08.03.2014 Views

Angewandte Regelung und Optimierung in der ... - uni-stuttgart

Angewandte Regelung und Optimierung in der ... - uni-stuttgart

Angewandte Regelung und Optimierung in der ... - uni-stuttgart

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Alexan<strong>der</strong> Horch<br />

<strong>Angewandte</strong> <strong>Regelung</strong> <strong>und</strong> <strong>Optimierung</strong><br />

<strong>in</strong> <strong>der</strong> Prozess<strong>in</strong>dustrie<br />

9. <strong>Optimierung</strong> von Wassernetzen<br />

© A.Horch<br />

SS 2010 | Slide 1


Inhalt<br />

• Überblick über die Wasserwirtschaft<br />

• Automatisierungsbedarfe<br />

• Beispiele ausgeführter <strong>Regelung</strong> & <strong>Optimierung</strong><br />

• Leckageerkennung / Entscheidungsunterstützung<br />

• Pumpen- <strong>und</strong> Ventile<strong>in</strong>satzplanung<br />

• Zusammenfassung<br />

© ABB Group<br />

SS 2010 | Slide 2


Wasserversorgung - Globale Sicht<br />

Klimawandel<br />

Auswirkungen des Klimawandels werden stärker wahrnehmbar → verän<strong>der</strong>tes<br />

Bewusstse<strong>in</strong><br />

Klimawandel bee<strong>in</strong>flusst Wasserversorgungssituation <strong>in</strong> vielen Regionen<br />

Ineffizienzen <strong>in</strong> <strong>der</strong> Wasserversorgung → negativer Beitrag<br />

Randnotiz: ~20% <strong>der</strong> globalen elektrischen Energie werden zum Betrieb von<br />

Pumpen <strong>und</strong> Pumpsystemen verwendet* → Wasserversorgung ist e<strong>in</strong>es <strong>der</strong><br />

Hauptanwendungsfel<strong>der</strong><br />

Herausfor<strong>der</strong>ung: Erhöhung <strong>der</strong> Energieeffizienz zur Reduktion <strong>der</strong><br />

Treibhausgasemissionen<br />

Source: Factiva, UK<br />

English language press<br />

mentions <strong>in</strong>clud<strong>in</strong>g global<br />

warm<strong>in</strong>g,<br />

climate change,<br />

greenhouse effect or<br />

greenhouse gas<br />

Taken from presentation<br />

“Local Authority Carbon<br />

Management Program”,<br />

Richard Rugg,<br />

Derby City Council, 2007<br />

© ABB Group<br />

June 28, 2010 | Slide 3<br />

•*Source: Protect<strong>in</strong>g the environment and reduc<strong>in</strong>g costs, Sulzer AG, Sulzer Technical Review, 1/2009


Wasserversorgung - Globale Sicht<br />

Wasserknappheit<br />

Wasserknappheit ist e<strong>in</strong> Problem <strong>in</strong> vielen Regionen <strong>der</strong> Welt<br />

Globaler Wasserverbrauch wird Schätzungen nach um 40% bis 2025 steigen<br />

Ineffizienzen <strong>in</strong> Wassertransport <strong>und</strong> –verteilung tragen zusätzlich zur<br />

Verschlechterung <strong>der</strong> Versorgungssituation bei<br />

Leckageverluste bei teilweise über 50% <strong>der</strong> Versorgungsmenge<br />

~90% Untergr<strong>und</strong>verluste, ~10% grosse Rohrbrüche<br />

Herausfor<strong>der</strong>ung: Reduzierung <strong>der</strong> Verluste bei Transport <strong>und</strong> Verteilung → ger<strong>in</strong>gere<br />

energetische Aufwendungen zum Ausgleich <strong>der</strong> Verluste<br />

Wasserknappheit<br />

Zunehmende<br />

Verknappung<br />

Ausreichende<br />

Wasserressourcen<br />

Wasserüberschuss<br />

Source: Waterworks<br />

Sonneberg<br />

© ABB Group<br />

June 28, 2010 | Slide 4


Wasserverwendung weltweit<br />

Schlüsselressource<br />

© ABB Group<br />

June 28, 2010 | Slide 5


Water<br />

Automation Applications<br />

• Pump<strong>in</strong>g Stations<br />

• Efficient pump<strong>in</strong>g station design improves plant availability and output, thereby reduc<strong>in</strong>g the<br />

costs of water supply and treatment.<br />

• M<strong>uni</strong>cipal Wastewater Treatment and Recycl<strong>in</strong>g<br />

• Treatment must guarantee water quality before (re-)use and m<strong>in</strong>imise the impact on the<br />

environment<br />

• Water Distribution<br />

• Network management solutions for real-time monitor<strong>in</strong>g and control of distributed water<br />

systems<br />

• Industrial Water Treatment and Recycl<strong>in</strong>g<br />

• Basic onsite treatment of waste process water avoids unnecessary use of potable water and<br />

costly discharges to public wastewater collection. Industry uses ~20% of available water.<br />

• Desal<strong>in</strong>ation Plants<br />

• Desal<strong>in</strong>ation plays an essential role where demand for potable water outpaces the<br />

availability of natural resources<br />

• Water Transmission<br />

• Infrastructures to transport over long distances to reduce mismatch between supply and<br />

demand<br />

• Irrigation<br />

• 80% of potable water is used for irrigation<br />

© ABB Group<br />

SS 2010 | Slide 6


Randnotiz<br />

Beispiel - Verluste <strong>in</strong> europäischen Tr<strong>in</strong>kwassernetzen<br />

© ABB Group<br />

June 28, 2010 | Slide 7


Wasserversorgung - Globale Sicht<br />

Potentiale<br />

Schwerpunkt liegt auf Wassertransport <strong>und</strong> –verteilnetzen<br />

Reduzierung von Verlusten durch Leckagen<br />

Erhebliche Potentiale für Erhöhung <strong>der</strong> Energieeffizienz<br />

Lösungsansatz → umfassendes Wassermanagement<br />

E<strong>in</strong>satz neuster Technologien → von <strong>der</strong> Feldebene bis h<strong>in</strong> zu<br />

höherwertigen Anwendungen (Simulation, <strong>Optimierung</strong>)<br />

Druckmanagement, Ressourcenmanagement,<br />

Energiemanagement,…<br />

E<strong>in</strong>b<strong>in</strong>dung <strong>in</strong> e<strong>in</strong>e <strong>in</strong>tegrierte Systemumgebung ermöglicht<br />

Generierung e<strong>in</strong>es hohen Nutzwerts (Daten<strong>in</strong>tegration,<br />

Oberflächen<strong>in</strong>tegration)<br />

© ABB Group<br />

June 28, 2010 | Slide 8<br />

‣ Nutzung vorhandener <strong>und</strong> Generierung zusätzlicher Daten <strong>und</strong><br />

