument given there works for p = 2 and for Φ 2 , instead of p odd and the Φ 1 there.<br />

The following lemma proves the inclusi<strong>on</strong> (4).<br />

Lemma 6.5.5. For r ≥ 2, we have an inclusi<strong>on</strong><br />

eH 1 p(Φ r , Z p /p r Z p (n)) ↩→ eH 1 p(Γ 1 (Np r ), n; Z p /p r Z p ).<br />

Proof. We have the following inflati<strong>on</strong>-restricti<strong>on</strong> sequence for the groups Γ 1 (Np r ) ⊆ Φ r :<br />

0 → H 1 (Φ r /Γ 1 (Np r ), Z p /p r Z p (n)) → H 1 (Φ r , Z p /p r Z p (n))<br />

→ H 1 (Γ 1 (Np r ), Z p /p r Z p (n)) Φr/Γ 1(Np r) .<br />

Since H 1 (Γ 1 (Np r ), Z p /p r Z p (n)) Φr/Γ 1(Np r) ↩→ H 1 (Γ 1 (Np r ), n; Z p /p r Z p ), we have the following<br />

exact sequence<br />

0 → H 1 (Φ r /Γ 1 (Np r ), Z p /p r Z p (n)) → H 1 (Φ r , Z p /p r Z p (n)) → H 1 (Γ 1 (Np r ), n; Z p /p r Z p ).<br />

By [Hid86a, Lem. 6.1], we have the required claim.<br />

The following lemma proves inclusi<strong>on</strong> (5) in (6.5.1).<br />

Lemma 6.5.6. eH 1 p(Γ 1 (Np r ), n; Z p /p r Z p ) ↩→ V 0 (a)[P n ], if n ≡ a (mod 2).<br />

Proof. Observe that, eH 1 p(Γ 1 (Np r ), n; Z p /p r Z p ) is the subspace of eH 1 p(Γ 1 (Np r ), Z p /p r Z p )<br />

<strong>on</strong> which Z × p act by v|z = z n v. The group V 0 (a)[P n ] is also the subspace of V 0 such that<br />

Z × p acts by v|z = z n v, since µ 2 acts by ζ2 n = ζa 2 and γ ∈ Γ acts by v|γ = γn v.<br />

By [Hid86a, p. 584, (5.4)], we have that eH 1 p(Γ 1 (Np r ), Z p /p t Z p ) ≃ eH 1 p(Γ 1 (Np r ), Z p )⊗<br />

Z p /p t Z p . Since tensor product commutes with direct limits, we have that<br />

lim eH<br />

−→ 1 p(Γ 1 (Np r ), Z p /p t Z p ) ≃ eH 1 p(Γ 1 (Np r ), Z p ) ⊗ Zp T p ≃ eH 1 p(Γ 1 (Np r ), T p ).<br />

t<br />

By part (1) of Theorem 6.3.1 with V 0 , we have eH 1 p(Γ 1 (Np r ), Z p /p r Z p ) ↩→ V 0 . Since this<br />

map respects the acti<strong>on</strong> of Z × p , we have the required claim.<br />

84


6.6 C<strong>on</strong>stant rank<br />

In this secti<strong>on</strong>, we prove that the ranks of certain cuspidal ordinary 2-adic Hecke algebras<br />

of different weights are all equal <strong>to</strong> the rank of a weight 2 cuspidal ordinary Hecke algebra.<br />

As in the previous subsecti<strong>on</strong>, p = 2 and N > 1 is odd.<br />

For a = 0 or 1, recall that r(a) is the rank of the Hecke algebra h 0 2 (Φ 2, ω a , Z p ), where<br />

ω denotes the mod 4 cyclo<strong>to</strong>mic character. For simplicity, we write A(ω n ) for the sheaf<br />

with twisted acti<strong>on</strong> L 0 (ω n , A), for any Z p -module A.<br />

Theorem 6.6.1. For each positive integer n ≡ a (mod 2),<br />

rank Zp<br />

h 0 n+2(Φ 2 , Z p ) = r(a).<br />

Before proving this theorem, we need <strong>to</strong> gather some results, which we do now.<br />

Lemma 6.6.2. For r > s ≥ 0, the module eH 1 (Φ s r, L n (Z p )) is Z p -free, for n ≥ 0.<br />

Proof. The short exact sequence<br />

0 → L n (Z p ) → L n (Q p ) → L n (T p ) → 0<br />

induces a l<strong>on</strong>g exact sequence of cohomology groups for the group Φ s r<br />

H 0 (Φ s r, L n (Q p )) α → H 0 (Φ s r, L n (T p )) β → H 1 (Φ s r, L n (Z p )) γ → H 1 (Φ s r, L n (Q p )).<br />

If n = 0, then the map α is surjective, and hence the map β is zero. Therefore, the<br />

map γ is injective, and hence H 1 (Φ s r, Z p ) is Z p -free. Assume that n > 0. If we can show<br />

that eH 0 (Φ s r, L n (T p )) = 0, then the lemma follows. The opera<strong>to</strong>r T p acts <strong>on</strong> L n (T p )<br />

by x|T p = ∑ p−1( 1 −i<br />

) ι<br />

i=0 0 p · x, where A ι = Adj(A). We see that T p acts <strong>on</strong> any element<br />

of H 0 (Φ s r, L n (T p ))[p] by the matrix ( )<br />

0 ∗<br />

0 0 , and hence T<br />

2<br />

p acts trivially <strong>on</strong> such elements,<br />

hence the idempotent e annihilates H 0 (Φ s r, L n (T p )).<br />

Corollary 6.6.3. For any integer n ≥ 0, the module eH 1 (Φ 2 , Z p (ω n )) is Z p -free.<br />

Proof. If n is even, then ω n = 1, hence this follows from the lemma and when n is odd,<br />

the proof is similar <strong>to</strong> the proof of the lemma.<br />

Lemma 6.6.4. eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /qZ p ≃ eH 1 p(Φ 2 , L n (Z p /qZ p )).<br />

Proof. By Propositi<strong>on</strong> 6.5.4 with r = 2, the map<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /qZ p → eH 1 p(Φ 2 , L n (Z p /qZ p ))<br />

is injective. For the surjectivity, we work with sheaf cohomology instead of group cohomology.<br />

Let Y be the complex open manifold associated with Φ 2 . Observe that we have<br />

the following commutative diagram:<br />

eH 1 c(Y, F (L n (Z p )))/q<br />

eH 1 c(Y, F (L n (Z p /qZ p )))<br />

≀<br />

eH 1 p(Y, F (L n (Z p )))/q <br />

<br />

eH 1 p(Y, F (L n (Z p /qZ p ))) <br />

eH 1 (Y, F (L n (Z p )))/q<br />

eH 1 (Y, F (L n (Z p /qZ p ))).<br />

By [Hid88b, Cor. 2.2], the first vertical map is an isomorphism. As a result, we get that<br />

the middle vertical map is surjective and the lemma follows.<br />

≀<br />

85


Lemma 6.6.5. For any n ≥ 0, eH 1 (Y, F (Z p (ω n )))/q ≃ eH 1 (Y, F (Z p /qZ p (ω n ))).<br />

Proof. The short exact sequence<br />

induces another short exact sequence<br />

0 → Z p (ω n ) q → Z p (ω n ) → Z p /qZ p (ω n ) → 0<br />

0 → H 1 (Y, F (Z p (ω n ))) ⊗ Z p /qZ p → H 1 (Y, F (Z p /qZ p (ω n ))) → H 2 (Y, F (Z p (ω n )))[q] → 0,<br />

where H 2 (Y, F (Z p (ω n )))[q] = {x ∈ H 2 (Y, F (Z p (ω n ))) | q·x = 0}. This last group vanishes,<br />

since the cohomological dimensi<strong>on</strong> of Φ s r is 1.<br />

Propositi<strong>on</strong> 6.6.6. The module e(H 1 (Φ 2 , Z p (ω))/H 1 p(Φ 2 , Z p (ω))) is Z p -free.<br />

Proof. If the module eG 1 (Φ 2 , Z p (ω)) is Z p -free, then the propositi<strong>on</strong> follows, since the<br />

maps in (6.1.1) are invariant under the acti<strong>on</strong> of the Hecke opera<strong>to</strong>rs. C<strong>on</strong>sider the l<strong>on</strong>g<br />

exact sequence of cohomology groups<br />

G 0 (Φ 2 , Q p (ω)) β → G 0 (Φ 2 , T p (ω)) → G 1 (Φ 2 , Z p (ω)) → G 1 (Φ 2 , Q p (ω)),<br />

induced by the short exact sequence 0 → Z p (ω) → Q p (ω) → T p (ω) → 0.<br />

Since the image of β is p-divisible, it is enough <strong>to</strong> show that, ∀ x ∈ G 0 (Φ 2 , T p (ω))[p],<br />

x|T p bel<strong>on</strong>gs <strong>to</strong> β(G 0 (Φ 2 , Q p (ω))). Then a small computati<strong>on</strong> shows that<br />

e(G 0 (Φ 2 , T p (ω))/β(G 0 (Φ 2 , Q p (ω)))) = 0,<br />

and hence eG 1 (Φ 2 , L n (Z p (ω))) is Z p -free. We now prove, for all x ∈ G 0 (Φ 2 , T p (ω))[p], the<br />

element x|T p bel<strong>on</strong>gs <strong>to</strong> β(G 0 (Φ 2 , Q p (ω))).<br />

Since (2, N) = 1 and N ≥ 3, all the cusps of Φ 2 are regular, because irregularity for<br />

Φ 2 implies the irregularity for Γ 1 (N), but there are no irregular cusps for Γ 1 (N). Let<br />

s ∈ C(Φ 2 ) be a cusp of Φ 2 . Let α s = ( )<br />

a b<br />

c d ∈ SL2 (Z) such that α s (∞) = s. If π s denotes<br />

a genera<strong>to</strong>r for (Φ 2 ) s , we may write<br />

(<br />

π s = α 1 u<br />

)<br />

s 0 1 α<br />

−1<br />

s = ( )<br />

1−cau a 2 u<br />

−c 2 u 1+cau ∈ Φ2 , with u ≠ 0. (6.6.1)<br />

The structure of G 0 (Φ 2 , M(ω)) depends <strong>on</strong> the acti<strong>on</strong> π s <strong>on</strong> M. In order <strong>to</strong> study<br />

this, let us divide the cusps in<strong>to</strong> two types. If p | u, then we refer <strong>to</strong> this cusp as being of<br />

type 1, otherwise of type 2. We assume that Φ 2 acts trivially <strong>on</strong> M, because we are <strong>on</strong>ly<br />

interested in the cases when M = Z p , Q p or T p . Let x be an element of G 0 (Φ 2 , T p (ω))[p]<br />

and let x s denote the comp<strong>on</strong>ent of x in H i ((Φ 2 ) s , T p (ω)).<br />

If s is a cusp of type 1, then we see that H 0 ((Φ 2 ) s , M(ω)) = M by (6.6.1) and<br />

moreover the map β s is surjective, where β s : H 0 ((Φ 2 ) s , Q p (ω)) → H 0 ((Φ 2 ) s , T p (ω)).<br />

Hence (x|T p ) s ∈ β(H 0 ((Φ 2 ) s , Q p (ω)) = Q p ).<br />

Suppose s is a cusp of type 2. If π s acts trivially <strong>on</strong> M, then H 0 ((Φ 2 ) s , M(ω)) = M<br />

and if π s does not act trivially <strong>on</strong> M, then H 0 ((Φ 2 ) s , M(ω)) = M[2]. In the former case,<br />

again (x|T p ) s ∈ β(Q p ). In the latter case,<br />

p−1<br />

∑( (<br />

(x|T p ) s = γ 1 0<br />

) )<br />

0 p π<br />

i ι<br />

s · xt ,<br />

i=0<br />

86


where γ ∈ Φ 2 such that t = γ ( )<br />

1 0<br />

0 p (s) ∈ C(Φ2 ). Since x is 2-<strong>to</strong>rsi<strong>on</strong>, we see that<br />

(x|T p ) s = ∑ p−1<br />

i=0 (±1) · x t = ∑ p−1<br />

i=0 x t = 2x t = 0 ∈ β(H 0 ((Φ 2 ) s , Q p (ω))) = 0. Hence we have<br />

that for any x ∈ G 0 (Φ 2 , T p (ω))[p], the element x|T p bel<strong>on</strong>gs <strong>to</strong> β(G 0 (Φ 2 , Q p (ω))).<br />

Remark 6.6.7. In the above proof, we have used the fact that p is 2.<br />

Corollary 6.6.8. eH 1 p(Φ 2 , Z p (ω n ))/q ↩→ eH 1 p(Φ 2 , Z p /qZ p (ω n )).<br />

Proof. When n is even, this follows from Propositi<strong>on</strong> 6.5.4 with r = 2. When n is odd,<br />

the injectivity of the first vertical map follows from the following diagram<br />

eH 1 p(Y, F (Z p (ω)))/q α <br />

<br />

eH 1 (Y, F (Z p (ω)))/q<br />

eH 1 p(Y, F (Z p /qZ p (ω))) <br />

eH 1 (Y, F (Z p /qZ p (ω))),<br />

≀<br />

since α is injective by Propositi<strong>on</strong> 6.6.6, and the sec<strong>on</strong>d vertical map is an isomorphism<br />

by Lemma 6.6.5.<br />

Now we shall give a proof Theorem 6.6.1.<br />

Proof. It is enough <strong>to</strong> prove that the Z p -rank of eH 1 p(Φ 2 , L n (Z p )) is the same as the Z p -<br />

rank of eH 1 p(Φ 2 , Z p (ω a )) (the modules are Z p -free by Lemma 6.6.2 and by its corollary).<br />

By (6.5.2), we see that the rank of eH 1 p(Φ 2 , L n (Z p )) is less than or equal <strong>to</strong> the rank of<br />

eH 1 p(Φ 2 , Z p (ω a )).<br />

Again by Lemma 6.6.2 and by its corollary, it is enough <strong>to</strong> show the Z p /qZ p -rank of the<br />

module eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /qZ p is greater than or equal <strong>to</strong> that of eH 1 p(Φ 2 , Z p (ω a )) ⊗<br />

