09.03.2014 Views

Entwicklung von Reaktionsmechanismen für heterogen-katalysierte ...

Entwicklung von Reaktionsmechanismen für heterogen-katalysierte ...

Entwicklung von Reaktionsmechanismen für heterogen-katalysierte ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IWR Universität Heidelberg<br />

<strong>Entwicklung</strong> <strong>von</strong> <strong>Reaktionsmechanismen</strong><br />

<strong>für</strong> <strong>heterogen</strong>-<strong>katalysierte</strong> Reaktionen<br />

Olaf Deutschmann<br />

Interdisziplinäres Zentrum <strong>für</strong> Wissenschaftliches Rechnen (IWR), Universität Heidelberg<br />

Im Neuenheimer Feld 368, D-69120 Heidelberg<br />

Tel.: (+49)-6221-54 8886, Fax: (+49)-6221-54 8884<br />

deutschmann@iwr.uni-heidelberg.de<br />

http://reaflow.iwr.uni-heidelberg.de/~dmann<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_01_101


Objective: Development of appropriate models for<br />

hetereogenous-catalytic reactions<br />

IWR Universität Heidelberg<br />

Courtesy of R.W. Dibble, UC Berkeley<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_01_102


Complexity of <strong>heterogen</strong>eous-catalytic reactions: Reaction<br />

rate is specific to the catalyst formulation<br />

IWR Universität Heidelberg<br />

Reaction rate expression depends on:<br />

- catalytic material type and catalyst support,<br />

- type and structure of washcoat,<br />

- method of manufacture,<br />

- surface structures,<br />

- temporal history,<br />

- recrystallisation phenomena,<br />

- solid bulk modification.<br />

Global kinetics<br />

(macroscopic behavior)<br />

k (T,c i<br />

,p 1<br />

,p 2<br />

,...)<br />

Mechanistic approach<br />

(mean field approximation)<br />

k 7<br />

Elementary kinetics<br />

(single microscopic<br />

steps)<br />

k 1<br />

k 2<br />

k 3<br />

k 6<br />

k 4<br />

k 5<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_01_103


Modeling <strong>heterogen</strong>eous-catalytic reactions:<br />

Mean field approximation<br />

IWR Universität Heidelberg<br />

Assumptions:<br />

- Adsorbates are assumed to be randomly distributed on the surface<br />

- Surface is viewed as being uniform; the local environment (edges, defects,<br />