Informationen zur <strong>Optimierung</strong> des Wassernetzbetriebs<br />

‣ Schwerpunkt des Vortrags auf <strong>in</strong>tegriertem Ansatz zum<br />

Wassermanagement


Wichtige Marktreiber<br />

Worauf sich Wasserversorger fokussieren…<br />

Erhöhung <strong>der</strong> Energieeffizienz<br />

Begrenzung steigen<strong>der</strong> Energiekosten<br />

Nachhaltigkeitsaspekte<br />

Reduktion von Leckagen („Non-Revenue Water“)<br />

Verbesserte Leckageerkennung <strong>und</strong> – lokation<br />

Verkürzte Reaktionszeit für<br />

Reparaturmaßnahmen<br />

Kostenreduktion<br />

Reduktion von Betrieb- <strong>und</strong><br />

Instandhaltungskosten sowie Investitionskosten<br />

Stärkere Orientierung auf f<strong>in</strong>anziell<br />

herausragende Ergebnisse<br />

Verbesserung <strong>der</strong> Versorgungsqualität <strong>und</strong> -<br />

sicherheit<br />

M<strong>in</strong>imierung <strong>der</strong> Anzahl an Unterbrechungen,<br />

stabil hohe Wasserqualität,…<br />

Grosse<br />

Rohrbrüche<br />

Untergr<strong>und</strong>verluste<br />

© ABB Group<br />

June 28, 2010 | Slide 9


Introduction –<br />

Side Note<br />

Randnotiz<br />

Strategie zur Leckagereduktion<br />

Strategische<br />

Herangehensweise zur<br />

Reduzierung <strong>der</strong><br />

Leckagen/Leckageflüssen<br />

notwendig<br />

Druckmanagement ist<br />

elementar → bee<strong>in</strong>flusst<br />

Energieverbrauch <strong>und</strong><br />

Auftreten neuer Leckagen<br />

sowie Flüsse aus<br />

exisitierenden Leckagen<br />

© ABB Group<br />

June 28, 2010 | Slide 10


Wasser<br />

Aktueller Megatrend mit Folgen<br />

• ZVEI Roadmap Automation 2020+: Wasser <strong>und</strong> Abwasser<br />

• Megatrends (Bevölkerungswachstum, Urbanisierung,<br />

Klimawandel, ...) werden den Druck, Wasser effizienter zu nutzen,<br />

neue Wasserquellen zu erschließen <strong>und</strong> die Abwasserent-sorgung<br />

zu verbessern, verstärken.<br />

• Zunehmen<strong>der</strong> Kostendruck<br />

• Paradigmenwechsel vom „Schadstoffentsorgungssystem“ zur<br />

Nutzung von Abwasser als Wertstoff ab.<br />

• Der Markt für Meerwasserentsalzung <strong>und</strong> Aufarbeitung von<br />

gebrauchtem Wasser wird sich stark vergrößern (2-3 fach).<br />

• Umfangreiche Mess-, Steuer- <strong>und</strong> <strong>Regelung</strong>stechnik werden<br />

<strong>in</strong>sbeson<strong>der</strong>e für <strong>in</strong>tegrierte Wassermanagementansätze benötigt.<br />

• Steigende Nachfrage nach Kle<strong>in</strong>kläranlagen.<br />

• Sicherheit von Wassernetzen (Verschmutzung, Terror).<br />

• Von Messgeräten <strong>und</strong> Sensoren wird erwartet, dass sie robust,<br />

günstig <strong>und</strong> wartungsarm s<strong>in</strong>d.<br />

© ABB Group<br />

SS 2010 | Slide 11


Wasser<br />

Aktueller Megatrend – auch für Automatisierung<br />

Investitionen <strong>in</strong><br />

• Meerwasserentsalzung<br />

• Tr<strong>in</strong>kwassergew<strong>in</strong>nung aus Abwasser<br />

• Erkennung von Arzneimittelrückständen <strong>und</strong><br />

an<strong>der</strong>en Spurenstoffen <strong>in</strong> Abwässern<br />

• Risikomanagement: Schutz kritischer<br />

Wasser<strong>in</strong>frastrukturen<br />

• Kanalnetzbewirtschaftung<br />

• Energetische Klärschlammnutzung<br />

• Rückgew<strong>in</strong>nung von Phosphor aus<br />

Klärschlamm<br />

Schlüsseltechnologien <strong>der</strong><br />

Automatisierung<br />

• Sensorik <strong>und</strong> Messtechnik<br />

• Software <strong>und</strong> Modellierung<br />

• Management- <strong>und</strong> Leitebene<br />

• Robotik<br />

• <strong>Optimierung</strong> <strong>und</strong> Entscheidungsunterstützungssysteme<br />

© ABB Group<br />

SS 2010 | Slide 12


Nachhaltige <strong>und</strong> effiziente<br />

Wasserversorgung<br />

Integriertes Wassermanagement<br />

© ABB Group<br />

June 28, 2010 | Slide 13


Integriertes Wassermanagement<br />

Ausgangslage – die Systemlandschaft<br />

Häufig unabhängige (standalone) Anwendungen mit eigenen<br />

Datenbanken <strong>und</strong> eigenem Datenmanagement<br />

Typische Systeme/Anwendungen:<br />

Leitsystem – Überwachung <strong>und</strong> Steuerung, Alarmmanagement<br />

Geographisches Informationssystem (GIS) –<br />

Planungsaufgaben, Darstellung geographischer Daten<br />

Hydraulische Netzsimulation – onl<strong>in</strong>e <strong>und</strong> offl<strong>in</strong>e Berechung von<br />

Drücken, Flüssen, Geschw<strong>in</strong>digkeiten, Qualitätsbetrachtungen,<br />

Szenariorechnungen<br />

Leckagemanagement – Erkennung, Lokalisierung <strong>und</strong> Bewertung<br />

von Leckagen<br />

System zum Instandhaltungsmanagement – Management von<br />

Instandhaltungsaufgaben<br />

Möglichkeit zur Generierung zusätzlicher Daten <strong>und</strong> Informationen<br />

für die Entscheidungsf<strong>in</strong>dung oft nicht genutzt !<br />

© ABB Group<br />

June 28, 2010 | Slide 14


Integriertes Wassermanagement<br />

Ausgangslage – die betrieblichen Herausfor<strong>der</strong>ungen<br />

• Zunehmende Komplexität des Wassernetzbetriebs<br />

• Analyse <strong>und</strong> Interpretation e<strong>in</strong>er weiter zunehmenden Menge an<br />

Daten <strong>und</strong> Informationen <strong>in</strong> kürzerer Zeit<br />

• Höherwertige Anwendungen für optimalen Betrieb<br />

(anwendungsspezifische Lösungen)<br />

• Zunehmende Relevanz von…<br />

• …Alarmanalyse <strong>und</strong> -management → Generierung von Wissen aus <strong>der</strong><br />

Alarmanalyse<br />

• …Wissensmanagement → wie kann das Wissen des Bedienpersonals<br />

dokumentiert <strong>und</strong> zur Verfügung gestellt werden?<br />

• Nutzung <strong>der</strong> Zeitspanne, <strong>in</strong> <strong>der</strong> <strong>der</strong> K<strong>und</strong>e noch nicht vom<br />