Z p /qZ p . We have the following<br />

eH 1 p(Φ 2 , L n (Z p )) ⊗ Z p /qZ p ≃<br />

(1)<br />

eH 1 p(Φ 2 , L n (Z p /qZ p ))<br />

≃<br />

(2) eH1 p(Φ 2 , Z p /qZ p (ω a ))<br />

←↪<br />

(3) eH1 p(Φ 2 , Z p (ω a )) ⊗ Z p /qZ p ,<br />

(6.6.2)<br />

where the isomorphisms (1), (2) and the inclusi<strong>on</strong> (3) follow from Lemma 6.6.4, the<br />

isomorphism (3) in (6.5.1) with r = 2, and Corollary 6.6.8, respectively. Hence the<br />

theorem is proved.<br />

6.7 Λ-adic Hecke algebras<br />

Recall that our aim is <strong>to</strong> prove a c<strong>on</strong>trol theorem for Hida’s ordinary Hecke algebra, which<br />

we now introduce.<br />

For each subalgebra A of C or C p , and for any r ≥ s ≥ 1, we have a commutative<br />

diagram for all n:<br />

S k (Γ 1 (Np s ), A) S k (Γ 1 (Np r ), A)<br />

T n<br />

S k (Γ 1 (Np s ), A)<br />

T n<br />

S k (Γ 1 (Np r ), A).<br />

87


Thus, we have a A-algebra homomorphism, h k (Γ 1 (Np r ), A) ↠ h k (Γ 1 (Np s ), A) and since<br />

T p ↦→ T p , we have that h 0 k (Γ 1(Np r ), A) → h 0 k (Γ 1(Np s ), A), for each r ≥ s ≥ 1. Now, set:<br />

h k (Γ 1 (Np ∞ ), A) := lim h ←−r k (Γ 1 (Np r ), A), h 0 k (Γ 1(Np ∞ ), A) := lim h 0 ←−r k (Γ 1(Np r ), A),<br />

S k (Np ∞ , A) := ∪ ∞ r=1S k (Γ 1 (Np r ), A).<br />

In Lemma 6.7.2 below, we show that, for weights k 1 ≥ k 2 ≥ 2, there is a surjecti<strong>on</strong><br />

h k1 (Γ 1 (Np ∞ ), A) ↠ h k2 (Γ 1 (Np ∞ ), A), and hence <strong>on</strong> the ordinary parts. Before we state<br />

it, we need <strong>to</strong> define a pairing between certain Hecke algebras and certain spaces of<br />

modular <strong>forms</strong>. Recall that K/Q p is finite, and O K is the integral closure of Z p in K.<br />

Put<br />

S k (Np r , K/O K ) = S k (Γ 1 (Np r ), K)/S k (Γ 1 (Np r ), O K ).<br />

By definiti<strong>on</strong>, <strong>on</strong>e can embed this space via q-expansi<strong>on</strong> in<strong>to</strong> the module of formal series<br />

K/O K [[q]]. We take the injective limit:<br />

S k (Np ∞ , K/O K ) = lim S −→r k (Np r , K/O K ) → K/O K [[q]].<br />

Then S k (Np ∞ , K/O K ) ≃ S k (Np ∞ , K)/S k (Np ∞ , O K ). The algebra h k (Γ 1 (Np ∞ ), O K )<br />

acts <strong>on</strong> S k (Np ∞ , K/O K ). Define the pairing<br />

(, ) : h k (Γ 1 (Np ∞ ), O K ) × S k (Np ∞ , K/O K ) → K/O K ,<br />

by (h, f) = a(1, f|h). Then (h, f|g) = (hg, f), for all h, g ∈ h k (Γ 1 (Np ∞ ), O K ). Equip<br />

S k (Np ∞ , K/O K ) with the discrete <strong>to</strong>pology. We have (cf. [Hid86a, Lem. 7.1]):<br />

Lemma 6.7.1. The pairing above shows that h k (Γ 1 (Np r ), Z p ) and S k (Γ 1 (Np r ), T p ) (respectively,<br />

h 0 k (Γ 1(Np r ), Z p ) and S 0 k (Γ 1(Np r ), T p )), for r = 1, 2, . . . , ∞, are P<strong>on</strong>tryagin<br />

duals.<br />

Lemma 6.7.2. For k 1 ≥ k 2 ≥ 2, there exists a surjecti<strong>on</strong><br />

h k1 (Γ 1 (Np ∞ ), O K ) ↠ h k2 (Γ 1 (Np ∞ ), O K ).<br />

Proof. The proof is similar <strong>to</strong> the proof of [Hid86a, Lem. 7.2]. For p = 2, we need <strong>to</strong> work<br />

with a different Eisenstein series than the <strong>on</strong>e given in that lemma. For r ≥ 2, define a<br />

formal q-expansi<strong>on</strong> for each t ∈ (Z/p r Z) × by<br />

⎛<br />

⎞<br />

G(r, t) = −t 0 p −r + 1 ∞ 2 + ∑ ∑<br />

⎝<br />

sgn(d) ⎠ q n ,<br />

n=1<br />

d|n, d≡t (mod p r )<br />

where t 0 is an integer satisfying 0 ≤ t 0 < p r and t 0 ≡ t mod p r . Then, as shown by Hecke,<br />

G(r, t) gives the q-expansi<strong>on</strong> of an element of M 1 (Γ 1 (Np r ), Q) and satisfies<br />

G(r, t)| 1 = G(r, at) for ( a b<br />

c d<br />

)<br />

∈ Γ0 (Np r ).<br />

Put E(r, t) = −p r G(r, t). For odd primes p, the c<strong>on</strong>gruence E(r, t) ≡ t (mod p r ) holds.<br />

For the prime p = 2, the c<strong>on</strong>gruence that holds is E(r, t) ≡ t (mod p r−1 ). Multiplicati<strong>on</strong><br />

by the Eisenstein series E(r, 1) gives an injective morphism<br />

ι r : S k−1 (Np ∞ , T p )[p r−1 ] → S k (Np ∞ , T p )[p r−1 ].<br />

Using the injective limit of the maps ι r and Lemma 6.7.1, we can finish the proof of the<br />

lemma al<strong>on</strong>g the lines of the proof of [Hid86a, Lem. 7.2].<br />

88


It is known, by [Hid88b, Thm. 3.2], that the map in the lemma above is an isomorphism.<br />

This theorem is stated adelically, but includes the case of p = 2. Thus, the Hecke<br />

algebra h 0 k (Γ 1(Np ∞ ), O K ) is independent of the weight, for all k ≥ 2, and we denote this<br />

by h 0 (N, O K ).<br />

6.8 C<strong>on</strong>trol theorem for ordinary Hecke algebras<br />

In this secti<strong>on</strong>, we prove a c<strong>on</strong>trol theorem for Hida’s ordinary Hecke algebras for the<br />

prime p = 2.<br />

Recall that K is a finite extensi<strong>on</strong> of Q p and O K is integral closure of Z p in K. Let ɛ<br />

be a character of Γ/Γ r with values in O K , with r ≥ 2. In this secti<strong>on</strong>, we write Λ for Λ K<br />

and Q(Λ) for the field of fracti<strong>on</strong>s of Λ K .<br />

We know that h 0 (N, O K ) acts <strong>on</strong> the finite free Λ-module V 0 . Hence the Λ-module<br />

h 0 (N, O K ) is finitely generated and <strong>to</strong>rsi<strong>on</strong>-free, since the acti<strong>on</strong> is faithful <strong>on</strong> V 0 . By<br />

abuse of notati<strong>on</strong>, let P k,ɛ also denote the prime ideal generated by the prime element<br />

P k,ɛ = ι(u) − ɛ(u)u k . By the independence of weight of h 0 (N, O K ), there is a surjective<br />

homomorphisms of O K -algebras, respectively, of Λ-algebras:<br />

ρ : h 0 (N, O K ) ↠ h 0 k (Φ2 r, ɛ, O K ) and Λ Pk,ɛ ↠ Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ = K, (6.8.1)<br />

where Λ Pk,ɛ /P k,ɛ Λ Pk,ɛ is identified with K with ι(u) corresp<strong>on</strong>ding <strong>to</strong> u k ɛ(u), inducing the<br />

map<br />

˜ρ k,ɛ : h 0 (N, O K ) ⊗ Λ Λ Pk,ɛ ↠ h 0 k (Φ2 r, ɛ, O K ) ⊗ OK K,<br />

which in turn fac<strong>to</strong>rs via P k,ɛ <strong>to</strong> give the map:<br />

Theorem 6.8.1. The natural map<br />

is an isomorphism.<br />

ρ k,ɛ : h 0 (N, O K ) ⊗ Λ Λ Pk,ɛ /P k,ɛ ↠ h 0 k (Φ2 r, ɛ, K).<br />

ρ k,ɛ : h 0 (N, O K ) ⊗ Λ Λ Pk,ɛ /P k,ɛ ↠ h 0 k (Φ2 r, ɛ, K)<br />

Proof. Since the module h 0 (N, O K ) is finitely generated <strong>to</strong>rsi<strong>on</strong>-free over Λ, then so is<br />

h 0 (N, O K ) Pk,ɛ over Λ Pk,ɛ . Therefore, the module h 0 (N, O K ) Pk,ɛ is free, since any finitely<br />

generated <strong>to</strong>rsi<strong>on</strong>-free module over a discrete valuati<strong>on</strong> ring is free. Let S(k, ɛ) (resp.,<br />

R(k, ɛ)) denote the rank of h 0 (N, O K ) Pk,ɛ (resp., of h 0 k (Φ2 r, ɛ, K)). A priori, the number<br />

S(k, ɛ) depends <strong>on</strong> k and ɛ. Since<br />

h 0 (N, O K ) Pk,ɛ ⊗ ΛPk,ɛ Q(Λ) ≃ h 0 (N, O K ) ⊗ Λ Q(Λ),<br />

we see that S(k, ɛ) is independent of k and ɛ and we denote this comm<strong>on</strong> value by R.<br />

We first prove the theorem for weights k > 2, by assuming that it holds for k = 2.<br />

The Eisenstein series E(2, 1) (cf. §6.7) has the property that E(2, 1) ≡ 1 (mod 2).<br />

Multiplicati<strong>on</strong> by E(2, 1) k−2 induces an injecti<strong>on</strong><br />

S 0 2(Γ 1 (Np r ), T p )[p] → S 0 k (Γ 1(Np r ), T p )[p].<br />

89


By duality, we have a surjecti<strong>on</strong><br />

h 0 k (Γ 1(Np r ), Z p ) ⊗ Z p /pZ p ↠ h 0 2(Γ 1 (Np r ), Z p ) ⊗ Z p /pZ p .<br />

Then<br />

R[Γ : Γ r ] ≥ ∑ ɛ<br />

R(k, ɛ) = rank OK (h 0 k (Γ 1(Np r ), O K ))<br />

≥ rank OK (h 0 2(Γ 1 (Np r ), O K )) = R[Γ : Γ r ],<br />

where the last equality follows by assumpti<strong>on</strong>. This can happen <strong>on</strong>ly if R(k, ɛ) = R for<br />

all k, ɛ, showing that the map ρ k,ɛ is an isomorphism.<br />

Now, we shall prove the result for k = 2. By Theorem 6.3.1, we have that the Z p -rank<br />

of eH 1 p(Γ 1 (Np r ), Z p ) is equal <strong>to</strong> 2[Γ : Γ r ] rank Zp h 0 2 (Γ 1(Nq), Z p ). Hence,<br />

rank Zp h 0 2(Γ 1 (Np r ), Z p ) = [Γ : Γ r ] rank Zp h 0 2(Γ 1 (Nq), Z p ).<br />

Since h 0 2 (Γ 1(Np r ), K) = ⊕ ɛ h 0 2 (Φ2 r, ɛ, K), the left hand side of the equality above is also<br />

∑<br />

ɛ R(2, ɛ). If rank Z p<br />

h 0 2 (Γ 1(Nq), Z p ) = R, then [Γ : Γ r ]R = ∑ ɛ<br />

R(2, ɛ). Since R ≥<br />

R(2, ɛ), we get R = R(2, ɛ), for each ɛ, as desired. Thus, we need <strong>to</strong> show that R =<br />

rank Zp h 0 2 (Γ 1(Nq), Z p ). This is proved in Theorem 6.8.3 below.<br />

The following lemma is well-known; for the proof refer <strong>to</strong> [Hid86a, Lem. 6.4].<br />

Lemma 6.8.2. For any subfield K of C or C p , H 1 p(Γ 1 (M), L n (K)) is free of rank 2 over<br />

the Hecke algebra h n+2 (Γ 1 (M), K) for each positive integer M.<br />

Set ɛ := ( )<br />

1 0<br />

0 −1 . Let M be a module over the Hecke algebra h<br />

0<br />

2 (Γ 1 (Np r ), Z). Let<br />

M ± denote the subspaces of M defined by {m ± [ɛ]m | m ∈ M}. Since ɛ normalizes<br />

Γ 1 (Np r ), the acti<strong>on</strong> of [ɛ] = [Γ 1 (Np r )ɛΓ 1 (Np r )] commutes with that of h 0 2 (Γ 1(Np r ), Z)<br />

<strong>on</strong> M. Therefore, the modules M ± are stable under the acti<strong>on</strong> of h 0 2 (Γ 1(Np r ), Z). For<br />

simplicity, we write h 0 2 (N, Z p) for the weight-2 Λ-adic Hecke algebra h 0 2 (Γ 1(Np ∞ ), Z p ).<br />