terraces, different structures) is not directly taken into account<br />

Reaction rate:<br />

ṡ i =<br />

∑<br />

Ks<br />

k=1<br />

Surface coverage:<br />

θ i = c iσi<br />

Γ<br />

Ng+Ns<br />

∏<br />

ν ik k fk<br />

j=1<br />

c ν jk<br />

′<br />

j<br />

Sticking coefficient:<br />

√<br />

k ads S 0 i 1 RT<br />

=<br />

fk<br />

1 − S 0 i θ v/2 Γ i<br />

τ 2πM i<br />

Rate coefficient:<br />

[<br />

k = A f k kT β −Ea<br />

k exp<br />

k<br />

RT<br />

krk (T )= k fk (T )<br />

Kck (T )<br />

Binding states of adsorption on the surface<br />

vary with the surface coverage of all adsorbed<br />

species.<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

]<br />

f (θ 1 ,θ 2 ...) =<br />

f(θ 1 ,θ 2 ...)<br />

∏ Ns<br />

i=1<br />

θ µ i k<br />

i exp<br />

[<br />

ɛ θ ]<br />

ik i<br />

RT<br />

OD_01_104


Catalytic combustion of methane over platinum:<br />

Proposed scheme of surface reactions<br />

IWR Universität Heidelberg<br />

D. A. Hickman, L. D. Schmidt, AIChE J. 39<br />

(1993), 1164.<br />

O. Deutschmann, F. Behrendt, and J. Warnatz:<br />

Catal. Today 21 (1994), 461.<br />

Reaction scheme for modeling catalytic ignition of<br />

H2 , CO, CH on Pt in SURFACE CHEMKIN format<br />

4<br />

Reaction A b E(J/mol) Comment<br />

H2 + 2PT(S) => 2H(S) 0.046 0.0 0 STICK, FORD /PT(S) 1/<br />

2H(S) => H2 + 2PT(S) 3.70E+21 0.0 67400 COV /H(S) 0 0 -6000/<br />

H + PT(S) => H(S) 1.00 0.0 0 STICK<br />

O2+ 2PT(S) => 2O(S) 1.80E+21 -0.5 0 DUP<br />

O2+ 2PT(S) => 2O(S) 0.023 0.0 0 STICK, DUP<br />

2O(S) => O2 + 2PT(S) 3.70E+21 0.0 213200 COV /O(S) 0 0 -60000/<br />

O + PT(S) => O(S) 1.00 0.0 0 STICK<br />

H2O + PT(S) => H2O(S) 0.75 0.0 0 STICK<br />

H2O(S) => H2O + PT(S) 1.0E13 0.0 40300<br />

OH + PT(S) => OH(S) 1.00 0.0 0.0 STICK<br />

OH(S) => OH + PT(S) 1.00E13 0.0 192800<br />

H(S) + O(S) = OH(S) + PT(S) 3.70E+21 0.0 11500<br />

H(S) + OH(S) = H2O(S) + PT(S) 3.70E+21 0.0 17400<br />

OH(S)+ OH(S) = H2O(S) + O(S) 3.70E+21 0.0 48200<br />

CO + PT(S) => CO(S) 0.84 0.0 0 STICK, FORD /PT(S) 2/<br />

CO(S) => CO + PT(S) 1.00E+13 0.0 125500<br />

CO2(S) => CO2 + PT(S) 1.00E+13 0.0 20500<br />

CO(S) + O(S) => CO2(S) + PT(S) 3.70E+21 0.0 105000<br />

CH4 + 2PT(S) => CH3(S) + H(S) 0.01 0.0 STICK, FORD/ PT(S) 2.3/<br />

CH3(S)+ PT(S) => CH2(S)s + H(S) 3.70E+21 0.0 20000<br />

CH2(S)s + PT(S) => CH(S) + H(S) 3.70E+21 0.0 20000<br />

CH(S) + PT(S) => C(S) + H(S) 3.70E+21 0.0 20000<br />

C(S) + O(S) => CO(S) + PT(S) 3.70E+21 0.0 62800<br />

CO(S) + PT(S) => C(S) + O(S) 1.00E+18 0.0 184000<br />

Courtesey of L.L. Raja, R.J. Kee, Colorad School of Mines<br />

http://reaflow.iwr.uni-heidelberg.de/~dmann/sm_ch4_ox_1.2_SURFACECHEMKIN<br />

O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz: Proc. Comb. Inst. 26 (1996),<br />

1747<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_00_093


OD_01_009<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

Experiments - detailed data<br />

(spatial & temporal profiles, coverages)<br />

Revised surface<br />

reaction<br />

mechanism<br />

Comparison of experiment and simulation<br />

Experiments - integrated data<br />

(ign.& ext. temperatures,<br />

selectivity, conversion)<br />

Numercial simulation<br />

Reactor models<br />

(including appropriate gas chemistry & transport models)<br />

Sensitivity analysis<br />

=> re-evaluation of cruical kinetic data<br />

Tentative surface<br />

reaction mechansim<br />

BOC-MP<br />

UBI-QEP<br />

Analogy to organometallic<br />

compounds<br />

Transition-State<br />

theory<br />

Heats of adsorption<br />

Surface science<br />

studies<br />

Analogy to gas<br />

phase kinetics<br />

Collision theory<br />

ab-initio<br />

calculations<br />

IWR Universität Heidelberg<br />

Survey of the methodology of the development of a surface<br />

reaction mechanism


Kinetic data for surface reactions at practically relevant<br />

conditions and for technically used catalysts<br />

IWR Universität Heidelberg<br />

Laser-spectroscopic methods such as<br />

SFG (Sum Frequency Generation) can<br />

bridge the pressure and materials gap<br />

=> Quantitative determination of surface<br />

coverage with adsorbed species<br />

R. Kissel-Osterrieder, F. Behrendt, J. Warnatz, U. Metka, H.-R. Volpp, J. Wolfrum. Proc. Combust. Inst. 28 (2000)<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_00_520