Problem betroffen ist, zur Lösung des Problems<br />

© ABB Group<br />

June 28, 2010 | Slide 15


Herausfor<strong>der</strong>ungen<br />

Notwendige Unterstützung zur Umsetzung…<br />

•…e<strong>in</strong>er schnelleren Reaktion auf Anomalien im Betrieb von<br />

Wasserversorgungsnetzen <strong>und</strong> Leckagen<br />

→<br />

Erweiterte Visualisierung<br />

→ Intelligente Datenanalyse<br />

•…e<strong>in</strong>er optimierten Druck- <strong>und</strong> Reservoirsteuerung sowie von<br />

Energiemanagement<br />

→<br />

•…e<strong>in</strong>er effektiveren <strong>und</strong> effizienteren Leckageerkennung <strong>und</strong> –<br />

lokation sowie Entscheidungsf<strong>in</strong>dung <strong>in</strong> Instandhaltung, Erneuerung<br />

<strong>und</strong> strategischer Planung<br />

→<br />

E<strong>in</strong>satzplanung für Pumpen, Ventile <strong>und</strong><br />

Bezugsquellen<br />

Entscheidungsunterstützung<br />

© ABB Group<br />

June 28, 2010 | Slide 16


Randnotiz<br />

Zeitlicher Verlauf „Fehlerauftritt – Behebung“<br />

© ABB Group<br />

June 28, 2010 | Slide 17


Integriertes Wassermanagement<br />

Konzeptentwicklung – gr<strong>und</strong>sätzliche Überlegungen… (1/2)<br />

E<strong>in</strong>wicklung e<strong>in</strong>es Konzepts das…<br />

Wasserversorger<br />

kennen nicht die<br />

momentanen<br />

Kosten für e<strong>in</strong>en<br />

Liter Wasser!<br />

…die umfassende Integration notwendiger Anwendungen <strong>in</strong><br />

verschiedenen Tiefen <strong>in</strong> e<strong>in</strong>e Systemumgebung ermöglicht →<br />

horizontale Integration,<br />

…die notwendige Flexibilität im Bezug auf<br />

Systemerweiterungen durch modulares Design ermöglicht,<br />

…die Kopplung an die Ebene <strong>der</strong> Unternehmenssteuerung<br />

ermöglicht,<br />

…das Informationsmanagement umfänglich <strong>in</strong> die betriebliche<br />

Bedienung <strong>in</strong>tegriert → Nutzung e<strong>in</strong>er <strong>in</strong>tegrierten,<br />

geme<strong>in</strong>samen <strong>und</strong> konsistenten Datenbasis<br />

…den Zugriff auf alle relevanten Daten <strong>und</strong> Informationen per<br />

Mausklick ermöglicht.<br />

© ABB Group<br />

June 28, 2010 | Slide 18


Integriertes Wassermanagement<br />

Konzeptentwicklung – gr<strong>und</strong>sätzliche Überlegungen (2/2)<br />

• E<strong>in</strong>b<strong>in</strong>dung höherwertiger Anwendungen <strong>und</strong> Systeme wie<br />

• Druckmanagement, Energiemanagement, Leckagemanagement,<br />

• Netzsimulationssystem, Geographische Informationssystem (GIS),<br />

erweitertes Alarmmanagement<br />

• E<strong>in</strong>b<strong>in</strong>dung e<strong>in</strong>es System zur Unterstützung <strong>der</strong> Entscheidungsf<strong>in</strong>dung<br />

• Unterstützung für kurzfristige betriebliche <strong>und</strong> langfristige<br />

strategische Entscheidungsf<strong>in</strong>dung<br />

• Beispiele für funktionalen Umfang:<br />

• Risikobasierte Alarmpriorisierung durch <strong>in</strong>telligente Analyse<br />

<strong>und</strong> Bewertung<br />

• Generierung von Handlungsvorschlägen für das<br />

Bedienpersonal, z.B. Isolation von Netzbereichen<br />

© ABB Group<br />

June 28, 2010 | Slide 19


Integriertes Wassermanagement<br />

Systemarchitektur<br />

Geographisches<br />

Information<br />

System<br />

Leckageerkennung<br />

Netzsimulation<br />

Energiemanagement<br />

System zur<br />

Entscheidungsf<strong>in</strong>dung<br />

…<br />

Funktionale<br />

Erweiterung<br />

Informationsmanagement<br />

Leitsystem<br />

Prozessanb<strong>in</strong>dung<br />

Datenbank<br />

Kernsystem<br />

Alarmmanagement<br />

Schichtbuch<br />

Technische Berechnung<br />

Pumpeneffizienz<br />

Prozess<br />

© ABB Group<br />

June 28, 2010 | Slide 20<br />

• Leitsystem-basierte Integration<br />

• Informationsmanagement-System zur Archivierung aller<br />

zeitreihenbasierten Daten <strong>und</strong> Ereignisse<br />

• Nutzung von Standard-Schnittstellen wie OPC<br />

• Geme<strong>in</strong>same Bibliothek für Objekttypen<br />

• Konsistentes Alarm- <strong>und</strong> Ereignismanagement


© ABB<br />

| 21<br />

Betrieb <strong>und</strong> Instandhaltung von<br />

Wassernetzwerken<br />

Beispiele für gehobene Lösungen


Advanced Solutions <strong>in</strong> Water Networks<br />

Anomaly Analysis<br />

• Onl<strong>in</strong>e analysis of pressure and<br />

flow signals <strong>in</strong> or<strong>der</strong> to detect<br />

<strong>in</strong>cidents such as bursts<br />

• Approach is based on artificial<br />

<strong>in</strong>telligence methods mak<strong>in</strong>g use<br />

of neural networks<br />

• Anomaly analysis can serve as<br />

an <strong>in</strong>put to the decision support<br />

system as it raises alerts<br />

follow<strong>in</strong>g the 12 hours analysis<br />

• Anomaly analysis also gives an<br />

estimate of the leakage size<br />

© ABB<br />

| 22


Advanced Solutions <strong>in</strong> Water Networks<br />

Supervisory Pressure Control<br />

• Hydraulic model-based<br />

calculation of optimal set-po<strong>in</strong>t<br />

schedules for pressure<br />

reduction valves (PRVs) for<br />

m<strong>in</strong>imiz<strong>in</strong>g pressure levels <strong>in</strong><br />