Theorem 6.8.3. The surjective map<br />

is an isomorphism.<br />

ρ 2,triv : h 0 2(N, Z p ) ⊗ Λ Λ P2 /P 2 ↠ h 0 2(Γ 1 (Nq), Q p )<br />

Proof. By Theorem 6.3.1, we have (V 0 ) Γ 2<br />

= V 0 2 , i.e., V0 [P 2 ] = V 0 [ω 2,2 ] = eH 1 (X 2 , T p ) =<br />

eH 1 p(Γ 1 (Nq), T p ), where the last equality follows from [Hid86a, p. 583 (5.3)]. Again by<br />

the same theorem, we have<br />

V 0 /P 2 V 0 ≃ Hom Zp (eH 1 p(Γ 1 (Nq), Z p ), Z p ). (6.8.2)<br />

Since V 0 is direct limit over V 0 r , we see that [ɛ] acts <strong>on</strong> V 0 and the acti<strong>on</strong> commutes with<br />

that of h 0 2 (N, Z p). There is a map V 0+ ⊕ V 0− → V 0 , which is an isomorphism if p is odd.<br />

Since p = 2, we tensor this with Λ P2 <strong>to</strong> get an isomorphism (V 0+ ) P2 ⊕ (V 0− ) P2 ≃ V 0 P 2<br />

.<br />

Let V 0± denote the P<strong>on</strong>tryagin dual of V 0± . Then (V 0+ ) P2 ⊕ (V 0− ) P2 ≃ V 0 P 2<br />

. We can<br />

think of h 0 2 (N, Z p) P2 as a subalgebra of the endomorphism algebra of (V 0+ ) P2 and hence<br />

we shall restrict ourselves <strong>to</strong> the module (V 0+ ) P2 . We now prove that<br />

(V 0+ ) P2 /P 2 (V 0+ ) P2 = h 0 2(Γ 1 (Nq), Q p ).<br />

90


We remark that since p = 2 and we work with (V 0+ ) P2 , the above isomorphism is with<br />

Q p -coefficients, otherwise we would have worked with V 0+ and the above isomorphism<br />

would have been with Z p -coefficients. Since the func<strong>to</strong>r Hom Zp (−, T p ) commutes with<br />

the ±-acti<strong>on</strong> after tensoring with Λ P2 , we see that V 0± ⊗ Λ Λ P2 ≃ (VP 0 2<br />

) ± holds. Hence<br />

(V 0± ) P2 /P 2 (V 0± ) P2 ≃ (VP 0 2<br />

) ± /P 2 (VP 0 2<br />

) ± ≃ (VP 0 2<br />

/P 2 VP 0 2<br />

) ± , where the last isomorphism is<br />

an easy check. We have that<br />

(V 0+ ) P2 /P 2 (V 0+ ) P2 = (V 0 P 2<br />

/P 2 V 0 P 2<br />

) +<br />

= (Hom Z p<br />

(eH 1 p(Γ 1 (Nq), Z p ), Z p ) ⊗ Zp Q p ) +<br />

(6.8.2)<br />

= Hom Qp (eH 1 p(Γ 1 (Nq), Q p ) + , Q p ) = h 0 2(Γ 1 (Nq), Q p ),<br />

(6.8.3)<br />

where the last equality follows from Lemma 6.8.2 and the third equality follows from the<br />

fact that for any Q p -module M, Hom Qp (M, Q p ) ± ≃ Hom Qp (M ± , Q p ).<br />

Let v denote the vec<strong>to</strong>r in (V 0+ ) P2 corresp<strong>on</strong>ding <strong>to</strong> 1 in h 0 2 (Γ 1(Nq), Q p ) in (6.8.3).<br />

Therefore, we have a map h 0 2 (N, Z p) P2 → (V 0+ ) P2 defined by mapping h → hv. This<br />

map is a surjective map by Nakayama’s lemma and by (6.8.3). The map is injective<br />

since the Hecke acti<strong>on</strong> is faithful <strong>on</strong> (V 0+ ) P2 . Therefore, we have h 0 2 (N, Z p) P2 ≃ (V 0+ ) P2 .<br />

Tensoring this isomorphism with Λ P2 /P 2 and using (6.8.3), we obtain the theorem.<br />

6.9 Uniqueness<br />

In this secti<strong>on</strong>, we prove a uniqueness result for Hida families. Suppose f is a p-stabilized<br />

ordinary newform (or an eigenform). Let P f denote the unique height <strong>on</strong>e prime ideal,<br />

induced by f, via the isomorphism in Theorem 6.8.1. Suppose Q = P f lies over the prime<br />

ideal P = P k,ɛ , where the integer k and the character ɛ depend <strong>on</strong> f.<br />

First we show that, for the prime P of Λ, the <strong>local</strong>ized Hecke algebra h 0 (N, O K ) Q is<br />

étale over Λ Pk,ɛ . We deduce the uniqueness result as a c<strong>on</strong>sequence. For simplicity, let us<br />

denote h 0 (N, O K ) by h 0 (N).<br />

Propositi<strong>on</strong> 6.9.1. The <strong>local</strong>ized Hecke algebra h 0 (N) Q is étale over Λ P and Qh 0 (N) Q =<br />

P h 0 (N) Q , i.e., h 0 (N) Q is a regular <strong>local</strong> ring.<br />

Proof. We apply [Nek06, Lem. 12.7.6], with A = Λ, B = h 0 (N) and J = 0 (and also by<br />

switching the roles of P and Q). The first c<strong>on</strong>diti<strong>on</strong> of that lemma, namely the Hecke<br />

algebra h 0 (N) is finitely generated and <strong>to</strong>rsi<strong>on</strong>-free over Λ follows, as menti<strong>on</strong>ed earlier,<br />

from Theorem 6.3.1. By Theorem 6.8.1, the short exact sequence in the sec<strong>on</strong>d part of<br />

that lemma reduces <strong>to</strong><br />

0 → P → h 0 k (Φ2 r, ɛ, K) α → Q p (a n (f)) ∞ n=1 → 0,<br />

where the map α is given by T n → a n (f). By analyzing the proof of that lemma, we see<br />

that if P P = 0, where P P denotes the <strong>local</strong>isati<strong>on</strong>, then the propositi<strong>on</strong> follows. From the<br />

theory of new<strong>forms</strong>, <strong>on</strong>e knows that h 0 k (Φ2 r, ɛ, K) P<br />

∼ → Qp (a n (f)) ∞ n=1 , hence P P = 0.<br />

Remark 6.9.2. The étaleness of h 0 (N) new<br />

P k,ɛ<br />

over Λ Pk,ɛ for the N-new part of Hida’s Hecke<br />

algebra would follow from a c<strong>on</strong>trol theorem for h 0 (N) new instead of h 0 (N) if <strong>on</strong>e knew<br />

such a result. To prove the étaleness, it is enough <strong>to</strong> show Ω h 0 (N) new<br />

P /Λ P = 0. Let K P be the<br />

91


esidue field of Λ P . By Nakayama’s lemma it suffices <strong>to</strong> show that Ω h 0 (N) new<br />

P /Λ ⊗ P Λ P<br />

K P =<br />

Ω h 0 (N) new<br />

P ⊗K P /K P<br />

= 0. The vanishing of the Kähler differentials follows from the fact that<br />

P is an arithmetic point and by the c<strong>on</strong>trol theorem with “h 0 (N) new ”, we have that<br />

h 0 (N) new<br />

P<br />

⊗ K P is a classical new Hecke algebra acting <strong>on</strong> the space of classical new<strong>forms</strong><br />

of fixed level, weight and character. Such Hecke algebras are well-known <strong>to</strong> be semisimple,<br />

since they are generated by Hecke opera<strong>to</strong>rs away from Np.<br />

6.9.1 2-adic Λ-adic <strong>forms</strong><br />

Now we recall the definiti<strong>on</strong> of a 2-adic Λ = Z 2 [[X]]-adic form. Let I denote the integral<br />

closure of Λ in a finite extensi<strong>on</strong> L of Q(Λ). Let ζ denote a 2 r−2 -th root of unity in ¯Q 2 , with<br />

r ≥ 2, and let k ≥ 1 be a positive integer. The assignment X ↦→ ζ(1 + q) k − 1 yields a Z 2 -<br />

algebra homomorphism ϕ k,ζ : Λ → ¯Q 2 . We say that a height <strong>on</strong>e prime P ∈ Spec(I)( ¯Q 2 )<br />

has weight k, if the corresp<strong>on</strong>ding Λ-algebra homomorphism P : I → ¯Q 2 extends ϕ k,ζ <strong>on</strong><br />

Λ, for some k ≥ 1 and for some ζ. In additi<strong>on</strong>, we say that P is arithmetic, if P has<br />

weight k ≥ 2.<br />

From now <strong>on</strong>, p = 2, q = 4 and (2, N) = 1. We will need the following Dirichlet<br />

characters. Let<br />

• ψ be a Dirichlet character of level Nq,<br />

• ω be the mod 4 cyclo<strong>to</strong>mic character,<br />

• ɛ be the character χ ζ mod 2 r for each root of unity ζ of order 2 r−2 with r ≥ 2<br />

defined by first decomposing<br />

(Z p /2 r Z p ) × = (Z p /qZ p ) × × Z/2 r−2 ,<br />

where the sec<strong>on</strong>d fac<strong>to</strong>r is generated by 1 + q, and then by setting<br />

χ ζ = 1 <strong>on</strong> (Z p /qZ p ) × and χ ζ (1 + q) = ζ.<br />

Definiti<strong>on</strong> 6.9.3. Let F = ∑ ∞<br />

n=1 a(n, F)qn ∈ I[[q]] be a formal q-expansi<strong>on</strong>. We say F is<br />

a Λ-adic form of tame level N and character ψ if for each arithmetic point P ∈ Spec(I)( ¯Q p )<br />

lying over ϕ k,ζ , with k ≥ 2 and ζ of order p r−2 , r ≥ 2, the specializati<strong>on</strong><br />

P (F) ∈ ¯Q p [[q]]<br />

of F at P is the q-expansi<strong>on</strong> of a classical cusp form f ∈ S k (N2 r , χ), where χ = ψω −k χ ζ .<br />

Now, we briefly recall various noti<strong>on</strong>s, e.g., primitive, ordinary, for Λ-adic <strong>forms</strong>.<br />

Definiti<strong>on</strong> 6.9.4. We say that F is a Λ-adic eigenform of level N, if every arithmetic<br />

specializati<strong>on</strong> f = P (F) is an eigenvec<strong>to</strong>r for the classical Hecke opera<strong>to</strong>rs T l for all<br />

primes l with l ∤ Np, and for U l if l | Np.<br />

Let f ∈ S k (Np ∞ , χ) be any eigenvec<strong>to</strong>r for all the opera<strong>to</strong>rs T l with l ∤ Np. Atkin-<br />

Lehner theory implies that <strong>on</strong>e can associate <strong>to</strong> f a unique primitive form f ∗ of minimal<br />

level dividing Np ∞ which has the same eigenvalues as f for almost all primes l.<br />

92


Definiti<strong>on</strong> 6.9.5. We say that a Λ-adic eigenform F of level N is a newform of level N,<br />

if for every arithmetic specializati<strong>on</strong> f = P (F) ∈ S k (Np ∞ , χ), the associated primitive<br />

form f ∗ has level divisible by N.<br />

We say that F is normalized, if a(1, F) = 1. Finally, let us say that F is primitive<br />

of level N, if it is normalized and is a newform of level N.<br />

There is a well-known theory of Λ-adic <strong>forms</strong> due <strong>to</strong> Hida under the assumpti<strong>on</strong> of<br />

ordinariness, which we describe now. Let f be a normalized eigenform for all the Hecke<br />

opera<strong>to</strong>rs of level Np r , with (N, p) = 1 and r ≥ 2, and weight k ≥ 2. Assume that f ∗<br />

has level divisible by N. We say that f is ℘-stabilized (or p-stabilized), if either f is<br />

p-new and is ℘-ordinary, or f is p-old, and is obtained from a primitive ℘-ordinary form<br />

f 0 of level N by the formula f(z) = f 0 (z) − βf 0 (pz), where β is the n<strong>on</strong> ℘-adic-unit root<br />

of E p (x) = x 2 − a(p, f 0 )x + χ(p)p k−1 . The cusp form f is an eigenform of all the Hecke<br />

opera<strong>to</strong>rs of level Np, with U p eigenvalue equal <strong>to</strong> α, the unique ℘-adic unit root of E p (x).<br />

Definiti<strong>on</strong> 6.9.6. We say that a primitive Λ-adic form of level N is ℘-ordinary, if each<br />

arithmetic specializati<strong>on</strong> P (F ) is a ℘-stabilized form in S k (N, χ), where k, N, χ are the<br />

weight, level, and character of P respectively.<br />

6.9.2 Tame level N = 1<br />

We remark that there is no 2-adic Hida theory, when N = 1, showing that our assumpti<strong>on</strong><br />

that N > 1 in several previous secti<strong>on</strong>s loses no generality. Indeed, we have that:<br />

Propositi<strong>on</strong> 6.9.7. There are no ordinary Λ-adic eigen<strong>forms</strong> of tame level 1.<br />

Proof. If such a Λ-adic eigenform were <strong>to</strong> exist, then for every integer k ≥ 2 and r ≥ 2,<br />

its’ specializati<strong>on</strong> at P k,ζ , where ζ is a p r−2 -th root of unity, would be an element of<br />

S k (p r , ω a−k χ ζ ), for some a ∈ N. For parity reas<strong>on</strong>s, (−1) a−k = (−1) k , hence a is even.<br />

But, if r = 2 and k is even, then are no 2-ordinary, 2-stabilized eigen<strong>forms</strong> in S k (4, triv).<br />

For new<strong>forms</strong> this follows from [Miy89, Thm. 4.6.17] and for old<strong>forms</strong> from loc. cit. and<br />

the fact that X 0 (2) has genus 0, and from Hatada [Hat79]. Since there are no ordinary<br />

specializati<strong>on</strong>s in even weight, there are no ordinary Λ-adic eigen<strong>forms</strong> of tame level 1.<br />

Corollary 6.9.8. For odd integers k, the space eSk<br />

2-new (4, ω) is zero.<br />

Proof. This follows immediately from the propositi<strong>on</strong> noting that every 2-ordinary eigenform<br />

in the above space must live in a 2-ordinary Hida family of tame level 1.<br />

Remark 6.9.9. It can be checked independently that the dimensi<strong>on</strong>s of eSk<br />

