11.03.2014 Views

Placido Disk

Placido Disk

Placido Disk

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Placido</strong> <strong>Disk</strong><br />

Γεώργιος Κουνής – Απρ. 2005<br />

History of Corneal Topography<br />

History<br />

Motivation<br />

Curiosity<br />

1619 Scheiner<br />

Convex mirrors<br />

Techniques<br />

Spheres<br />

1854 Von Helmoltzc<br />

Measurements<br />

Diameter<br />

Contact Lenses<br />

Graft, incisional and<br />

cataract surgery<br />

Excimer Surgery<br />

1882 <strong>Placido</strong><br />

<strong>Placido</strong> Disc<br />

Keratometry<br />

Videokeratoscopy<br />

1889 Javal <strong>Placido</strong><br />

Disc & Kertatometer<br />

1896 Gullstrand<br />

Photography&Kertatometer<br />

Projection Techniques<br />

Curvature<br />

Power<br />

Height/True Shape


Corneal Topography principles<br />

• Videokeratography (Corneal Topography)<br />

A type of computerized imaging technology<br />

• Purpose very detailed description of the<br />

shape and power of the cornea<br />

• Surface description topographical relief<br />

maps of earth<br />

Corneal Topography principles<br />

• Multiple light concentric rings are<br />

projected on the cornea.<br />

• The reflected image is captured on<br />

charge-coupled device (CCD) camera.<br />

• Computer software analyzes the data and<br />

displays the results in a variety of formats


Methods<br />

Small Cone<br />

Color Coded Map<br />

ANGLE<br />

RING<br />

DISTANCE<br />

RoC<br />

0<br />

1<br />

311<br />

10320<br />

Large Cone<br />

Computer<br />

Unit<br />

0<br />

…<br />

0<br />

1<br />

2<br />

…<br />

30<br />

1<br />

381<br />

…<br />

4182<br />

312<br />

10320<br />

…<br />

8880<br />

10320<br />

1<br />

2<br />

384<br />

10330<br />

…<br />

…<br />

…<br />

…<br />

1<br />

30<br />

4184<br />

8890<br />

…<br />

…<br />

…<br />

359<br />

1<br />

311<br />

10320<br />

…<br />

…<br />

…<br />

…<br />

359<br />

30<br />

4185<br />

8880<br />

Topographic results as exported in<br />

ASCII raw data file.<br />

Categories of Videokeratographers<br />

• 2 General Categories<br />

◦Curvature based systems<br />

•Systems that employ a large<br />

placido disk which is several inches<br />

in diameter and is positioned<br />

several inches from the patient's<br />

eye where the imaging is performed<br />

•Systems that employ small placido<br />

cone disk that fit very close to the<br />

eye when the imaging is performed.


Categories of Videokeratographers –<br />

Curvature based systems<br />

• Using basic optical principles, an object of<br />

known size reflected off of a mirror of known<br />

power will produce an image of known size.<br />

• In videokeratography, we know<br />

◦the size of the circular object that is being reflected off of<br />

the cornea<br />

◦We observe the image of this reflected circle by simply<br />

taking a picture of it.<br />

◦The next trick is to determine the power (shape) of the<br />

reflecting surface (the cornea).<br />

Categories of Videokeratographers<br />

•Elevation based systems<br />

◦Orbscan, manufactured by Orbtek,<br />

acquires data from the diffuse reflection of<br />

a slit beam of light scanned across the<br />

cornea.


Categories of Videokeratographers<br />

• Elevation based systems<br />

◦Optical Interferometry<br />

based Videokeratography<br />

•Devices with a sinusoidal<br />

grading is reflected from<br />

the surface of the cornea.<br />

From this data, the<br />

principle of interferometry<br />

is used to localize the<br />

outer surface of the eye.<br />

Corneal Topography Principles<br />

• Keratometric diopter from radii of curvature as :<br />

K = 1 - 1.3375 / RoC(m).<br />

• The simplification ignoring<br />

◦The refracting surface is air-tear interface<br />

◦Not accounting the oblique incidence of incoming light in<br />

the corneal periphery<br />

• Miscalculation true corneal refractive index of 1.376 to<br />

1.3375 to correct for some of these factors.<br />

• These are keratometric diopters to distinguish from<br />

diopters expressing more precisely the true refractive<br />

power at certain corneal point.