District Meter<strong>in</strong>g Areas (DMA)<br />

accord<strong>in</strong>g to predef<strong>in</strong>ed<br />

operational and physical<br />

constra<strong>in</strong>ts<br />

• Used to reduce leakage and<br />

leakage costs as much as<br />

possible <strong>in</strong> DMAs<br />

• Optimal set-po<strong>in</strong>ts can either<br />

be transferred to a local PRVcontroller<br />

or be managed by a<br />

supervisory pressure control<br />

system<br />

•Head [m]<br />

•Time [h]<br />

•Old set-po<strong>in</strong>ts (without optimization)<br />

•New set-po<strong>in</strong>ts (with optimization)<br />

© ABB<br />

| 23


Advanced Solutions <strong>in</strong> Water Networks<br />

Pump and Valve Schedul<strong>in</strong>g<br />

• Hydraulic model-based<br />

generation of optimal set-po<strong>in</strong>t<br />

schedules for pumps, valves<br />

and reservoirs <strong>in</strong> or<strong>der</strong> to<br />

achieve optimal results<br />

follow<strong>in</strong>g the objective function<br />

ma<strong>in</strong>ly to reduce pump<strong>in</strong>g and<br />

water source costs<br />

• Takes <strong>in</strong>to account the<br />

supervisory / global level to<br />

generate optimal schedules<br />

• Uses <strong>in</strong>puts such as demand<br />

forecast<strong>in</strong>g and energy tariffs<br />

<strong>in</strong> or<strong>der</strong> to calculate future<br />

schedules<br />

J = m<strong>in</strong><br />

∑ pump<strong>in</strong>g cost + ∑source<br />

cost +<br />

pumps<br />

sources<br />

∑<br />

demand nodes<br />

leakage cost<br />

© ABB<br />

| 24


Advanced Solutions <strong>in</strong> Water Networks<br />

Model Simplification<br />

• For Supervisory Pressure Control as well as Pump and Valve<br />

Schedul<strong>in</strong>g, a hydraulic optimization model is needed which is <strong>der</strong>ived<br />

from a hydraulic simulation model<br />

• As the simulation model is typically too large and detailed for<br />

optimization purposes <strong>in</strong> terms of number of nodes, pipes, valves and<br />

model accuracy, it is required to reduce the number of objects and to<br />

keep only those needed for the optimization<br />

© ABB<br />

| 25


Advanced Solutions <strong>in</strong> Water Networks<br />

Incident Management – Incident Rank<strong>in</strong>g Table<br />

• In or<strong>der</strong> to enable a more efficient and effective decision mak<strong>in</strong>g, a<br />

model based decision support system provides for an analysis of<br />

possible <strong>in</strong>cidents per identified anomaly<br />

• Based upon assessed impacts and plausibility giv<strong>in</strong>g a risk per<br />

<strong>in</strong>cident, all <strong>in</strong>cidents are ranked accord<strong>in</strong>g to their <strong>in</strong>dividual risk<br />

and thus give guidance to the most important <strong>in</strong>cidents<br />

© ABB<br />

| 26


Advanced Solutions <strong>in</strong> Water Networks<br />

Alarm Management<br />

Berechnung <strong>der</strong> Priorität von<br />

Alarmen<br />

Sortierung <strong>der</strong> Alarme abhängig von<br />

Auswirkung <strong>und</strong><br />

Auftretenswahrsche<strong>in</strong>lichkeit →<br />

Bewertung, welche Alarmmeldung<br />

die höchste Wichtigkeit für den<br />

weiteren Betrieb hat<br />

Negative Auswirkung<br />

für den Betrieb des<br />

Netzes (z.B. Anzahl<br />

<strong>der</strong> kritischen<br />

K<strong>und</strong>en ohne<br />

Wasserversorgung)<br />

Auftretenswahrsche<strong>in</strong>lichkeit<br />

Priorität des Alarms<br />

© ABB Group<br />

June 28, 2010 | Slide 27<br />

© ABB Group<br />

SS 2010 | Slide 27


Advanced Solutions <strong>in</strong> Water Networks<br />

Incident Management – Incident Root Analysis<br />

• The <strong>in</strong>cident root analysis<br />

provides a method for<br />

identify<strong>in</strong>g a pipe <strong>in</strong> cause of<br />

a leakage or burst<br />

• Each potential leakage or<br />

burst location (e.g. pipe<br />

segment) is automatically<br />

assessed with regards to its<br />

likelihood/plausibility of<br />

occurrence and potential<br />

customer impact<br />

© ABB<br />

| 28


Advanced Solutions <strong>in</strong> Water Networks<br />

Incident Management – Incident Impact and Plausibility Viewer<br />

• A decision support system<br />

function graphically <strong>in</strong>dicates<br />

on which pipel<strong>in</strong>e segment the<br />

<strong>in</strong>cident most likely has<br />

occurred<br />

• Representation can be based<br />

upon the assessed impact and<br />

the likelihood of occurrence /<br />

plausibility of a selected<br />

(potential) <strong>in</strong>cident cause that<br />

is taken a closer look at<br />

• The impact reflects the number<br />

of customers that will be<br />

affected by the <strong>in</strong>cident <strong>in</strong> case<br />

of “no action” taken<br />

© ABB<br />

| 29


Advanced Solutions <strong>in</strong> Water Networks<br />

Intervention Management – Network Isolation<br />

• As one of the features,<br />

decision support systems<br />

provide for proposals for<br />

network isolation strategies<br />

• Aims at affect<strong>in</strong>g the least<br />

number of customers when<br />

tak<strong>in</strong>g actions <strong>in</strong> or<strong>der</strong> to<br />

isolate a burst or pipe segment<br />

• Network isolation suggests a<br />

valve or a set of valves to be<br />

closed <strong>in</strong> or<strong>der</strong> to achieve<br />

m<strong>in</strong>imum impact on customer<br />

supplies<br />

© ABB<br />

| 30


Advanced Solutions <strong>in</strong> Water Networks<br />

Intervention Management – Alternative Supplies<br />

• As another feature, decision<br />

support systems provide for<br />

proposals for alternative supply<br />

routes <strong>in</strong> or<strong>der</strong> to ensure<br />

supplies to the maximum<br />

number of customers giv<strong>in</strong>g<br />

valves that need to be<br />

operated <strong>in</strong> or<strong>der</strong> to ensure<br />

supplies<br />

• Alternative supply function<br />

suggests a valve or a set of<br />

valves to be opened <strong>in</strong> or<strong>der</strong> to<br />

achieve best possible supplies<br />

<strong>in</strong> case of required network<br />

isolation<br />

© ABB<br />

| 31


Advanced Solutions <strong>in</strong> Water Networks<br />

Integrated Geographical Information System (GIS)<br />

• GIS Integration <strong>in</strong>to the<br />

automation world<br />

• Make use of mo<strong>der</strong>n objectoriented<br />

approaches<br />

• GIS is used as the ma<strong>in</strong> view to<br />

the process<br />

• A data player (similar to Media<br />

Player) to automatically visualize<br />

future network status (us<strong>in</strong>g<br />

results from network simulation)<br />

© ABB<br />

| 32


Decision Support System for<br />

Burst Localisation


Burst Localisation<br />

Failures <strong>in</strong> Water Distribution Systems<br />

• True cause typically unknown<br />

• Identification of failure by comb<strong>in</strong><strong>in</strong>g evidence<br />

• Measurements<br />

• Alarms & Events<br />

• Customer compla<strong>in</strong>ts<br />

• Pipe bursts<br />

• Most relevant problem<br />

• Provide relevant<br />

<strong>in</strong>formation to the<br />

operator


Burst Localisation<br />

Risk-based approach<br />

• Evaluation of risk associated with failures<br />

• Risk components:<br />

• Likelihood (of a failure)<br />

• Impact (of a failure)<br />

• Risks should be known from the beg<strong>in</strong>n<strong>in</strong>g<br />