2-new (4, ω) for<br />

k = 3, 5, 7, 9, 11, 13, 15, 17, are indeed all zero, whereas the dimensi<strong>on</strong>s of Sk 2-new (4, ω)<br />

for k = 3, 5, 7, 9, 11, 13, 15, 17 are 0, 1, 2, . . . , 7, respectively.<br />

6.9.3 Uniqueness result<br />

We now turn <strong>to</strong> the uniqueness result for 2-adic families.<br />

Theorem 6.9.10. Any p-stabilized eigenform is an arithmetic specializati<strong>on</strong> of a unique<br />

Hida family, up <strong>to</strong> Galois c<strong>on</strong>jugacy.<br />

93


Proof. By (6.8.1), we know that any p-stabilized eigenform lives in a Hida family. We<br />

want <strong>to</strong> show that such a family is unique, up <strong>to</strong> Galois c<strong>on</strong>jugacy (this last caveat is<br />

necessary since if a form lies in F by specializati<strong>on</strong> under P : I → ¯Q p , then it also lies in<br />

the c<strong>on</strong>jugate family F σ , by specializing under σ −1 ◦ P : I σ → ¯Q p . Note that F and F σ<br />

corresp<strong>on</strong>d <strong>to</strong> the same minimal prime ideal of h 0 (N)).<br />

Assume the c<strong>on</strong>trary. Let λ 1 and λ 2 denote the algebra homomorphisms from h 0 (N)<br />

<strong>to</strong> I and I ′ respectively, where I, I ′ are finite integral extensi<strong>on</strong>s of Λ. Let P 1 and<br />

P 2 denote the minimal prime ideals of h 0 (N) which are the respective kernels of these<br />

homomorphisms. Since λ 1 and λ 2 have <strong>on</strong>e arithmetic specializati<strong>on</strong> in comm<strong>on</strong>, there<br />

are two algebra homomorphisms P : I → ¯Q p and P ′ : I ′ → ¯Q p such that P ◦ λ 1 =<br />

P ′ ◦ λ 2 = λ P,P ′, say. Then the kernel of λ P,P ′ is a height <strong>on</strong>e prime of h 0 (N), denote by<br />

Q, c<strong>on</strong>taining both P 1 and P 2 and lying over P = P k,ζ for some k ≥ 2, ζ.<br />

By Propositi<strong>on</strong> 6.9.1, h 0 (N) Q is a regular <strong>local</strong> ring. But, a regular a <strong>local</strong> ring is a<br />

domain, hence the prime ideals P 1 and P 2 have <strong>to</strong> be equal.<br />

As an applicati<strong>on</strong> of the last result we now show that the noti<strong>on</strong> of CM-ness is pure<br />

with respect <strong>to</strong> families.<br />

Propositi<strong>on</strong> 6.9.11. Let F be a primitive 2-adic Hida family. Then either all arithmetic<br />

specializati<strong>on</strong>s are CM <strong>forms</strong> or no arithmetic specializati<strong>on</strong> is a CM form.<br />

Proof. The proof is the same as for odd prime p, <strong>on</strong>ce <strong>on</strong>e has the uniqueness result for<br />

p = 2. Indeed a CM family is defined <strong>to</strong> be <strong>on</strong>e which is obtained as the theta series<br />

of a Λ-adic Hecke character of an imaginary quadratic field. Clearly all its arithmetic<br />

specializati<strong>on</strong>s are CM <strong>forms</strong>. Now start with an arbitrary CM form. Assume it lives in<br />

a n<strong>on</strong>-CM family (<strong>on</strong>e which is not a theta series). Then explicit interpolati<strong>on</strong> allows us<br />

<strong>to</strong> also c<strong>on</strong>struct a CM family passing through this CM form. Clearly the n<strong>on</strong>-CM family<br />

and the CM family are not Galois c<strong>on</strong>jugate, and this c<strong>on</strong>tradicts uniqueness.<br />

In view of this result from now <strong>on</strong> we may and do speak of CM and n<strong>on</strong>-CM 2-adic<br />

Hida families.<br />

6.10 An applicati<strong>on</strong> <strong>to</strong> Galois representati<strong>on</strong>s<br />

In [GV04], the splitting of the <strong>local</strong> Galois representati<strong>on</strong>s associated <strong>to</strong> ordinary eigen<strong>forms</strong><br />

was studied for odd primes p. We carry out the same analysis for the case of p = 2,<br />

assuming that the relevant result of Buzzard c<strong>on</strong>tinues <strong>to</strong> hold for p = 2 in the residually<br />

dihedral setting. That is, under this assumpti<strong>on</strong>, we prove that in a n<strong>on</strong>-CM 2-adic Hida<br />

family, all arithmetic specializati<strong>on</strong>s have n<strong>on</strong>-split <strong>local</strong> Galois representati<strong>on</strong>, except<br />

for a possible finite set of excepti<strong>on</strong>s. As a c<strong>on</strong>sequence of the uniqueness result proved<br />

earlier, we are also able <strong>to</strong> exclude CM <strong>forms</strong> from this finite excepti<strong>on</strong>al set.<br />

Recall p denotes the prime 2 and q = 4. We recall some preliminaries <strong>on</strong> ordinary<br />

eigen<strong>forms</strong> and their associated Galois representati<strong>on</strong>s.<br />

Let f = ∑ ∞<br />

n=1 a n(f)q n be a normalized eigenform (i.e., a primitive form) of weight<br />

k ≥ 2, level Np r ≥ 1, and nebentypus χ. Let ℘ be the prime of ¯Q determined by a fixed<br />

embedding of ¯Q in<strong>to</strong> ¯Q p . Let ℘ also denote the induced prime of K f = Q(a n (f)), the<br />

94


Hecke field of f, and let K f,℘ denote the completi<strong>on</strong> of K f at ℘. There is a global Galois<br />

representati<strong>on</strong><br />

ρ f = ρ f,℘ : Gal( ¯Q/Q) → GL 2 (K f,℘ ),<br />

associated <strong>to</strong> f (and ℘) which has the property that for all primes l ∤ Np,<br />

trace(ρ f (Frob l )) = a l (f) and det(ρ f (Frob l )) = χ(l)l k−1 .<br />

Recall f is ordinary at ℘ (or ℘-ordinary), if a p (f) is ℘-adic unit. If f is ordinary at ℘,<br />

then the result of Wiles [Wil88] shows that the restricti<strong>on</strong> of ρ f <strong>to</strong> the decompositi<strong>on</strong><br />

group G p is upper triangular, i.e.,<br />

( )<br />

δ ψ<br />

ρ f | Gp ∼ ,<br />

0 ɛ<br />

where δ, ɛ : G p → K × f,℘ are characters with ɛ unramified and ψ : G p → K f,℘ is a c<strong>on</strong>tinuous<br />

functi<strong>on</strong>.<br />

Definiti<strong>on</strong> 6.10.1. We say that the ordinary representati<strong>on</strong> ρ f | Gp splits, if the representati<strong>on</strong><br />

space of ρ f can be written as direct sum of two G p -invariant lines.<br />

6.10.1 Buzzard’s result<br />

We shall assume that a slight strengthening of a result of Buzzard holds. Let O denote<br />

the ring of integers in a finite extensi<strong>on</strong> K of Q p , and λ denote the maximal ideal of O.<br />

Let ρ : G Q → GL 2 (O) be a c<strong>on</strong>tinuous representati<strong>on</strong> and let ¯ρ denote the reducti<strong>on</strong> mod<br />

λ. The following result is proved in [Buz03], and we refer <strong>to</strong> that paper for a detailed<br />

explanati<strong>on</strong> of all the hypotheses.<br />

Theorem 6.10.2 (Buzzard). Assume that<br />

1. ρ is ramified at finitely many primes and ¯ρ is modular,<br />

2. ¯ρ is absolutely irreducible when restricted <strong>to</strong> Gal( ¯Q/Q(i)),<br />

3. ρ| Gp is the direct sum of two 1-dimensi<strong>on</strong>al characters α and β : G p → O x , such<br />

that α(I p ) and β(I p ) are finite, and (α/β) mod λ is n<strong>on</strong>-trivial,<br />

4. ¯ρ(c) ≠ 1,<br />

5. ¯ρ is both α-modular and β-modular, in the sense that there are eigen<strong>forms</strong> f α with<br />

T p -eigenvalue ᾱ(Frob p ) and f β with T p -eigenvalue ¯β(Frob p ) giving rise <strong>to</strong> ¯ρ,<br />

6. The projective image of ¯ρ is not dihedral.<br />

Then ρ is modular, in the sense that there exists an embedding i : K ↩→ C and a<br />

classical weight 1 cuspidal eigenform f such that the composite i ◦ ρ is isomorphic <strong>to</strong> the<br />

representati<strong>on</strong> associated <strong>to</strong> f by Deligne and Serre.<br />

For odd primes p, there is no restricti<strong>on</strong> (6) <strong>on</strong> the projective image of ¯ρ. For p = 2,<br />

this assumpti<strong>on</strong> is due <strong>to</strong> the unavailability of R = T theorems in the residually dihedral<br />

setting. From now <strong>on</strong>, we assume that Theorem 6.10.2 holds, without c<strong>on</strong>diti<strong>on</strong> (6).<br />

95


6.10.2 Λ-adic Galois representati<strong>on</strong>s<br />

Now, we recall a few facts about Λ-adic Galois representati<strong>on</strong>s. Let F ∈ I[[q]] be a<br />

primitive Λ-adic form of level N and with character ψ. There is a Galois representati<strong>on</strong><br />

<strong>attached</strong> <strong>to</strong> F, c<strong>on</strong>structed by Hida, and Wiles in the case of p = 2,<br />

ρ F : G Q → GL 2 (L),<br />

such that for each arithmetic specializati<strong>on</strong> P of I, P (ρ F ), the specializati<strong>on</strong> of ρ F at P ,<br />

is isomorphic <strong>to</strong> the representati<strong>on</strong> ρ f <strong>attached</strong> <strong>to</strong> f = P (F) by Deligne. Note that, if l<br />

is a prime number such that l ∤ Np, then<br />

trace(ρ F (Frob l )) = a(l, F) ∈ I, det(ρ F (Frob l )) = ψ(l)κ(Frob l )l −1 ,<br />

where κ : Gal( ¯Q/Q) → Λ × is the ‘Λ-adic cyclo<strong>to</strong>mic character’.<br />

If F is ordinary, then the restricti<strong>on</strong> of ρ F <strong>to</strong> G p turns out <strong>to</strong> be ‘upper-triangular’.<br />

More precisely, the representati<strong>on</strong> ρ F | Gp has the following shape<br />

( )<br />

δ F u F<br />

ρ F | Gp ∼<br />

,<br />

0 ɛ F<br />

where δ F , ɛ F : G p → L × are characters with ɛ F unramified, and u F : G p → L is a<br />

c<strong>on</strong>tinuous map. Let<br />

c F = ɛ −1<br />

F · u F ∈ Z 1 (G p , L(δ F ɛ −1<br />

F<br />

)) (6.10.1)<br />

be the associated cocycle. Then the representati<strong>on</strong><br />

ρ F | Gp<br />

splits if and <strong>on</strong>ly if [c F ] = 0 in H 1 (G p , L(δ F ɛ −1<br />

F )).<br />

Definiti<strong>on</strong> 6.10.3. We say that F is p-distinguished, if the characters δ F and ɛ F appearing<br />

above, have distinct reducti<strong>on</strong>s modulo the maximal ideal of I.<br />

It follows that F is p-distinguished if and <strong>on</strong>ly if f is p-distinguished for <strong>on</strong>e (therefore<br />

every) arithmetic specializati<strong>on</strong> f of F.<br />

We shall show that for a primitive 2-adic family F whose residual representati<strong>on</strong> satisfies<br />

some technical c<strong>on</strong>diti<strong>on</strong>s (cf. c<strong>on</strong>diti<strong>on</strong>s (1), (2), and (3) below), the corresp<strong>on</strong>ding<br />

representati<strong>on</strong> ρ F splits at p if and if F is CM. As a c<strong>on</strong>sequence, standard descent arguments<br />

(cf. §6.10.4) allow us <strong>to</strong> c<strong>on</strong>clude the following partial result <strong>to</strong>wards Greenberg’s<br />

questi<strong>on</strong> <strong>on</strong> the <strong>local</strong> splitting of ordinary 2-adic modular Galois representati<strong>on</strong>s.<br />

Theorem 6.10.4. Let F be a primitive n<strong>on</strong>-CM 2-ordinary Hida family of eigen<strong>forms</strong><br />

with the property that<br />

1. ¯ρ F is p-distinguished,<br />

2. ¯ρ F is absolutely irreducible, when restricted <strong>to</strong> Gal( ¯Q/Q(i)),<br />

3. ¯ρ F (c) ≠ 1 and ¯ρ F is both α-modular and β-modular.<br />

Then for all but except possibly finitely many arithmetic members f ∈ F, the representati<strong>on</strong><br />

ρ f | Gp is n<strong>on</strong>-split. Moreover the possible excepti<strong>on</strong>s are necessarily n<strong>on</strong>-CM <strong>forms</strong>.<br />

96


6.10.3 Local splitting for Λ-adic <strong>forms</strong><br />

Propositi<strong>on</strong> 6.10.5. Let F be a primitive 2-adic Λ-adic form of fixed tame level N<br />

satisfying c<strong>on</strong>diti<strong>on</strong>s (1)-(3) above. Then ρ F | Gp splits if and <strong>on</strong>ly if F is of CM type.<br />

Proof. The proof is very similar <strong>to</strong> that for odd primes given in [GV04, Prop. 14]. One<br />

shows that the following statements are equivalent.<br />

1. ρ F | Gp splits.<br />

2. F has infinitely many weight <strong>on</strong>e classical specializati<strong>on</strong>s.<br />

3. F has infinitely many weight <strong>on</strong>e classical CM specializati<strong>on</strong>s.<br />

4. F is of CM type.<br />

We prove the implicati<strong>on</strong>s (1) =⇒ (2), <strong>to</strong> show how the strengthened versi<strong>on</strong> of Buzzard’s<br />

result is used. For the remaining implicati<strong>on</strong>s, we refer <strong>to</strong> [GV04, Prop. 14]. We remark<br />

that a shortening of the implicati<strong>on</strong> (3) =⇒ (4) can be found in [DG10].<br />