2<br />

OD_01_105<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

M. Rinnemo, O. Deutschmann, F. Behrendt, B. Kasemo.<br />

Combust. Flame 111 (1997) 312-326<br />

O. Deutschmann, R. Schmidt , F. Behrendt, J. Warnatz.<br />

Proc. Combust. Inst. 26 (1996) 1747-1754<br />

Conditions: T 0<br />

= 298 K, p tot<br />

= 1 bar (94% N 2<br />

), circles: experiment, line: simulation.<br />

α = p H /( p H 2<br />

p O )<br />

α = p H2<br />

/ (p H2<br />

+ p 2<br />

O2<br />

)<br />

α α = p<br />

CH<br />

/( p CH4<br />

/ (p 4 CH4 + p O2<br />

)<br />

320<br />

(a) (b)<br />

300<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

400<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Ignition temperature [K]<br />

500<br />

340<br />

360<br />

600<br />

380<br />

700<br />

400<br />

CH H2 800 4<br />

Ignition temperature [K]<br />

420<br />

440<br />

900<br />

Comparison of measured and calculated ignition temperatures in a stagnation point<br />

flow on a platinum foil heated resistively.<br />

IWR Universität Heidelberg<br />

Catalytic oxidation of hydrogen and methane on platinum:<br />

Ignition temperature


OD_99_314<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

O. Deutschmann, R. Schmidt, and F. Behrendt. in S. H. Chan (ed.),<br />

Transport Phenomena in Combustion,Vol. 1, p. 166-175, Taylor and<br />

Francis, 1996.<br />

O. Deutschmann, R. Schmidt , F. Behrendt, J. Warnatz, 26th<br />

Symposium (International) on Combustion (1996) 1747-1754<br />

Conditions: H 2<br />

/O 2<br />

mixture (6 % diluted by 94 % N 2<br />

,<br />

p = 1 bar), α = p H2<br />

/(p H2<br />

+p O2<br />

) = 0.5, circles: experiment.<br />

Conditions: CH 4<br />

/O 2<br />

mixture (6 % diluted by 94 % N 2<br />

,<br />

p = 1 bar), α = C CH4<br />

/(p CH4<br />

+p O2<br />

) = 0.5.<br />

Time [s]<br />

Time [s]<br />

10 -5<br />

Surface coverage<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 0 550<br />

H(s)<br />

500<br />

Pt(s)<br />

450<br />

400<br />

H2 O(s)<br />

350<br />

Temperature<br />

300<br />

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0<br />

Surface temperature [K]<br />

Surface coverage<br />

10 0 CO(s) 820<br />

O(s)<br />

C(s)<br />

10 -1<br />

800<br />

Pt(s)<br />

10 -2<br />

780<br />

OH(s)<br />

10 -3<br />

760<br />

H(s)<br />

Temperature<br />

10 -4<br />

740<br />

-10 0 10 20 30 40 50 60 70 80<br />

Surface temperature [K]<br />

IWR Universität Heidelberg<br />

Transient Modeling of Catalytic Ignition of Hydrogen and<br />

Methane Oxidation on Pt: Temperature and Coverage


12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123<br />

Catalytic oxy-dehydrogenation of ethane: Interaction of<br />

transport and <strong>heterogen</strong>eous and homogeneous reactions<br />

IWR Universität Heidelberg<br />

Platinum coated monolith, 1cm in length<br />

Autothermal<br />

Residence time: 5 ms<br />

Ethylene selectivity: > 70%<br />

M. Huff and L. D. Schmidt: AIChE J. 42 (1996), 3484<br />

A. S. Bodke, D. A. Olschki, L. D. Schmidt, E. Ranzi: Science 285 (1999), 712<br />

The two-dimensional simulation of a single monolith channel is coupled with detailed<br />

gas-phase and surface reaction mechanisms.<br />

D.K. Zerkle, M.D. Allendorf, M. Wolf, O. Deutschmann. J. Catal.196 (2000) 18<br />

C2 H 6 , O 2<br />

C 2<br />

H 6<br />

+O 2<br />

C 2<br />

H 6<br />

+H -> C 2<br />

H 5<br />

+H 2<br />

C2 H 5 +M -> C 2 H 4 +H+M<br />

C2 H 6 + H 2 O<br />

Heat<br />

Shield<br />

H, C, O<br />

H2 O+Heat<br />

+C 2<br />

H 4<br />

+CO 2<br />

+CO<br />

H, O, CH x<br />

, C H 2<br />

, CO, CH 4,<br />

C 2<br />

H 4<br />

Alumina-Supported Platinum Catalyst<br />

Heat<br />

Shield<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_01_106


OD_01_107<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

R. Kissel-Osterrieder, F. Behrendt, J. Warnatz, U. Metka, H.-R. Volpp, J. Wolfrum: Experimental and Theoretical Investigation<br />

of CO-Oxidation on Platinum: Bridging the Pressure and the Materials Gap, Proc. Combust. Inst. 28 (2000)<br />