• Risk changes with time!<br />

• Used to prioritise failures


Burst Localisation<br />

Likelihood Estimation<br />

Comb<strong>in</strong>ed Evidence<br />

Credibility<br />

adjusted based on<br />

performance…<br />

weights<br />

•<br />

w 1 w 2 w 3 w 4 w N<br />

Burst Prediction<br />

Model<br />

Correlated Customer<br />

Contacts<br />

Identification Us<strong>in</strong>g<br />

Hydraulic Model<br />

Operator’s<br />

Judgement<br />

...<br />

Field Technician’s<br />

Evidence<br />

• Information fusion us<strong>in</strong>g Dempster-Shafer Theory* of Evidence<br />

• Could be hierarchical<br />

It allows one to comb<strong>in</strong>e evidence from different sources and arrive at a degree of belief<br />

(represented by a belief function) that takes <strong>in</strong>to account all the available evidence. The theory<br />

was first developed by Arthur P. Dempster and Glenn Shafer.<br />

(http://en.wikipedia.org/wiki/Dempster-Shafer_theory)


Burst Localisation<br />

Pipe burst prediction model<br />

• Type of soil<br />

• Land use<br />

• Age of pipe<br />

• Material type<br />

• Diameter<br />

• Number of days of air frost<br />

• Monthly mean m<strong>in</strong>imum temperature<br />

f( S, LAM , , , DA , , T )<br />

F<br />

m<strong>in</strong>


Burst Localisation<br />

Customer Contacts Model<br />

• Relates likelihood of pipe failure to<br />

the distance from a group of<br />

customers<br />

• Only post code is known<br />

• Evaluated us<strong>in</strong>g GIS<br />

• If sufficient many compla<strong>in</strong>ts from<br />

a certa<strong>in</strong> area arrive, there is a<br />

good <strong>in</strong>dication for a problem <strong>in</strong><br />

that area.<br />

Customer 1 Customer 2<br />

<br />

Customer 4<br />

Customer 3


Burst Localisation<br />

Information Process<strong>in</strong>g<br />

Criterion Measurement<br />

Model<br />

Static Evidence<br />

Dynamic Evidence<br />

Asset data GIS Device Customer Near real-time<br />

Status Contacts pressure and flow<br />

data


Burst Localisation<br />

Case Study 1<br />

• Rural DMA *<br />

• Tree network<br />

• 181 residential and 57<br />

<strong>in</strong>dustrial customers<br />

• 3 pressure sensors and 1 flow<br />

meter<br />

*DMA – District Meter<strong>in</strong>g Area<br />

•40


•41


•42


•43


•44


Burst Localisation<br />

Case Study 2<br />

• Urban DMA<br />

• Looped network<br />

• 3900 customers<br />

• 3 pressure sensors and 2<br />

flow meters<br />

•45


Pipe burst prediction<br />

•46


Hydraulic model<br />

•47


Customer contact<br />

•48


•49


Water Network Modell<strong>in</strong>g<br />

Network Simplification<br />

© ABB Group<br />

June 28, 2010 | Slide 50


Network Simplification<br />

Why use simplification?<br />

• Produce hydraulically equivalent water networks with<br />

reduced number of pipes and nodes only conta<strong>in</strong><strong>in</strong>g<br />

• critical nodes (nodes with pressure constra<strong>in</strong>ts)<br />

• active elements (e.g. pumps, valves, reservoirs, tanks)<br />

• Use reduced water networks as base for follow<strong>in</strong>g<br />

simulation and optimization<br />

• Reduce calculation time by reduc<strong>in</strong>g number of<br />

equations and constra<strong>in</strong>ts<br />

© ABB Group<br />

June 28, 2010 | Slide 51


Network Simplification<br />

Steps of the simplification algorithm<br />

• The algorithms consists of two parts<br />

• Pre-process<strong>in</strong>g<br />

• Substitute valves that are always open<br />

• Remove valves that are always closed<br />

• Remove dead-end pipes<br />

• Remove short pipes<br />

• Comb<strong>in</strong>e pipes <strong>in</strong> series / <strong>in</strong> parallel connected to nodes<br />

without demand to <strong>uni</strong>que pipe<br />

• Gauss-Jordan Simplification<br />

• Determ<strong>in</strong>e nonl<strong>in</strong>ear model<br />

• L<strong>in</strong>earize nonl<strong>in</strong>ear model<br />

• Reduce l<strong>in</strong>earized model us<strong>in</strong>g Gauss-Jordan<br />

• Convert back to nonl<strong>in</strong>ear model<br />

© ABB Group<br />

June 28, 2010 | Slide 52


Preprocess<strong>in</strong>g<br />

Substitute valves that are always open<br />

• A permanently opened valve can be removed<br />

•reservoir<br />

•reservoir<br />

•Opened<br />

•valve<br />

•closed<br />

•closed<br />

•valve<br />

•tank<br />

•valve<br />

•tank<br />

© ABB Group<br />

June 28, 2010 | Slide 53


Preprocess<strong>in</strong>g<br />

Remove valves that are always closed<br />

• The closed valve is removed<br />

•reservoir<br />

•reservoir<br />

•closed<br />

•valve<br />

•tank<br />

•tank<br />

© ABB Group<br />

June 28, 2010 | Slide 54


Preprocess<strong>in</strong>g<br />

Remove dead-end pipes<br />

• Junctions without demands at the end of pipe l<strong>in</strong>es can be<br />

removed as they cause numerical problems and do not<br />

have any function <strong>in</strong> the model<br />

•reservoir<br />

•reservoir<br />

•tank<br />

•tank<br />

© ABB Group<br />

June 28, 2010 | Slide 55


Preprocess<strong>in</strong>g<br />

Remove short pipes<br />

• Short pipes have high conductance / low resistance,<br />

therefore the headloss nearly vanishes and can be<br />

removed from the model<br />

•reservoir<br />

•reservoir<br />

•tank<br />

•tank<br />

© ABB Group<br />

June 28, 2010 | Slide 56


Preprocess<strong>in</strong>g<br />

Comb<strong>in</strong>e pipes <strong>in</strong> series with demandless nodes /<br />

<strong>in</strong> parallel to <strong>uni</strong>que pipe<br />

• Pipes <strong>in</strong> series with junctions, which have no demand, has the<br />

same hydraulic effect as one pipe with an equivalent<br />

conductance/resistance value and thus can be substituted<br />

(R=R1+R2)<br />

• Parallel pipe can be substituted with a <strong>uni</strong>que pipe, which has the<br />

aggregate conductance of the orig<strong>in</strong>al ones (1/R = 1/R1 + 1/R2)<br />