(1) =⇒ (2): Recall that we have the following characters:<br />

ψ : Gal( ¯Q/Q) → ¯Q × p<br />

κ : Gal( ¯Q/Q) → Λ × ,<br />

ν : Gal( ¯Q/Q) → Z × p<br />

the character of F of c<strong>on</strong>duc<strong>to</strong>r Nq,<br />

the Λ-adic cyclo<strong>to</strong>mic character,<br />

the 2-adic cyclo<strong>to</strong>mic character.<br />

We know that det(ρ F )= ψκν −1 . The specializati<strong>on</strong> of det(ρ F ) at ϕ k,ζ is χν k−1 , where<br />

χ = ψω −k χ ζ . By assumpti<strong>on</strong> ρ F | Gp splits, i.e.,<br />

( )<br />

ψκν −1 0<br />

ρ F | Ip ∼<br />

.<br />

0 1<br />

Let P be a weight <strong>on</strong>e point of I extending ϕ 1,ζ : Λ → ¯Q p . It follows that P (ρ F ) = ρ P (F)<br />

has the following shape <strong>on</strong> I p :<br />

( )<br />

ψω −1 χ<br />

ρ P (F) | Ip ∼<br />

ζ 0<br />

,<br />

0 1<br />

noting that the characters <strong>on</strong> the diag<strong>on</strong>al have finite order. Now by Theorem 6.10.2, we<br />

have that<br />

ρ P (F) ∼ ρ f ,<br />

where f is a primitive weight 1 form of level N2 r , with character ψω −1 χ ζ where ζ is<br />

exactly of order 2 r−2 , r ≥ 2. As we vary the point P , and therefore r ≥ 2, we obtain<br />

infinitely many classical weight 1 specializati<strong>on</strong>s of F as required.<br />

We remark that elementary arguments (cf. [GV04, (2) =⇒ (3) of Prop. 14]), allow<br />

us <strong>to</strong> c<strong>on</strong>clude that infinitely many of these must be of CM type, and in particular the<br />

residual representati<strong>on</strong> must necessarily be dihedral! This explains why it is crucial <strong>to</strong><br />

assume that Buzzard’s result holds in this case as well.<br />

97


6.10.4 Descending <strong>to</strong> the classical situati<strong>on</strong><br />

We now give a proof of Theorem 6.10.4.<br />

Proof. If F does not have CM, then by Propositi<strong>on</strong> 6.10.5 the representati<strong>on</strong> ρ F | Gp is<br />

not split. We now show that this forces ρ f | Gp <strong>to</strong> be n<strong>on</strong>-split for all but except possibly<br />

finitely many arithmetic members f ∈ F. To see this suppose F ∈ I[[q]]. Then<br />

I × = µ d−1 × (1 + m I ),<br />

where d denotes the order of the residue field of I. Since both δ F and ɛ F are I × valued,<br />

we may decompose these characters as δ F = δ t δ w according <strong>to</strong> the decompositi<strong>on</strong> of I ×<br />

above. Let E t denote the uni<strong>on</strong> of the finitely many tamely ramified abelian extensi<strong>on</strong>s<br />

of Q p of order dividing d − 1. Let E w denote the maximal abelian pro-p extensi<strong>on</strong> of Q p ,<br />

and let E = E t · E w . Set H = Gal( ¯Q p /E). Then δ t and ɛ t (resp., δ w and ɛ w ) are trivial <strong>on</strong><br />

Gal( ¯Q p /E t ) (resp., Gal( ¯Q p /E w )). It follows that δ F and ɛ F are trivial <strong>on</strong> H and hence:<br />

( )<br />

1 λ<br />

ρ F | H ∼ ,<br />

0 1<br />

for some homomorphism λ : H → I.<br />

We show that the homomorphism λ is n<strong>on</strong>-zero. Let c F denote the cocycle corresp<strong>on</strong>ding<br />

<strong>to</strong> λ, as we defined in (6.10.1). Since ρ F | Gp is n<strong>on</strong>-split, the corresp<strong>on</strong>ding<br />

cohomology class [c F ] ≠ 0. By [GV04, Lem. 19], the restricti<strong>on</strong> <strong>to</strong> H of the cohomology<br />

class [c F ] is still n<strong>on</strong>-zero. It follows that the homomorphism λ is n<strong>on</strong>-zero.<br />

Let J denote the n<strong>on</strong>-zero ideal of I generated by the image of λ. Since the intersecti<strong>on</strong><br />

of infinitely many height <strong>on</strong>e primes of I is the zero ideal, we see that J has <strong>to</strong> be c<strong>on</strong>tained<br />

in <strong>on</strong>ly finitely many height <strong>on</strong>e primes of I. Let f = P (F) be an arithmetic specializati<strong>on</strong><br />

of F. Then ρ f | H splits if and <strong>on</strong>ly if I ⊂ P . It follows that ρ f | H does not split for all but<br />

finitely many specializati<strong>on</strong>s f of F. In particular, ρ f | Gp is n<strong>on</strong>-split for all but finitely<br />

many f of F. This excepti<strong>on</strong>al set does not c<strong>on</strong>tain any CM <strong>forms</strong> by Propositi<strong>on</strong> 6.9.11.<br />

This proves the theorem.<br />

98


Appendix A<br />

A 2-adic C<strong>on</strong>trol Theorem for<br />

Modular Curves<br />

In this appendix, we study the behaviour of the ordinary parts of the homology groups of<br />

modular curves, associated with the decreasing sequence of c<strong>on</strong>gruence subgroups Γ 1 (N2 r )<br />

for r ≥ 2, and we prove a c<strong>on</strong>trol theorem for these homology groups. As a c<strong>on</strong>sequence,<br />

we prove the freeness of W 0 (cf. Theorem 6.5.1 and Theorem A.5.3).<br />

A.1 Introducti<strong>on</strong><br />

Hida theory studies the modular curves associated <strong>to</strong> the following c<strong>on</strong>gruence subgroups,<br />

for primes p ≥ 5, and (p, N) = 1,<br />

· · · ⊂ Γ 1 (Np r ) ⊂ · · · ⊂ Γ 1 (Np). (∗)<br />

Write Y r for the open complex manifold Γ 1 (Np r )\H. One of the important results in<br />

Hida theory [Hid86a] is that W 0 := lim H ←−r 1 (Y r , Z p ) 0 is a free Λ-module of finite rank and<br />

W 0 /a r W 0 = H 1 (Y r , Z p ) 0 ,<br />

for all r ≥ 1, where a r denotes the augmentati<strong>on</strong> ideal of Z p [[1 + p r Z p ]] and Λ = Z p [[1 +<br />

pZ p ]]. Emert<strong>on</strong> gives a proof of the results above for p ≥ 5, using algebraic <strong>to</strong>pology<br />

of the Riemann surfaces Y r (cf. [Eme99]). In this appendix, by following the approach<br />

in [Eme99], we prove that the behaviour of the modular curves as in (∗), for p = 2 and 3,<br />

is quite similar <strong>to</strong> (∗∗) (cf. Theorem A.5.2 and Theorem A.5.3).<br />

The classical versi<strong>on</strong>s of the c<strong>on</strong>trol theorem for p = 2 and 3, do not seem <strong>to</strong> be<br />

explicitly available in the literature, though an adèlic versi<strong>on</strong> of it can be found in [Hid88b].<br />

Emert<strong>on</strong>s proof for primes p ≥ 5 holds for p = 3, with N > 1, verbatim. For the prime<br />

p = 2, a bit more work is needed and <strong>forms</strong> the c<strong>on</strong>tent of this appendix. We follow the<br />

notati<strong>on</strong>s in the previous chapter (cf. §6.2, §6.3), unless explicitly stated.<br />

(∗∗)<br />

A.2 Notati<strong>on</strong>s<br />

Throughout this appendix, let p denote the prime 2 and let q denote 4. Let N be a<br />

natural number coprime <strong>to</strong> p. We look at the modular curves associated <strong>to</strong> the following<br />

99


c<strong>on</strong>gruence subgroups:<br />

· · · ⊂ Γ 1 (Np r ) ⊂ · · · ⊂ Γ 1 (Nq).<br />

If we take the homology of the <strong>to</strong>wer of modular curves, we get a <strong>to</strong>wer of finitely generated<br />

free abelian groups, which is the abelianizati<strong>on</strong> of the above chain of subgroups:<br />

· · · → Γ 1 (Np r ) ab → · · · → Γ 1 (Nq) ab , (A.2.1)<br />

because, for r ≥ 2, H 1 (Y r , Z) = Γ 1 (Np r ) ab . We have a short exact sequence of groups:<br />

1 → Γ 1 (Np r ) → Φ 2 r<br />

η r<br />

→ Γ/Γr → 1,<br />

where η r ( ( a b<br />

c d<br />

)<br />

) = d mod Γr . The acti<strong>on</strong> of Φ 2 r <strong>on</strong> Γ 1 (Np r ) by c<strong>on</strong>jugati<strong>on</strong> induces an<br />

acti<strong>on</strong> of Φ 2 r/Γ 1 (Np r ) = Γ/Γ r <strong>on</strong> Γ 1 (Np r ) ab . Thus Γ acts naturally <strong>on</strong> Γ 1 (Np r ) ab through<br />

its quotient Γ/Γ r . The morphisms in the chain (A.2.1) are Γ-equivariant.<br />

Remark A.2.1. The restricti<strong>on</strong> of η r <strong>to</strong> Φ 2 r ∩Γ 0 (p), denoted by Res(η r ), is also surjective<br />

<strong>on</strong><strong>to</strong> Γ/Γ r . Moreover, we have the following commutative diagram:<br />

Φ 2 r+1<br />

η r+1<br />

Γ/Γ r+1<br />

≀<br />

t −1 −t<br />

Φ 2 r ∩ Γ 0 (p) Res(ηr) Γ/Γ r ,<br />

where the group Γ 0 (p) = { ( )<br />

a b<br />

c d ∈ SL2 (Z) | b ≡ 0 (mod 2)}, and t = ( )<br />

1 0<br />

0 p .<br />

For r ≥ s > 1, if we abelianize the short exact sequence in (6.3.1), we obtain:<br />

Γ 1 (Np r ) ab → Φ s ab<br />

r → Γ s /Γ r → 1.<br />

The group Γ s is procyclic, and let γ s denote a genera<strong>to</strong>r of it. Then, the augmentati<strong>on</strong><br />

ideal a s is generated by γ s − 1. For i ≥ 1, the group Γ s+i is generated by γs pi<br />

, and hence<br />

a s+i is generated by γs<br />

pi<br />

− 1. For any r ≥ s, by definiti<strong>on</strong>, the augmentati<strong>on</strong> ideal of<br />

Z p [Γ s /Γ r ] is a s . Then for any r ≥ s > 1, by definiti<strong>on</strong><br />

a s Γ 1 (Np r ) ab = [Φ s r, Γ 1 (Np r )]/[Γ 1 (Np r ), Γ 1 (Np r )] ⊂ Γ 1 (Np r ) ab ,<br />

and the last inclusi<strong>on</strong> follows, since Γ 1 (Np r ) is a normal subgroup of Φ s r. The extensi<strong>on</strong><br />

1 → Γ 1 (Np r )/[Φ s r, Γ 1 (Np r )] → Φ s r/[Φ s r, Γ 1 (Np r )] → Γ s /Γ r → 1<br />

is a central extensi<strong>on</strong> of a cyclic group, thus the middle group is abelian, implying that<br />

[Φ s r, Φ s r] = [Φ s r, Γ 1 (Np r )]. One way inclusi<strong>on</strong> is clear, because Φ s r ⊇ Γ 1 (Np r ). The other<br />

inclusi<strong>on</strong> follows from the fact that [Φ s r/[Φ s r, Γ 1 (Np r )], Φ s r/[Φ s r, Γ 1 (Np r )]] is trivial.<br />

∼<br />

−→ Γs<br />

Γ r<br />

, by Remark A.2.1. More-<br />

Remark A.2.2. We have an isomorphism<br />

over, we have the following commutative diagram:<br />

Φs r∩Γ 0 (p)<br />

Γ 1 (Np r )∩Γ 0 (p)<br />

Φ s r∩Γ 0 (p) i Φ s<br />

Γ 1 (Np r )∩Γ 0 r<br />

(p) Γ<br />

1 (Np r )<br />

<br />

∼<br />

∼<br />

<br />

Γ s<br />

Γ r<br />

,<br />

where the map i is induced by the inclusi<strong>on</strong> of the groups Φ s r ∩ Γ 0 (p) ⊆ Φ s r. In fact, the<br />

map i is an isomorphism. This observati<strong>on</strong> is useful in Lemma A.3.5.<br />

100


Summarising this discussi<strong>on</strong>, we see that the map Γ 1 (Np r ) ab → Γ 1 (Np s ) ab in the<br />

chain of homology groups as in (A.2.1) can be fac<strong>to</strong>red as the compositi<strong>on</strong> of<br />

Γ 1 (Np r ) ab ↠ Γ 1 (Np r ) ab /a s ↩→ Φ s ab<br />

r → Γ 1 (Np s ) ab . (A.2.2)<br />

It may not be true that sec<strong>on</strong>d and third morphisms of this fac<strong>to</strong>risati<strong>on</strong>s are isomorphisms.<br />

But Hida observed that if <strong>on</strong>e applies a certain projecti<strong>on</strong> opera<strong>to</strong>r arising from<br />

the Atkin U-opera<strong>to</strong>r <strong>to</strong> all these modules then the sec<strong>on</strong>d and third morphisms become<br />

isomorphisms. So we now define the Atkin U-opera<strong>to</strong>r and study their properties.<br />

A.3 Hecke opera<strong>to</strong>rs<br />

Suppose T is a group which c<strong>on</strong>tains subgroups G and H and that t is an element of T<br />

such that t −1 Ht ∩ G has finite index in G. Then <strong>on</strong>e has a transfer map<br />