Conditions: CO: 15 sccm; O 2 : 30 sccm, Ar: 105 sccm at a total pressure of 20 mbar<br />

CO coverage<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

300 400 500 600 700 800<br />

temperature [K]<br />

CO 2<br />

-flux [sccm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

300 400 500 600 700 800<br />

temperature [K]<br />

The CO oxidation on polycrystalline Pt is modelled by a two-adsorption site model.<br />

The predicted CO surface coverage is compared with data derived from optical sumfrequency<br />

generation (SFG) vibrational spectroscopy.<br />

IWR Universität Heidelberg<br />

Site <strong>heterogen</strong>eity of catalytic surfaces: Extension of the<br />

mean-field approximation leads to different sub-mechanisms


Lateral adsorbate interactions: Monte Carlo simulations of<br />

the elementary surface processes<br />

IWR Universität Heidelberg<br />

Spatio-temporal patterns in catalytic oxidation of CO on platinum; 2D resolution of the<br />

non-homogeneous layers of adsorbed species<br />

Pt(110), PEEM, 0.2 x 0.3 mm 2 , T = 427 K,<br />

p O2 = 32·10 -3 mbar, p CO 3·10 -3 mbar, ∆t = 4.1/ 30 s<br />

Target pattern on Pt(100), ∆t = 10 s, 1000 x 1000 lattice, 0.25 x 0.25 mm 2 ,<br />

T = 490 K, p O2 = 50·10 -3 mbar, p CO 1.5·10 -3 mbar<br />

S. Jakubit, H.H. Rotermund, W. Engel, A.<strong>von</strong> Oertzen,<br />

G. Ertl. Phys. Rev. Lett. 65 (1990) 3013<br />

R. Kissel-Osterrieder, F. Behrendt, J. Warnatz. Proc. Combust. Inst. 28<br />

(2000)<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_01_108


Summary and Outlook<br />

IWR Universität Heidelberg<br />

Multi-step mechanisms for simple <strong>heterogen</strong>eous-catalytic reactions such as<br />

- oxidation of H 2<br />

, CO, CH 4<br />

, C 2<br />

H 6<br />

on noble metals<br />

- NO reduction on noble metals (3WCC)<br />

- methanol and ammonia synthesis<br />

Advanced experimental techniques help to overcome the pressure and materials gap<br />

- high pressure STM<br />

- nonlinear laser methods such as SFG and SHG<br />

Challenges<br />

- Still too little is known about the elementary steps, in particular at high pressure<br />

- Combination of the experimental observations of single elementary steps<br />

to the overall picture of the catalyst<br />

- Coupling of the detailed reaction mechanisms with the macroscopic processes<br />

(mass and heat transport in the surrounding reactive flow, the washcoat, and the<br />

solid bulk)<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001


Danksagung<br />

IWR Universität Heidelberg<br />

Daniel Chatterjee, Dr. Chrys Correa, Oliver Grosshans, Dr. Ralf Kissel-Osterrieder, Stefan Kleditzsch, Dr. Luba<br />

Maier, Renate Schwiedernoch, Steffen Tischer, Dr. Markus Wolf (IWR, Universität Heidelberg)<br />

Dr. Uwe Metka, Dr. Hans-Robert Volpp, Prof. Jürgen Wolfrum (PCI, Universität Heidelberg)<br />

Dr. David K. Zerkle (Los Alamos National Lab.)<br />

Prof. Jürgen Warnatz (IWR, Universität Heidelberg)<br />

Deutsche Forschungsgemeinschaft (DFG) (Sachbeihilfen, SFB 359)<br />

Forschungsverbund Verbrennungskraftmaschinen e.V. (FVV)<br />

Bundesland Baden-Württemberg<br />

J. Eberspächer GmbH & Co.<br />

Conoco Inc.<br />

US Department of Energy<br />

O. Deutschmann, XXXIV. Jahrestreffen Deutscher Katalytiker / Fachtreffen Reaktionstechnik, Weimar, 21.-23.3.2001<br />

OD_00_110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!