•reservoir<br />

•reservoir<br />

© ABB Group<br />

June 28, 2010 | Slide 57<br />

•Node with demand<br />

•tank<br />

•tank


Gauss-Jordan Simplification<br />

Full nonl<strong>in</strong>ear<br />

model<br />

Use po<strong>in</strong>t <strong>in</strong> time with max. number<br />

of pipes with flow > 0 to l<strong>in</strong>earize<br />

network<br />

L<strong>in</strong>earize model<br />

Full l<strong>in</strong>ear<br />

model<br />

Use Gauss-Jordan algorithm to<br />

reduce number of nodes and pipes<br />

Simplify model<br />

Simplified<br />

l<strong>in</strong>ear model<br />

Convert back to<br />

nonl<strong>in</strong>ear model<br />

© ABB Group<br />

June 28, 2010 | Slide 58<br />

Calculate new nonl<strong>in</strong>ear pipe<br />

parameters us<strong>in</strong>g <strong>in</strong>cidence matrix<br />

(C=100, D=L)<br />

Simplified<br />

nonl<strong>in</strong>ear model


Gauss-Jordan Simplification<br />

Determ<strong>in</strong>e nonl<strong>in</strong>ear model<br />

reservoir<br />

demand<br />

demand<br />

• Setup <strong>in</strong>cidence matrix to describe model of water network<br />

tank<br />

demand<br />

demand<br />

⎡ 1<br />

⎢<br />

⎢<br />

−1<br />

⎢ 0<br />

Λ = ⎢<br />

⎢ 0<br />

⎢ 0<br />

⎢<br />

⎣ 0<br />

|<br />

0<br />

1<br />

−1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

−1<br />

0<br />

0<br />

h |<br />

0.54<br />

0<br />

0<br />

1<br />

0<br />

−1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

−1<br />

0<br />

sign(<br />

∆<br />

0 ⎤<br />

0<br />

⎥<br />

⎥<br />

0 ⎥<br />

⎥<br />

1 ⎥<br />

0 ⎥<br />

⎥<br />

−1<br />

⎦<br />

The Hazen-Williams equation describes<br />

the flow-head relationship <strong>in</strong> a pipe<br />

Q<br />

ij<br />

=<br />

g<br />

ij<br />

∆<br />

ij<br />

ij<br />

h)<br />

Λq = q<br />

nod<br />

Mass balance equation<br />

∆h<br />

T<br />

= Λ<br />

h<br />

Headloss equation<br />

© ABB Group<br />

June 28, 2010 | Slide 59


Gauss-Jordan Simplification<br />

L<strong>in</strong>earization of model<br />

• Start<strong>in</strong>g po<strong>in</strong>t for subsequent l<strong>in</strong>earization is<br />

Λ )<br />

T<br />

Q ( Λ h =<br />

q<br />

nod<br />

• After l<strong>in</strong>earization we get<br />

dQ<br />

Λ Λ<br />

d∆h<br />

T<br />

nod nod<br />

⋅ ( h − h(<br />

t0 )) = ( q − q ( t0<br />

))<br />

•<br />

• Us<strong>in</strong>g<br />

Q<br />

ij<br />

=<br />

g<br />

ij<br />

|<br />

∆<br />

ij<br />

h<br />

|<br />

0.54<br />

sign(<br />

∆<br />

ij<br />

h)<br />

© ABB Group<br />

June 28, 2010 | Slide 60<br />

• we obta<strong>in</strong><br />

dQ<br />

=<br />

d∆h<br />

diag<br />

−0.46<br />

[ 0.54g ] J j<br />

| ∆h j<br />

|<br />

j<br />

= 1


Gauss-Jordan Simplification<br />

Setup of l<strong>in</strong>earized equations system<br />

• Def<strong>in</strong><strong>in</strong>g Matrix A as<br />

dQ<br />

A = Λ Λ<br />

d∆h<br />

• We obta<strong>in</strong> for each element<br />

A<br />

[ n,<br />

m]<br />

∑<br />

T<br />

⎧−<br />

Anm<br />

for n = m<br />

⎪ m≠n<br />

⎪<br />

−<br />

= ⎨<br />

− 0.54gn,<br />

m<br />

| hn<br />

− hm<br />

|<br />

⎪<br />

⎪<br />

⎩ 0 for n ≠ m and<br />

0.46<br />

= : −g~<br />

( n,<br />

m)<br />

nm<br />

for n ≠ m and<br />

( n,<br />

m)<br />

connected by a<br />

not connected by a l<strong>in</strong>k<br />

l<strong>in</strong>k<br />

• and can therefore build the follow<strong>in</strong>g equations system<br />

nod<br />

⎛ g~<br />

− g~<br />

− g~<br />

11<br />

1,2<br />

...<br />

1, N ⎞⎛<br />

δh1<br />

⎞ ⎛δq<br />

⎞<br />

1<br />

⎜<br />

⎟⎜<br />

⎟ ⎜ ⎟<br />

nod<br />

⎜ − g~<br />

g~<br />

− g~<br />

2,1 22<br />

...<br />

2, N ⎟⎜<br />

δh2<br />

⎟ ⎜δq2<br />

⎟<br />

⎜<br />

⎟⎜<br />

⎟ =<br />

... ... ... ... ...<br />

⎜ ⎟<br />

⎜<br />

⎟⎜<br />

⎟ ⎜<br />

...<br />

⎟<br />

nod<br />

⎝−<br />

g~<br />

N<br />

− g~<br />

N<br />

... g~<br />

,1<br />

,2<br />

NN ⎠⎝δhN<br />

⎠ ⎝δq<br />

N ⎠<br />

© ABB Group<br />

June 28, 2010 | Slide 61


© ABB Group<br />

June 28, 2010 | Slide 62<br />

Gauss-Jordan Simplification<br />

Elim<strong>in</strong>ation of nodes<br />

• Elim<strong>in</strong>at<strong>in</strong>g node 1 from the equations system leads to a reduced<br />

equation system<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

=<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

nod<br />

N<br />

nod<br />

nod<br />

N<br />

NN<br />

N<br />

N<br />

N<br />

N<br />

q<br />

q<br />

q<br />

h<br />

h<br />

h<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

δ<br />

δ<br />

δ<br />

δ<br />

δ<br />

δ<br />

...<br />

...<br />

~<br />

...<br />

~<br />

~<br />

...<br />

...<br />

...<br />

...<br />

~<br />

...<br />

~<br />

~<br />

~<br />

...<br />

~<br />

~<br />

2<br />

1<br />

2<br />

1<br />

,2<br />

,1<br />

2,<br />

22<br />

2,1<br />

1,<br />

1,2<br />

11<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

+<br />

=<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

nod<br />

N<br />

nod<br />

N<br />

nod<br />

nod<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

q<br />

g<br />

g<br />

q<br />

q<br />

g<br />

g<br />

q<br />

h<br />

h<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

g<br />

1<br />

1<br />

,1<br />

1<br />

1<br />

2,1<br />

2<br />

2<br />

1,<br />

11<br />

,1<br />

1,2<br />

11<br />

,1<br />

,2<br />

1,<br />

11<br />

2,1<br />

2,<br />

1,2<br />

11<br />

2,1<br />

22<br />

~<br />

~<br />

...<br />

~<br />

~<br />

...<br />

~<br />

~<br />

~<br />

~<br />

...<br />

~<br />

~<br />

~<br />

~<br />

...<br />

...<br />

...<br />

~<br />

~<br />

~<br />

~<br />

...<br />

~<br />

~<br />

~<br />

~<br />

δ<br />

δ<br />

δ<br />

δ<br />

δ<br />

δ


Gauss-Jordan Simplification<br />

Setup of l<strong>in</strong>earized equations system<br />

• Once all nodes selected have been elim<strong>in</strong>ated, the equation system<br />

can be reconverted to a nonl<strong>in</strong>ear one us<strong>in</strong>g follow<strong>in</strong>g assumptions<br />