V : G ab → (t −1 Ht ∩ G) ab .<br />

C<strong>on</strong>jugati<strong>on</strong> by t induces an isomorphism (t −1 Ht∩G) ab ≃ (H ∩tGt −1 ) ab . Inclusi<strong>on</strong> of the<br />

group H ∩tGt −1 in H induces a morphism (H ∩tGt −1 ) ab → H ab . Taking the compositi<strong>on</strong><br />

of all these we obtain a morphism, we call the ‘Hecke opera<strong>to</strong>r’ corresp<strong>on</strong>ding <strong>to</strong> t,<br />

[t] : G ab → H ab .<br />

In the case T = GL 2 (Q), G = H = a c<strong>on</strong>gruence subgroup of SL 2 (Z) of level divisible<br />

by p and t = ( ) (<br />

1 0<br />

0 p , we set U := [t]. For A = a b<br />

)<br />

c d ∈ Φ<br />

s<br />

r , we have:<br />

t −1 At = ( a<br />

bp<br />

c/p d<br />

)<br />

and<br />

tAt −1 = ( a b/p<br />

cp d<br />

and hence t −1 Φ s rt ∩ Φ s r = Φ s r ∩ Γ 0 (p), Φ s r ∩ tΦ s rt −1 = Φ s r+1 .<br />

Remark A.3.1. Observe that (1, 1), (2, 2)-entries of A and of t ±1 At ∓1 are the same.<br />

Thus the Atkin U-opera<strong>to</strong>r is by definiti<strong>on</strong> the compositi<strong>on</strong><br />

)<br />

,<br />

Φ s ab<br />

r<br />

V (Φ s r ∩ Γ 0 (p)) ab t−t −1 <br />

∽ Φ s r+1<br />

ab<br />

Φ s ab<br />

r . (A.3.1)<br />

(The final morphism is just that induced by the inclusi<strong>on</strong> of groups Φ s r+1 ⊂ Φs r.) Define<br />

U ′ <strong>to</strong> be the compositi<strong>on</strong> of the first two of above morphisms.<br />

Lemma A.3.2. Suppose that r ≥ s > 1, r ′ ≥ s ′ > 1, r ≥ r ′ , s ≥ s ′ , so that Φ s r ⊂ Φ s′<br />

r ′ .<br />

Then the following diagram commutes:<br />

Φ s ab<br />

r<br />

U ′<br />

Φ s ab<br />

r+1<br />

Φ s′ ab<br />

r ′ U ′<br />

Φ s′ ab<br />

r ′ +1 .<br />

C<strong>on</strong>sequently, the map U commutes with the map Φ s r<br />

ab<br />

is a Z[U]-module via the acti<strong>on</strong> of the U-opera<strong>to</strong>r.<br />

→ Φ s′ ab<br />

r<br />

. In particular, each Φ s ab<br />

′<br />

r<br />

101


Proof. We can fac<strong>to</strong>rize the above diagram as a compositi<strong>on</strong> of two diagrams<br />

Φ s ab<br />

r<br />

Φ s′ ab<br />

r ′ V<br />

V<br />

(Φ s ab<br />

r ∩ Γ 0 (p)) ab <br />

(Φ s′ ab<br />

r ′<br />

∩ Γ 0 (p)) ab<br />

t−t −1 <br />

Φ s r+1<br />

ab<br />

t−t −1 <br />

Φ s′ ab<br />

r ′ +1<br />

The lower porti<strong>on</strong> of this diagram clearly commutes. Since Φ s r ∩ Γ 0 (p) has index p in<br />

Φ s r, we can take { ( )<br />

1 i<br />

0 1 }<br />

p−1<br />

i=0<br />

as the coset representatives. The coset representatives are<br />

independent of the particular values of r and s, and hence the transfer map V is given by<br />

a formula independent of r and s, so the upper porti<strong>on</strong> of the diagram commutes.<br />

A particular case of Lemma A.3.2 is the case r ′ = r − 1, s = s ′ ≤ r ′ . If we write π for<br />

the morphism π : Φ s r<br />

ab −→ Φ s r−1 ab and π′ for the morphism π ′ : Φ s r+1 ab −→ Φs<br />

ab<br />

r , then the<br />

lemma above yields the following formula:<br />

The same definiti<strong>on</strong> yields the formula<br />

U ′ ◦ π = π ′ ◦ U ′ = U ∈ End Z (Φ s ab<br />

r ). (A.3.2)<br />

π ◦ U ′ = U ∈ End Z (Φ s ab<br />

r−1).<br />

(A.3.3)<br />

Again by the same lemma, the cokernel of the morphism Γ 1 (Np r ) ab → Φ s ab<br />

r , for r ≥ s > 1,<br />

is a Z[U]-module. Hence Γ s /Γ r is a Z[U]-module.<br />

Lemma A.3.3. For r ≥ s > 1, the opera<strong>to</strong>r U acts <strong>on</strong> Γ s /Γ r as multiplicati<strong>on</strong> by p.<br />

Proof. The opera<strong>to</strong>r U acts <strong>on</strong> Γ s /Γ r as a multiplicati<strong>on</strong> by p if and <strong>on</strong>ly if it acts <strong>on</strong><br />

Φ s ab<br />

r<br />

Γ 1 (Np r ) ab<br />

Φ s ab<br />

r<br />

Γ 1 (Np r ) ab<br />

by Ā ↦→ Āp . The opera<strong>to</strong>r U is the compositi<strong>on</strong> of the following maps:<br />

V<br />

−→<br />

(Φ s r ∩Γ0 (p)) ab t−t<br />

(Γ 1<br />

−→<br />

−1<br />

(Np r )∩Γ 0 (p)) ab<br />

Φ s ab<br />

r+1<br />

Φ r ab<br />

r+1<br />

−→<br />

Φ s ab<br />

r<br />

Γ 1 (Np r ) ab<br />

Ā ↦−→ Ā p ↦−→ tĀp t −1 ↦−→ tĀp t −1 . (A.3.4)<br />

Let {α i = ( )<br />

1 i<br />

0 1 }<br />

p−1<br />

i=0 be a set of coset representatives of the group Φs r ∩ Γ 0 (p) in Φ s r. With<br />

this choice, we see that the transfer map in (A.3.4) looks like Ā ↦→ Āp . By Remark A.3.1,<br />

tA p t −1 and A p represent the same coset mod Γ 1 (Np r ) ab , and hence we are d<strong>on</strong>e.<br />

We would like <strong>to</strong> define an acti<strong>on</strong> of Γ <strong>on</strong> Φ s r<br />

ab and call it the nebentypus acti<strong>on</strong>.<br />

For r ≥ 2, if ¯d ∈ Γ/Γ r , then choose an element α ∈ Φ 2 r+1 ∩ Γ0 (p), such that η r (α) = ¯d<br />

(cf. Remark A.2.1). The nebentypus acti<strong>on</strong> of d <strong>on</strong> Φ s r<br />

ab is given by c<strong>on</strong>jugati<strong>on</strong> by<br />

α. This acti<strong>on</strong> is well-defined because, if α 1 and α 2 denote two lifts of ¯d, then α1 −1 α 2 ∈<br />

Γ 1 (Np r+1 ) ∩ Γ 0 (p) ⊆ Φ s r, and hence for any element x ∈ Φ s r, α1 −1 α 2xα2 −1 α 1 = x in Φ s r ab .<br />

Now, we shall show that the acti<strong>on</strong>s of Γ and U commutes.<br />

Lemma A.3.4. If r ≥ s > 1, the acti<strong>on</strong> of U commutes with the acti<strong>on</strong> of Γ <strong>on</strong> Φ s ab<br />

r .<br />

102


Proof. It is easy <strong>to</strong> see that α(Φ s r ∩Γ 0 (p))α −1 = Φ s r ∩Γ 0 (p) for any α ∈ Φ 2 r+1 ∩Γ0 (p), since<br />

αΦ s rα −1 ⊆ Φ s r. We need <strong>to</strong> prove that the diagram below is commutative, because in the<br />

diagram below compositi<strong>on</strong> of the vertical morphisms <strong>on</strong> either side are the opera<strong>to</strong>r U<br />

and it commutes with the au<strong>to</strong>morphism of Φ s r<br />

ab induced by c<strong>on</strong>jugati<strong>on</strong> by α, but we<br />

know that Γ acts <strong>on</strong> Φ s r ab by c<strong>on</strong>jugati<strong>on</strong> by such elements α.<br />

Φ s ab<br />

r<br />

α−α −1<br />

Φ s ab<br />

r<br />

V<br />

(Φ s r ∩ Γ 0 (p))<br />

ab<br />

α−α−1<br />

(α(Φ s r ∩ Γ 0 (p))α −1 ) ab = (Φ s r ∩ Γ 0 (p)) ab<br />

V<br />

Φ s ab<br />

r+1<br />

t−t −1<br />

α−α −1<br />

αtα −1 (−)αt −1 α −1<br />

(αΦ s r+1 α−1 ) ab = Φ s ab<br />

r+1<br />

Φ s ab<br />

r<br />

α−α −1<br />

(αΦ s rα −1 ) ab = Φ s ab<br />

The <strong>to</strong>p square in the diagram above commutes because, if {γ 1 , . . . , γ p } form a set of coset<br />

representatives for the group Φ s r ∩ Γ 0 (p) in Φ s r, then so is {αγ 1 α −1 , . . . , αγ p α −1 }. This<br />

diagram commutes even if α ∈ Φ 2 r ∩ Γ 0 (p). The last square commutes by the func<strong>to</strong>riality<br />

of the transfer map. We now prove the commutativity of the middle square, i.e., the map<br />

αtα −1 (−)αt −1 α −1 : (Φ s r∩Γ 0 (p)) ab → Φ s r+1 ab is t−t−1 . For g ∈ Φ s r∩Γ 0 (p), αtα −1 gαt −1 α −1 =<br />

(αtα −1 t −1 )tgt −1 (αtα −1 t −1 ) −1 . For α ∈ Φ 2 r+1 ∩ Γ0 (p), we have αtα −1 t −1 ∈ Γ 1 (Np r+1 ) ⊆<br />

Φ s r+1 . Thus c<strong>on</strong>jugati<strong>on</strong> by αtα−1 t −1 induces the identity <strong>on</strong> Φ s r+1 ab.<br />

Lemma A.3.5. The transfer morphism V : Φ s r<br />

ab<br />

of U <strong>on</strong> its source and target.<br />

Φ s ab<br />

r<br />

r .<br />

→ Γ 1 (Np r ) ab commutes with the acti<strong>on</strong><br />

Proof. The inclusi<strong>on</strong> of groups Γ 1 (Np r ) ⊆ Φ s r gives rise <strong>to</strong> the another transfer map<br />

V<br />

→ Γ 1 (Np r ) ab . It suffices <strong>to</strong> prove that the following diagram commutes:<br />

Φ s ab<br />

r<br />

V<br />

Φ r ab<br />

r<br />

V<br />

(Φ s r ∩ Γ 0 (p)) ab V (Γ 1 (Np r ) ∩ Γ 0 (p)) ab<br />

Φ s ab<br />

r<br />

t−t −1<br />

V<br />

t−t −1<br />

V Γ 1 (Np r ) ab .<br />

Here V denotes the transfer maps between various abelianizati<strong>on</strong>s and <strong>to</strong> be unders<strong>to</strong>od<br />

from the c<strong>on</strong>text. The commutativity of the <strong>to</strong>p square and the bot<strong>to</strong>m square follows<br />

from the func<strong>to</strong>riality of the transfer map, and from Remark A.2.2, Remark A.3.1, respectively.<br />

If {σ d } denote a set of coset representatives of Γ 1 (Np r ) ∩ Γ 0 (p) in Φ s r ∩ Γ 0 (p),<br />

then the c<strong>on</strong>jugates {tσ d t −1 } form a set of coset representatives of Γ 1 (Np r ) in Φ s r.<br />

To summarise, we have defined the U-opera<strong>to</strong>rs for the c<strong>on</strong>gruence subgroups {Φ s r}<br />

and we have checked that morphisms between these c<strong>on</strong>gruence subgroups respects the<br />

acti<strong>on</strong> of U and this acti<strong>on</strong> commutes with that of Γ. We have also checked that the<br />

transfer morphism V : Φ s ab<br />

r → Γ 1 (Np r ) ab commutes with the acti<strong>on</strong> of U.<br />

103


A.4 Ordinary parts<br />

Let M be a Z p [X]-module, which is finitely generated as a Z p -module. Then, we have a<br />

morphism of Z p -modules<br />

Z p [X] → End Zp (M).<br />

The endomorphism ring End Zp (M) of M is a finite Z p -algebra. Thus the image of Z p [X]<br />

in End Zp (M), will be denoted by A, is also a commutative finite Z p -algebra, and hence it<br />

fac<strong>to</strong>rs as a product of <strong>local</strong> rings. Let A 0 denote the product of all those <strong>local</strong> fac<strong>to</strong>rs of A<br />

in which the image of X is a unit, and A n its complementary fac<strong>to</strong>r, so that A = A 0 × A n .<br />

Each of these is a flat A-algebra, and a subalgebra of End Zp (M). We define<br />

M 0 := M ⊗ A A 0<br />

and call this the ordinary part of M. Clearly, taking ordinary parts is an exact func<strong>to</strong>r.<br />

If we c<strong>on</strong>sider X <strong>to</strong> be the U-opera<strong>to</strong>r, we may c<strong>on</strong>sider the ordinary part of the<br />

Z p -homology of the curve Y r , i.e., the module (Γ 1 (Np r ) ab ⊗ Z p ) 0 , which is a Γ-module by<br />

Lemma A.3.4. We have the following fundamental theorem for the prime p = 2 and it is<br />

similar <strong>to</strong> the theorem, which was proved in [Hid86a] for primes p ≥ 5.<br />