Corneal Topography Principles<br />

Inaccuracies generated by conversion of curvature to<br />

power (SKI=Standard Keratometric Index)<br />

Assumptions made in converting<br />

ROC to power<br />

Conversion formula Spherical optics<br />

Effects<br />

Inaccurate outside the central cornea<br />

SKI Normal posterior curvature<br />

SKI Normal thickness cornea<br />

SKI Uniform cornea refractive index &<br />

Not recognize of different refractive<br />

properties of epithelium and stroma<br />

Inaccurate for very steep or very flat<br />

corneas(High myopia or high<br />

Hyperopia)<br />

Inaccurate following excimer laser<br />

photorefractive keratectomy<br />

Inaccurate in situation as following<br />

refractive surgery<br />

Comparison of three cornea topographic devices<br />

Instruments<br />

Keratometer<br />

Photokeratoscope<br />

Computer<br />

videokeratoscope<br />

Examples<br />

Von Helmoltz,<br />

Javal-Schiotz<br />

Corneascope<br />

TMS, Eye-Sys<br />

Number of points<br />

4<br />

Many<br />

6000-11000<br />

Area<br />

Annulus of 3 mm radius<br />

70% surface<br />

95% of surface 9-11mm<br />

diameter<br />

Dioptric Range<br />

30-60 D<br />

infinite<br />

8-110 D<br />

Focusing<br />

Superimposition/alignment<br />

of two mires(easy)<br />

Subjective focusing of single<br />

image (difficult)<br />

Overlap laser or<br />

croshairs(easy)<br />

Mires<br />

Four objects<br />

12 rings<br />

15-38 rings<br />

Record<br />

Two numbers<br />

Still photography<br />

Stills from video<br />

Method<br />

Measurement<br />

Observation<br />

Quantitative<br />

Topographic information<br />

None<br />

Quantitative<br />

Quantitative<br />

Accuracy<br />

Excellent(for spheres)<br />

Poor<br />

Good<br />

Sensitivity<br />

Moderate<br />

Low(3DC)<br />

0.25 D or better<br />

Reproducibility<br />

Excellent<br />

Moderate<br />

Good(0.5D)


Various types of topographic representations<br />

Standard/Normalized scale/Diopter Map – Rings over the cornea –<br />

Lost measurements<br />

Superimposition of of the color map shows how the topography<br />

relates to the whole cornea or focal irregularities


Color encoding<br />

Scales II<br />

• Normalized maps have<br />

different color scales<br />

assigned to each map based<br />

on the instrument software<br />

that identifies the actual<br />

minimal and maximal<br />

keratometric dioptric value of<br />

a particular cornea.<br />

◦ The disadvantage is that the<br />

colors of 2 different maps<br />

cannot be compared directly<br />

and have to be interpreted<br />

based on the keratometric<br />

values from their different<br />

color scales.<br />

Based upon the distribution<br />

of corneal curvatures within<br />

the population. Steepest<br />

areas are depicted in<br />

warmer colours and flattest<br />

areas in cooler colours.<br />

Population<br />

+3SD<br />

+1SD<br />

Mean<br />

-1SD<br />

-3SD<br />

Slope<br />

Steep<br />

Average<br />

Flat<br />

Curvature(<br />

mm)<br />

7.0<br />

7.5<br />

7.8<br />

8.0<br />

8.7<br />

Power<br />

(D)<br />

48.0<br />

45.0<br />

43.5<br />

42.0<br />

39.0<br />

Color<br />

Red<br />

Orange/y<br />

ellow<br />

Yellow/G<br />

reen<br />

Green/<br />

Light<br />

Blue<br />

Blue<br />

Various types of topographic representations<br />

Standard/Normalized scale/Diopter Map


Various types of topographic representations<br />

Standard/Absolute scale/Diopter Map<br />

Myopia


Various types of topographic representations Standard/Normalized scale vs<br />

Absolute Scale/Diopter Map<br />

Mild<br />

Astigmatism<br />

Various types of topographic representations Standard/Normalized<br />

scale/Diopter Map – 3-D representation


Various types of topographic representations Standard/Normalized<br />

scale/Diopter Map – Enchanced Height Map<br />

Ablation profiles - Algorithm Simulation - Spherical<br />

Myopia<br />

With a 6mm OZ No Blend Zone<br />

6.0<br />

DENSITY MAP<br />

SHOT PATTERN<br />

Ablation pattern for low myopia:<br />

-1.00D sphere<br />

6.0mm zone with no blend


Ablation Profiles - Algorithm Simulation - Myopic<br />

Astigmatism<br />

5.5mm circular O.Z. with 1mm blend of flat axis<br />

ablation zone<br />

1.0<br />

BZ<br />

7.5<br />

5.5<br />

oz<br />

SHOT PATTERN<br />

1.0<br />

BZ<br />

DENSITY MAP<br />

Ablation pattern for myopic<br />

astigmatism:<br />

-1.00 -2.00 x030<br />

5.5mm zone with 1.0mm blend<br />

The Normal Cornea


Apex: Point with the<br />

smallest radius of<br />

curvature<br />

Mean Diff between keratometric<br />

axis and corneal sighting<br />

center:0.38+/-0.10mm<br />

Mean Diff between keratometric<br />

axis and apex 0.62+/-0.23mm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!