• R n,m = 100 (Roughness)<br />

• D=L (D)iameter and (L)ength of pipe<br />

⎛ ⎛<br />

⎜<br />

⎜<br />

⎜ g~<br />

⎝<br />

⎜<br />

⎜⎛<br />

⎜<br />

⎜<br />

⎜−<br />

g~<br />

⎝⎝<br />

22<br />

N ,2<br />

g~<br />

2,1<br />

− g~<br />

g~<br />

1,2<br />

11<br />

...<br />

g~<br />

N ,1<br />

− g~<br />

g~<br />

11<br />

⎞<br />

⎟<br />

⎠<br />

1,2<br />

⎞<br />

⎟<br />

⎠<br />

...<br />

...<br />

...<br />

⎛<br />

⎜−<br />

g~<br />

⎝<br />

⎛<br />

⎜ g~<br />

⎝<br />

2, N<br />

0.54g g~<br />

−0.46<br />

n, m<br />

| hn<br />

− hm<br />

| =<br />

N<br />

g~<br />

−<br />

g~<br />

...<br />

g~<br />

−<br />

g~<br />

N ,1<br />

11<br />

2,1<br />

11<br />

g~<br />

nm<br />

g~<br />

1, N<br />

1, N<br />

⎞⎞<br />

⎟<br />

⎟<br />

⎟⎛<br />

δh<br />

⎠ ⎜<br />

⎟<br />

⎜ ...<br />

⎞ ⎟<br />

⎜<br />

⎟<br />

⎟ ⎝δh<br />

⎠ ⎟<br />

⎠<br />

2<br />

N<br />

⎛<br />

⎜ δq<br />

⎞<br />

⎟ ⎜<br />

⎟ = ⎜<br />

⎟ ⎜<br />

⎠<br />

⎜δq<br />

⎝<br />

nod<br />

2<br />

nod<br />

N<br />

+<br />

+<br />

g~<br />

g~<br />

...<br />

g~<br />

g~<br />

2,1<br />

1<br />

N ,1<br />

1<br />

δq<br />

δq<br />

nod<br />

1<br />

nod<br />

1<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

D<br />

n,<br />

m<br />

⎛ g<br />

⎜<br />

⎝ 3.58821⋅10<br />

n,<br />

m<br />

= Ln,<br />

m<br />

=<br />

−4<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

2.09<br />

© ABB Group<br />

June 28, 2010 | Slide 63


Gauss-Jordan Simplification<br />

Simplified water network<br />

•pre-processed model<br />

reservoir<br />

•simplified model<br />

reservoir<br />

demand<br />

demand<br />

demand<br />

demand<br />

demand<br />

demand<br />

tank<br />

tank<br />

© ABB Group<br />

June 28, 2010 | Slide 64


Example of Water Distribution Network (E093.<strong>in</strong>p)<br />

•Reservoir<br />

•Nodes to keep<br />

•Nodes with high<br />

elevation or<br />

demand<br />

•„normal“ nodes<br />

© ABB Group<br />

June 28, 2010 | Slide 65


Simplified network<br />

© ABB Group<br />

June 28, 2010 | Slide 66


Simplified network<br />

Comparison<br />

• All active elements like pumps, reservoirs, tanks and<br />

valves (except they do not change their status dur<strong>in</strong>g the<br />

complete simulation time) are kept<br />

Before simplification<br />

After simplification<br />

© ABB Group<br />

June 28, 2010 | Slide 67


Compare orig<strong>in</strong>al and simplified network<br />

Compare pressures<br />

the accuracy is sufficient!<br />

© ABB Group<br />

June 28, 2010 | Slide 68


Example: network with 12527 nodes<br />

© ABB Group<br />

June 28, 2010 | Slide 69


Example: network with 12527 nodes<br />

Simplified by 50%<br />

© ABB Group<br />

June 28, 2010 | Slide 70


Water Network Optimization<br />

Pumpen- <strong>und</strong> Ventile<strong>in</strong>satzplanung<br />

© ABB Group<br />

June 28, 2010 | Slide 71


Pump & Valve schedul<strong>in</strong>g<br />

Challenges <strong>in</strong> Network Operation<br />

• Generate optimized pump, valve and water source trajectories to<br />

m<strong>in</strong>imize energy costs, source costs and leakage <strong>in</strong> WDN*<br />

• look 24 hours ahead to know what the water demand, the<br />

electricity tariffs and the treatment costs will be<br />

• use full range of possible water levels <strong>in</strong> reservoirs to fill<br />

reservoirs when it fits best to optimization strategy<br />

• withdraw water from water sources <strong>in</strong> an cost-optimal way,<br />

tak<strong>in</strong>g <strong>in</strong>to account operational constra<strong>in</strong>ts<br />

• operate pumps tak<strong>in</strong>g <strong>in</strong>to account actual and future electricity<br />

costs, consi<strong>der</strong><strong>in</strong>g pump efficiencies to choose optimal pump<br />

speed<br />

• BUT: always keep with<strong>in</strong> physical and operational constra<strong>in</strong>ts,<br />

such as ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g sufficient water with<strong>in</strong> the system’s<br />

reservoirs or meet<strong>in</strong>g the required time-vary<strong>in</strong>g consumer<br />

demands<br />

© ABB Group<br />

June 28, 2010 | Slide 72<br />

*Water Distribution Network


Pump & Valve schedul<strong>in</strong>g<br />

Optimization Problem<br />

J<br />

= m<strong>in</strong><br />

∑ pump<strong>in</strong>g cost + ∑source<br />

cost +<br />

pumps<br />

sources<br />

∑<br />

demand nodes<br />

leakage<br />

cost<br />

• Gegeben ist die reduzierte Modellbeschreibung des<br />

Wassernetzes.<br />

• Gegeben s<strong>in</strong>d physikalische <strong>und</strong> betriebliche<br />

Beschränkungen <strong>der</strong> Mess- <strong>und</strong> Stellvariablen<br />

(Durchflüsse, Drücke, Pumpleistungen,<br />

Reservoirgrößen etc.)<br />

• Gegeben ist e<strong>in</strong>e Vorhersage des Verbrauches <strong>und</strong><br />

<strong>der</strong> Stromkosten <strong>der</strong> nächsten 24 St<strong>und</strong>en<br />

F<strong>in</strong>de e<strong>in</strong>e optimale Steuerstrategie, die J<br />

m<strong>in</strong>imiert, die Beschränkungen e<strong>in</strong>hält <strong>und</strong> dem<br />