Theorem A.4.1. If r ≥ s > 1, then the morphism of abelian groups<br />

is an isomorphism.<br />

(Γ 1 (Np r ) ⊗ Z p ) 0 /a s ↠ (Γ 1 (Np s ) ⊗ Z p ) 0<br />

Proof. We shall prove the following isomorphisms:<br />

(Γ 1 (Np r ) ab ⊗ Z p ) 0 /a s<br />

∼ −→ (Φ<br />

s ab<br />

r ⊗ Z p ) 0 ∼ −→ (Γ1 (Np s ) ab ⊗ Z p ) 0 .<br />

We have c<strong>on</strong>structed an opera<strong>to</strong>r U ′ : Φ s ab<br />

r−1<br />

and (A.3.3). If π : Φ s ab<br />

r<br />

Φ s ab<br />

r<br />

→ Φ s ab<br />

r−1<br />

, satisfying the equati<strong>on</strong>s (A.3.2)<br />

is the morphism induced by the inclusi<strong>on</strong> of groups<br />

→ Φs<br />

ab<br />

r<br />

⊂ Φ s r−1 ab,<br />

then U ′ ◦ π = U ∈ End(Φ s r<br />

ab ), π ◦ U ′ = U ∈ End(Φ s r−1).<br />

ab<br />

We have the following diagram:<br />

Φ s r−1<br />

ab π<br />

Φ s r−2<br />

ab<br />

<br />

U ′ U<br />

U ′<br />

Φ s r<br />

ab π<br />

Φ s r−1<br />

ab<br />

<br />

U ′ U<br />

U ′<br />

Φ s ab<br />

r+1<br />

π<br />

Φ s r ab .<br />

The existence of U ′ implies that up<strong>on</strong> tensoring over Z p and taking the ordinary parts π<br />

induces an isomorphism (Φ s r<br />

ab ) 0 = (Φ s r−1 ab)0<br />

. By descending inducti<strong>on</strong> <strong>on</strong> r, we obtain the<br />

required isomorphism<br />

(Φ s r<br />

ab ) 0 = (Φ s s ab ) 0 = (Γ 1 (Np s ) ab ⊗ Z p ) 0 .<br />

104


To prove the first isomorphism, we c<strong>on</strong>sider the short exact sequence:<br />

1 → Γ 1 (Np r ) ab /a s → Φ s ab<br />

r → (Γ s /Γ r ) → 1.<br />

Tensor this short exact sequence with Z p and then take the ordinary parts <strong>to</strong> obtain:<br />

1 → (Γ 1 (Np r ) ab ⊗ Z p ) 0 /a s → (Φ s ab<br />

r ⊗ Z p ) 0 → (Γ s /Γ r ) 0 → 1,<br />

because Z p is flat over Z and taking ordinary parts preserves exactness. By Lemma A.3.3,<br />

the opera<strong>to</strong>r U is nilpotent, because Γ s /Γ r is a p-<strong>to</strong>rsi<strong>on</strong> group. Thus Γ s /Γ r has trivial<br />

ordinary part and hence the Theorem follows.<br />

A.5 Iwasawa modules<br />

We have the following inverse system indexed by natural numbers r ≥ 2,<br />

Define the Iwasawa module by<br />

· · · → Γ 1 (Np r ) ab ⊗ Z p → · · · → Γ 1 (Nq) ab ⊗ Z p .<br />

W := lim ←− r≥2<br />

Γ 1 (Np r ) ab ⊗ Z p .<br />

The profinite group Γ acts <strong>on</strong> the Z p -module Γ 1 (Np r ) ab ⊗ Z p through its finite quotient<br />

Γ/Γ r . Thus the Iwasawa module W becomes a module over the completed group algebra<br />

Λ := Z p [[Γ]] = lim Z ←−r≥2 p [Γ/Γ r ]. The Iwasawa module W is difficult <strong>to</strong> understand, because<br />

we do not have a good characterisati<strong>on</strong> of the image of the morphism<br />

Γ 1 (Np r ) ab → Γ 1 (Np s ) ab<br />

(r ≥ s > 1) in general, and so we cannot get a good descripti<strong>on</strong> of the projective limit.<br />

However, Theorem A.4.1 allows us <strong>to</strong> understand the ordinary part of W very well. To<br />

make the statement clear, let us slightly abstract the situati<strong>on</strong>.<br />

Let {M r } r≥2 be a system of Λ-modules, such that each M r is pointwise fixed by Γ r ,<br />

i.e., M r is a module over Λ/a r Λ = Z p [Γ/Γ r ]. For each r ≥ s > 1, we have a map M r → M s<br />

such that it fac<strong>to</strong>rs via<br />

M r /a s M r → M s .<br />

Define W := lim ←−r≥2<br />

M r . For each r ≥ 2, we have a map W → M r , and they fac<strong>to</strong>r as<br />

W/a r W → M r .<br />

Lemma A.5.1. Assume that each M r is p-adically complete and for each r ≥ s > 1,<br />

M r /a s M r → M s is an isomorphism. Then W/a s W ↠ M s is an isomorphism.<br />

Proof. Clearly the maps M r → M s are surjective for all r ≥ s, and hence the can<strong>on</strong>ical<br />

map from W → M s is also surjective. It is enough <strong>to</strong> show that the kernel is a s W . Since<br />

each M r is p-adically complete and we have that M r = lim M ←−i r /p i M r . Moreover, we have<br />

that each M r is pointwise fixed by Γ r and hence M r = lim M ←−i r /n i M r , where γ r is a cyclic<br />

genera<strong>to</strong>r of Γ r and n = (γ r − 1, p).<br />

105


By inducti<strong>on</strong> <strong>on</strong> i, we see that γs<br />

pi<br />

− 1/γ s − 1 is an element of the ideal (γ s − 1, p) i . In<br />

particular, when s = 2, the element γ pr−2<br />

2 − 1/γ 2 − 1 is an element of the maximal ideal<br />

m = (γ 2 − 1, p) and hence n ⊆ m = (a 2 , p). Since m pr−2 ⊆ ((γ 2 − 1) pr−2 , p) ⊆ n ⊆ m,<br />

we see that each M r is m-adically complete, since they are n-adically complete. Once we<br />

have that each M r is m-adically complete, then proving the injectivity of the map above<br />

is quite similar <strong>to</strong> the proof of [Eme99, Prop. 5.1].<br />

The following Theorem is an immediate c<strong>on</strong>sequence of the above Lemma.<br />

Theorem A.5.2. For any r ≥ 2, we have<br />

is the Γ r -coinvariants of W 0 .<br />

W 0 /a r W 0 ∼ = (Γ1 (Np r ) ab ⊗ Z p ) 0<br />

Proof. This follows from Lemma A.5.1 <strong>to</strong>gether with Theorem A.4.1<br />

The theorem above is <strong>on</strong>e of the key step in the proof of the main theorem A.5.3.<br />

Each module Γ 1 (Np r ) ab ⊗ Z p is free of finite rank over Z p , and so is compact in its p-adic<br />

<strong>to</strong>pology. Thus if we give the limiting module W the <strong>to</strong>pology which is the projective<br />

limit of the p-adic <strong>to</strong>pologies <strong>on</strong> each module Γ 1 (Np r ) ab ⊗ Z p it becomes a compact Λ-<br />

module. Furthermore, Λ acts c<strong>on</strong>tinuously <strong>on</strong> W , since Γ acts <strong>on</strong> each of the modules<br />

Γ 1 (Np r ) ab ⊗ Z p through a finite quotient. Since W 0 is a direct fac<strong>to</strong>r of W the same<br />

remarks hold true for W 0 . Furthermore, Theorem A.5.2 implies that the projective limit<br />

<strong>to</strong>pology <strong>on</strong> W 0 coincides with its m-adic <strong>to</strong>pology (where m = (a 2 , p) ⊂ Λ denotes the<br />

maximal ideal of Λ), because the kernels of the projecti<strong>on</strong> Λ → Z p /p r Z p [Γ/Γ r ] are cofinal<br />

with the sequence of ideals m r in Λ. Thus W 0 is a Λ-module, compact in its m-adic<br />

<strong>to</strong>pology such that<br />

W 0 /m = W 0 /(a 2 , p) = (Γ 1 (Nq) ab ⊗ Z p /p) 0<br />

is a finite dimensi<strong>on</strong>al Z p /pZ p -module, of dimensi<strong>on</strong> d (say). By Nakayama’s lemma, we<br />

have that W 0 is a finitely generated Λ-module with a minimal generating set of order<br />

equal <strong>to</strong> d. By Theorem A.5.3 below, d will be equal <strong>to</strong> the Z p -rank of the free Z p -module<br />

(Γ 1 (Np r ) ab ⊗ Z p ) 0 , for r ≥ 2. We have the following theorem for the prime p = 2 and it<br />

is similar <strong>to</strong> the theorem, which was proved in [Hid86a] for primes p ≥ 5.<br />

Theorem A.5.3. The Λ-module W 0 is free of finite rank equal <strong>to</strong> d.<br />

By [NSW08, Prop. 5.1.9], it is enough <strong>to</strong> show that, the module W 0 is a reflexive Λ-<br />

module. We will prove this by c<strong>on</strong>sidering the duality theory of the modules (Γ 1 (Np r ) ab ⊗<br />

Z p ) 0 and showing that they are reflexive as Z p [Γ/Γ r ]-modules.<br />

We briefly recall some results from Duality theory. Suppose R is a commutative ring,<br />

G is a finite group, and M is a left R[G]-module. Write M ∗ = Hom R (M, R), the R-dual<br />

of M. The module M ∗∗ can be made a left module over R[G]. By definiti<strong>on</strong> of M ∗ ,<br />

there is a natural morphism of left R[G]-modules M → M ∗∗ . The module M is called<br />

reflexive, if this map is an isomorphism. The following lemma will be useful later.<br />

Lemma A.5.4 ([Eme99], Lem. 6.2). If M is reflexive as an R-module, then M is reflexive<br />

as an R[G]-module.<br />

Now, we need <strong>to</strong> understand how <strong>to</strong> use the reflexivity results for modules over<br />

Z p [Γ/Γ r ] <strong>to</strong> show the reflexivity of W 0 as a Λ-module.<br />

106


A.6 Limits of cohomology modules<br />

Cohomology is the dual of homology:<br />

H 1 (Y r , Z p ) := Hom Z (Γ 1 (Np r ) ab , Z p ) = Hom Zp (Γ 1 (Np r ) ab ⊗ Z p , Z p ).<br />

The ring Λ acts <strong>on</strong> Γ 1 (Np r ) ab ⊗ Z p through its quotient Λ r := Λ/a r = Z p [Γ/Γ r ]. If<br />

r ≥ s > 1 then the ring Λ s is the quotient of the ring Λ r by the augmentati<strong>on</strong> ideal a s ,<br />

i.e., Λ r ↠ Λ s = Λ r /a s . Thus we get the following sequence of morphisms of Λ r -modules:<br />

Hom Λr (Γ 1 (Np r ) ab ⊗ Z p , Λ r ) → Hom Λr (Γ 1 (Np r ) ab ⊗ Z p , Λ r )/a s<br />

→ Hom Λr (Γ 1 (Np r ) ab ⊗ Z p , Λ s ) = Hom Λs (Γ 1 (Np r ) ab ⊗ Z p /a s , Λ s ).<br />

If M is any Z p [U]-module, which is finitely generated as a Z p -module, then so is the<br />

Z p -dual M ∗ := Hom Zp (M, Z p ) (via the dual acti<strong>on</strong> of U). Clearly (M ∗ ) 0 = (M 0 ) ∗ , i.e.,<br />

taking ordinary parts commutes with taking duals. By Theorem A.4.1 and by taking the<br />

ordinary parts of the homomorphisms above, we obtain a morphism:<br />

Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r )/a s<br />

Lemma A.6.1. The morphism η is an isomorphism.<br />

η<br />

−→ Hom Λs ((Γ 1 (Np s ) ab ⊗ Z p ) 0 , Λ s ).<br />

Proof. By virtue of Lemma A.3.5, we may restrict V <strong>to</strong> the ordinary parts of its source<br />

and target <strong>to</strong> obtain a morphism which we c<strong>on</strong>tinue <strong>to</strong> denote by V<br />

(Φ s ab<br />

r ⊗ Z p ) 0 V<br />

−→ (Γ 1 (Np r ) ab ⊗ Z p ) 0 .<br />

There is a dual morphism Hom Zp ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Z p ) −→ V ∗<br />

Hom Zp ((Φ s r ab ⊗ Z p ) 0 , Z p ),<br />

which sits in the first column of the following commutative diagram:<br />

Hom Zp ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Z p )<br />

V ∗<br />

Hom Zp ((Φ s r ab ⊗ Z p ) 0 , Z p )<br />

∼<br />

Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r )<br />

Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r )/a s<br />

≀<br />

<br />

Hom Λs ((Γ 1 (Np r ) ab ⊗ Z p ) 0 /a s , Λ s )<br />

Hom Zp ((Γ 1 (Np s ) ab ⊗ Z p ) 0 , Z p )<br />

∼ Hom Λs ((Γ 1 (Np s ) ab ⊗ Z p ) 0 , Λ s )<br />

≀<br />

in which the two horiz<strong>on</strong>tal isomorphisms are those provided by Lemma A.5.4, and the<br />

two vertical isomorphisms follow from Theorem A.4.1 and its proof. Thus <strong>to</strong> prove the<br />

lemma it suffices <strong>to</strong> prove that<br />

Hom Zp ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Z p ) V ∗<br />

−→ Hom Zp ((Φ s ab<br />

r ⊗ Z p ) 0 , Z p ) (A.6.1)<br />

is surjective with kernel equal <strong>to</strong> a s (Hom Zp ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Z p )). Since V commutes<br />

with U and taking ordinary parts commutes with taking Z p -duals, we see that the morphism<br />

in (A.6.1) is the ordinary part of the morphism<br />

Hom Zp ((Γ 1 (Np r ) ab ⊗ Z p ), Z p ) V ∗<br />

−→ Hom Zp ((Φ s ab<br />

r ⊗ Z p ), Z p ).<br />

107


Taking ordinary parts is also exact and commutes with the acti<strong>on</strong> of Γ. Thus it suffices <strong>to</strong><br />

show that the map above is surjective with kernel equal <strong>to</strong> a s Hom Zp ((Γ 1 (Np r ) ab ⊗Z p ), Z p ).<br />

This statement was proved in [Eme99, §8] for <strong>to</strong>rsi<strong>on</strong>-free groups H and G such that<br />

H ⊆ G, instead of Γ 1 (Np r ) ⊆ Φ s r. It is known that the group Γ 1 (M) is <strong>to</strong>rsi<strong>on</strong> free for<br />

all M ≥ 4. In particular, the group Γ 1 (Nq) is <strong>to</strong>rsi<strong>on</strong>-free, and so is the group Φ s r.<br />

We now give a proof of Theorem A.5.3.<br />

Lemma A.6.2. There is a can<strong>on</strong>ical isomorphism<br />

Hom Λ (W 0 , Λ) = lim ←− r≥2<br />

Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r ).<br />

Proof. We have the following series of can<strong>on</strong>ical isomorphisms:<br />

Hom Λ (W 0 , Λ) = lim Hom ←−r Λ (W 0 , Λ r ) = lim Hom ←−r Λr (W 0 /a r , Λ r )<br />

= lim ←−r<br />

Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r ),<br />

where the last isomorphism follows from the Theorem A.5.2.<br />

Propositi<strong>on</strong> A.6.3. For r > 1, there is a can<strong>on</strong>ical isomorphism<br />

Hom Λ (W 0 , Λ)/a r = Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r ).<br />

Proof. This follows from Lemma A.6.1, Lemma A.6.2 and Lemma A.5.1.<br />

Theorem A.6.4. The module W 0 is Λ-free.<br />

Proof. Since any finitely generated reflexive Λ-module is free, it suffices <strong>to</strong> show that W 0<br />

is a reflexive Λ-module. This follows from the following series of can<strong>on</strong>ical isomorphisms:<br />

Hom Λ (Hom Λ (W 0 , Λ), Λ) = lim ←−r<br />

Hom Λ (Hom Λ (W 0 , Λ), Λ r )<br />

= lim ←−r<br />

Hom Λ (Hom Λr (W 0 , Λ)/a r , Λ r )<br />

(1)<br />

= lim ←−r<br />

Hom Λr (Hom Λr ((Γ 1 (Np r ) ab ⊗ Z p ) 0 , Λ r ), Λ r )<br />

(2)<br />

= lim ←−r<br />

(Γ 1 (Np r ) ab ⊗ Z p ) 0 = W 0 .<br />

(Equality (1) follows from Propositi<strong>on</strong> A.6.3. Equality (2) follows from Lemma A.5.4,<br />

since (Γ 1 (Np r ) ab ⊗Z p ) 0 is a free Z p -module and so is certainly a reflexive Z p -module).<br />

108


Bibliography<br />

[BGK10] D. Banerjee, E. Ghate, and N. Kumar, Λ-adic Forms and the Iwasawa Main<br />

C<strong>on</strong>jecture, Guwahati Workshop <strong>on</strong> Iwasawa Theory of Totally Real Fields,<br />

Ramanujan Math. Soc. Lect. Notes Ser., vol. 12, 2010, pp. 15–47.<br />

[Bre01]<br />

[BS07]<br />

C. Breuil, Lectures <strong>on</strong> p-adic Hodge theory, deformati<strong>on</strong>s and <strong>local</strong> Langlands,<br />

vol. Advanced course lecture notes, 20, Centre de Recerca Matemàtica, 2001.<br />

C. Breuil and P. Schneider, First steps <strong>to</strong>wards p-adic Langlands func<strong>to</strong>riality,<br />

J. Reine Angew. Math. 610 (2007), 149–180.<br />

[Bum97] D. Bump, Au<strong>to</strong>morphic <strong>forms</strong> and representati<strong>on</strong>s, Cambridge Studies in Advanced<br />

Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.<br />

[Buz03]<br />

[CF00]<br />

K. Buzzard, Analytic c<strong>on</strong>tinuati<strong>on</strong> of overc<strong>on</strong>vergent eigen<strong>forms</strong>, J. Amer.<br />

Math. Soc. 16 (2003), no. 1, 29–55.<br />

P. Colmez and J.-M. F<strong>on</strong>taine, C<strong>on</strong>structi<strong>on</strong> des représentati<strong>on</strong>s p-adiques semistables,<br />

Invent. Math. 140 (2000), no. 1, 1–43.<br />

[CHT08] L. Clozel, M. Harris, and R. Taylor, Au<strong>to</strong>morphy for some l-adic lifts of au<strong>to</strong>morphic<br />

mod l Galois representati<strong>on</strong>s, Publ. Math. Inst. Hautes Études Sci.<br />

(2008), no. 108, 1–181, With Appendix A, summarizing unpublished work of<br />

Russ Mann, and Appendix B by Marie-France Vignéras.<br />

[Clo91]<br />

[DG10]<br />

[DS05]<br />

[Eme99]<br />

[FO]<br />

L. Clozel, Représentati<strong>on</strong>s <strong>galois</strong>iennes associées aux représentati<strong>on</strong>s au<strong>to</strong>morphes<br />

au<strong>to</strong>duales de GL(n), Inst. Hautes Études Sci. Publ. Math. (1991), no. 73,<br />

97–145.<br />

M. Dimitrov and E. Ghate, Weight <strong>on</strong>e <strong>forms</strong> in Hida families, in preparati<strong>on</strong><br />

(2010).<br />

F. Diam<strong>on</strong>d and J. Shurman, A first course in modular <strong>forms</strong>, Graduate Texts<br />

in Mathematics, vol. 228, Springer-Verlag, New York, 2005.<br />

M. Emert<strong>on</strong>, A new proof of a theorem of Hida, Internat. Math. Res. Notices<br />

(1999), no. 9, 453–472.<br />

J.-M. F<strong>on</strong>taine and Y. Ouyang, Theory of p-adic Galois representati<strong>on</strong>s,<br />

Springer, forthcoming book.<br />

109


[F<strong>on</strong>94] J.-M. F<strong>on</strong>taine, Le corps des périodes p-adiques, Astérisque (1994), no. 223, 59–<br />

111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette,<br />

1988).<br />

[Ger10]<br />

[Gha05]<br />

[GK1]<br />

[GK2]<br />

[GM09]<br />

[GV04]<br />

[Gre94]<br />

[Gro90]<br />

D. Geraghty, Modularity lifting theorems for ordinary Galois representati<strong>on</strong>s,<br />

preprint (2010).<br />

E. Ghate, Ordinary <strong>forms</strong> and their <strong>local</strong> Galois representati<strong>on</strong>s, Algebra and<br />

number theory, Hindustan Book Agency, Delhi, 2005, pp. 226–242.<br />

E. Ghate and N. Kumar, (p, p)-Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> au<strong>to</strong>morphic<br />

<strong>forms</strong> <strong>on</strong> GL n , Submitted.<br />

E. Ghate and N. Kumar, 2-adic Hida theory and applicati<strong>on</strong>s, Preprint.<br />

E. Ghate and A. Mézard, Filtered modules with coefficients, Trans. Amer. Math.<br />

Soc. 361 (2009), no. 5, 2243–2261.<br />

E. Ghate and V. Vatsal, On the <strong>local</strong> behaviour of ordinary Λ-adic representati<strong>on</strong>s,<br />

Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2143–2162.<br />

R. Greenberg, Trivial zeros of p-adic L-functi<strong>on</strong>s, p-adic m<strong>on</strong>odromy and the<br />

Birch and Swinnert<strong>on</strong>-Dyer c<strong>on</strong>jecture (Bost<strong>on</strong>, MA, 1991), C<strong>on</strong>temp. Math.,<br />

vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 149–174.<br />

B. H. Gross, A tameness criteri<strong>on</strong> for Galois representati<strong>on</strong>s associated <strong>to</strong> modular<br />

<strong>forms</strong> (mod p), Duke Math. J. 61 (1990), no. 2, 445–517.<br />

[Hat79] K. Hatada, Eigenvalues of Hecke opera<strong>to</strong>rs <strong>on</strong> SL(2, Z), Math. Ann. 239 (1979),<br />

no. 1, 75–96.<br />

[Hen00]<br />

[Hid81]<br />

G. Henniart, Une preuve simple des c<strong>on</strong>jectures de Langlands pour GL(n) sur<br />

un corps p-adique, Invent. Math. 139 (2000), no. 2, 439–455.<br />

H. Hida, C<strong>on</strong>gruence of cusp <strong>forms</strong> and special values of their Zeta functi<strong>on</strong>s,<br />

Invent. Math. 63 (1981), no. 2, 225–261.<br />

[Hid86a] H. Hida, Galois representati<strong>on</strong>s in<strong>to</strong> GL 2 (Z p [[X]]) <strong>attached</strong> <strong>to</strong> ordinary cusp<br />

<strong>forms</strong>, Invent. Math. 85 (1986), no. 3, 545–613.<br />

[Hid86b] H. Hida, Iwasawa modules <strong>attached</strong> <strong>to</strong> c<strong>on</strong>gruences of cusp <strong>forms</strong>, Ann. Sci.<br />

École Norm. Sup. (4) 19 (1986), no. 2, 231–273.<br />

[Hid88a] H. Hida, Modules of c<strong>on</strong>gruence of Hecke algebras and L-functi<strong>on</strong>s associated<br />

with cusp <strong>forms</strong>, Amer. J. Math. 110 (1988), no. 2, 323–382.<br />

[Hid88b] H. Hida, On p-adic Hecke algebras for GL 2 over <strong>to</strong>tally real fields, Ann. of Math.<br />

(2) 128 (1988), no. 2, 295–384.<br />

[HT01]<br />

M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura<br />

varieties, Annals of Mathematics Studies, vol. 151, Princet<strong>on</strong> University Press,<br />

Princet<strong>on</strong>, NJ, 2001, With an appendix by Vladimir G. Berkovich.<br />

110


[Kud94]<br />

[Kum]<br />

S. S. Kudla, The <strong>local</strong> Langlands corresp<strong>on</strong>dence: the n<strong>on</strong>-Archimedean case,<br />

Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math.<br />

Soc., Providence, RI, 1994, pp. 365–391.<br />

N. Kumar, A 2-adic c<strong>on</strong>trol theorem for modular curves, available at http:<br />

//www.math.tifr.res.in/~ganesh.<br />

[Kut80] P. Kutzko, The Langlands c<strong>on</strong>jecture for GL 2 of a <strong>local</strong> field, Ann. of Math. (2)<br />

112 (1980), no. 2, 381–412.<br />

[KW09]<br />

[Miy89]<br />

C. Khare and J.-P. Wintenberger, Serre’s modularity c<strong>on</strong>jecture. I, Invent.<br />

Math. 178 (2009), no. 3, 485–504.<br />

T. Miyake, Modular <strong>forms</strong>, Springer-Verlag, Berlin, 1989, Translated from the<br />

Japanese by Yoshitaka Maeda.<br />

[Nek06] J. Nekovář, Selmer complexes, Astérisque (2006), no. 310.<br />

[NSW08] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, sec<strong>on</strong>d<br />

ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles<br />

of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.<br />

[Och01]<br />

[Rib77]<br />

[Rod82]<br />

[Roh94]<br />

T. Ochiai, C<strong>on</strong>trol theorem for Greenberg’s Selmer groups of Galois deformati<strong>on</strong>s,<br />

J. Number Theory 88 (2001), no. 1, 59–85.<br />

K. A. Ribet, Galois representati<strong>on</strong>s <strong>attached</strong> <strong>to</strong> eigen<strong>forms</strong> with Nebentypus,<br />

Modular functi<strong>on</strong>s of <strong>on</strong>e variable, V (Proc. Sec<strong>on</strong>d Internat. C<strong>on</strong>f., Univ. B<strong>on</strong>n,<br />

B<strong>on</strong>n, 1976), Springer, Berlin, 1977, pp. 17–51. Lecture Notes in Math., Vol.<br />

601.<br />

F. Rodier, Représentati<strong>on</strong>s de GL(n, k) où k est un corps p-adique, Bourbaki<br />

Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982,<br />

pp. 201–218.<br />

D. E. Rohrlich, Elliptic curves and the Weil-Deligne group, Elliptic curves and<br />

related <strong>to</strong>pics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence,<br />

RI, 1994, pp. 125–157.<br />

[Sai97] T. Sai<strong>to</strong>, Modular <strong>forms</strong> and p-adic Hodge theory, Invent. Math. 129 (1997),<br />

no. 3, 607–620.<br />

[Sav05] D. Savitt, On a c<strong>on</strong>jecture of C<strong>on</strong>rad, Diam<strong>on</strong>d, and Taylor, Duke Math. J.<br />

128 (2005), no. 1, 141–197.<br />

[Shi71]<br />

G. Shimura, Introducti<strong>on</strong> <strong>to</strong> the arithmetic theory of au<strong>to</strong>morphic functi<strong>on</strong>s,<br />

Publicati<strong>on</strong>s of the Mathematical Society of Japan, No. 11. Iwanami Shoten,<br />

Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1.<br />

[Tay04] R. Taylor, Galois representati<strong>on</strong>s, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004),<br />

no. 1, 73–119.<br />

111


[TY07]<br />

R. Taylor and T. Yoshida, Compatibility of <strong>local</strong> and global Langlands corresp<strong>on</strong>dences,<br />

J. Amer. Math. Soc. 20 (2007), no. 2, 467–493.<br />

[Tot96] B. Totaro, Tensor products in p-adic Hodge theory, Duke Math. J. 83 (1996),<br />

no. 1, 79–104.<br />

[TU99]<br />

[Urb05]<br />

[Wil88]<br />

J. Tilouine and E. Urban, Several-variable p-adic families of Siegel-Hilbert cusp<br />

eigensystems and their Galois representati<strong>on</strong>s, Ann. Sci. École Norm. Sup. (4)<br />

32 (1999), no. 4, 499–574.<br />

E. Urban, Sur les représentati<strong>on</strong>s p-adiques associées aux représentati<strong>on</strong>s cuspidales<br />

de GSp 4/Q , Astérisque (2005), no. 302, 151–176, Formes au<strong>to</strong>morphes.<br />

II. Le cas du groupe GSp(4).<br />

A. Wiles, On ordinary λ-adic representati<strong>on</strong>s associated <strong>to</strong> modular <strong>forms</strong>, Invent.<br />

Math. 94 (1988), no. 3, 529–573.<br />

112

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!