Modell entspricht.<br />

© ABB Group<br />

June 28, 2010 | Slide 73


Example of a Water Network Schematic<br />

• 3537 Nodes (non<br />

simplified)<br />

• 3 Water Treatment<br />

Works (WTW)<br />

• 10 Reservoirs<br />

• 11 Pump<strong>in</strong>g Stations<br />

(19 pumps)<br />

• 80 DMA<br />

• 420 valves<br />

• 3 <strong>in</strong>dustrial users<br />

• 5.2m kWh (2008)<br />

© ABB Group<br />

June 28, 2010 | Slide 74<br />

conta<strong>in</strong>s several<br />

s<strong>in</strong>gle and<br />

cascad<strong>in</strong>g DMAs<br />

with 500 – 1000<br />

nodes each


Pump & Valve schedul<strong>in</strong>g<br />

Current operation vs. Optimal schedule<br />

© ABB Group<br />

June 28, 2010 | Slide 75


Pump & Valve schedul<strong>in</strong>g<br />

Results from the case study<br />

© ABB Group<br />

June 28, 2010 | Slide 76<br />

• 7 days optimization<br />

• Only Pump and valve schedul<strong>in</strong>g, no WTW *<br />

schedul<strong>in</strong>g<br />

• Reservoir level limits (40%-95%)<br />

• Fixed WTW outflows<br />

• Initial start<strong>in</strong>g values for reservoir levels:<br />

(M<strong>in</strong>+Max)/2<br />

For 7 days<br />

Pump<strong>in</strong>g Energy [kW/h] Pump<strong>in</strong>g Costs [£]<br />

Current<br />

Operation<br />

Optimized<br />

Operation<br />

Current<br />

Operation<br />

Optimized<br />

Operation<br />

Total 51902 35901 3817 2483<br />

Sav<strong>in</strong>gs 16001 1334<br />

Sav<strong>in</strong>gs [%] 30.8 34.9<br />

*Water Treatment Work


Anwendung Wassernetz Basel<br />

Problembeschreibung<br />

• Industrielle Werke Basel (IWB) – bâlAqua<br />

• 12 high pressure pumps<br />

• One <strong>in</strong>ternal gro<strong>und</strong> water dra<strong>in</strong>age and collection area,<br />

<strong>in</strong>clud<strong>in</strong>g 12 wells (with low pressure pumps)<br />

• One external supplier<br />

• Three double chamber reservoirs<br />

• Roughly 26 million m 3 of annual delivery<br />

• F<strong>in</strong>d an energy-optimal pump (and wells) schedule to<br />

provide sufficient amount of water (based on predictions)<br />

with m<strong>in</strong>imal pump<strong>in</strong>g effort.<br />

© ABB Group<br />

SS 2010 | Slide 77


Anwendung Wassernetz Basel<br />

Problem Formulierung<br />

• Optimally solve a hybrid problem consist<strong>in</strong>g of<br />

• ... cont<strong>in</strong>uous variables (eg, flows, levels, energy etc.)<br />

and<br />

• ... discrete variables (as for example switch<strong>in</strong>g the plant<br />

equipment on/off).<br />

• Such a problem can be formulated us<strong>in</strong>g Mixed-Logical<br />

Dynamic Models (MLD) and subsequently be solved used<br />

an MPC controller.<br />

• Possible implementation strategies<br />

• Optimization – Solve problem complete <strong>in</strong> advance<br />

• Control – Update solution onl<strong>in</strong>e <strong>in</strong> each time step<br />

© ABB Group<br />

SS 2010 | Slide 78


Anwendung Wassernetz Basel<br />

Implementierung<br />

Benefits<br />

• Information <strong>in</strong>tegration<br />

• Cost optimization<br />

© ABB Group<br />

SS 2010 | Slide 79


Zusammenfassung<br />

• Wasser – e<strong>in</strong> Megatrend des 21. Jahrh<strong>und</strong>erts<br />

• Wichtigste Automatisierungsgebiete r<strong>und</strong> um Wasser<br />

• Tr<strong>in</strong>kwasserversorgungsnetze (Operation, Plann<strong>in</strong>g, Monitor<strong>in</strong>g)<br />

• Meerwasserentsalzung (Monitor<strong>in</strong>g, Optimization)<br />

• Abwasserentsorgung (Instrumentation, Operation)<br />

• Bewässerung <strong>in</strong> <strong>der</strong> Landwirtschaft (Optimization)<br />

• Wasserwirtschaft <strong>in</strong> <strong>der</strong> Industrie (Instrumenation, Optimization)<br />

• Informations<strong>in</strong>tegration ist die größte Herausfor<strong>der</strong>ung <strong>in</strong><br />

e<strong>in</strong>em gewachsenen, verteilten System das sehr alt ist.<br />

• Darauf aufbauend s<strong>in</strong>d mo<strong>der</strong>ne Verfahren verfügbar, die<br />

signifikante E<strong>in</strong>sparungen <strong>und</strong> Verbesserungen<br />

ermöglichen.<br />

• Wasser<strong>in</strong>dustrie gilt als beson<strong>der</strong>s konservativ.<br />

• Unterschiedliche Modellbeschreibungen s<strong>in</strong>d <strong>der</strong> Schlüssel<br />

für gehobene Lösungen.<br />

© ABB Group<br />

SS 2010 | Slide 80


Referenzen<br />

• http://www.zvei.org/fileadm<strong>in</strong>/user_upload/Fachverbaende/Automation/Publikation/Bestell<br />

formular_Roadmap_Wasser_<strong>und</strong>_Abwasser.pdf<br />

• D.Moll, T.v.Hoff, M.Anto<strong>in</strong>e, Tapp<strong>in</strong>g Technology - Optimiz<strong>in</strong>g the water supply for the<br />

city of Basel. ABB Review 3/2007, pp. 27-30.<br />

• Gallestey, E, et al., Us<strong>in</strong>g Model Predictive Control and Hybrid Systems for Optimal<br />

Schedul<strong>in</strong>g of Industrial Processes, Automatisierungstechnik, Vol. 51, No. 6, 2003.<br />

• Public (EPSRC <strong>in</strong> UK) f<strong>und</strong>ed Research & Development project ‚NEPTUNE‘.<br />

(http://www.neptune.ac.uk)<br />

• Bogumil Ulanicki, Hossam AbdelMeguid, Peter Bo<strong>und</strong>s and Ridwan Patel (2008),<br />

PRESSURE CONTROL IN DISTRICT METERING AREAS WITH BOUNDARY AND<br />

INTERNAL PRESSURE REDUCING VALVES, Proceed<strong>in</strong>gs of the 10th Annual Water<br />

Distribution Systems Analysis Conference WDSA2008, Van Zyl, J.E., Ilemobade, A.A.,<br />

Jacobs, H.E. (eds.), August 17-20, 2008, Kruger National Park, South Africa.<br />

• B.Ulanicki, A.Zehnpf<strong>und</strong> and F.Mart<strong>in</strong>ez (1996), Simplification of Water Distribution<br />

Network Models. In Proceed<strong>in</strong>gs of the Hydro<strong>in</strong>formatics 96 Int. Conf. International<br />

Assoc. for Hydraulic Research, ETH Zürich, Sep 1996.<br />

© ABB Group<br />

SS 2010 | Slide 81


Kontakt<br />

Dr. Alexan<strong>der</strong> Horch<br />

ABB Forschungszentrum<br />

Wallstadter Straße 59<br />

68526, Ladenburg, GERMANY<br />

L<strong>in</strong>ks<br />

www.abb.de/forschung<br />

www.abb.de/karriere<br />

Phone: +49 6203716021<br />

Telefax: +49 6203 716253<br />

Mobile: +49 171 307 6403<br />

Email: alexan<strong>der</strong>.horch@de.abb.com<br />

© ABB Group<br />

SS 2010 | Slide 82

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!