Subgroups of algebraic groups which are clopen in the S ...

Subgroups of algebraic groups which are clopen in the S ... Subgroups of algebraic groups which are clopen in the S ...

isibang.ac.in
from isibang.ac.in More from this publisher
08.03.2014 Views

isibang/ms/2010/10 October 9th, 2010 http://www.isibang.ac.in/˜ statmath/eprints Subgroups of algebraic groups which are clopen in the S-congruence topology A. W. Mason and B. Sury Indian Statistical Institute, Bangalore Centre 8th Mile Mysore Road, Bangalore, 560059 India

isibang/ms/2010/10<br />

October 9th, 2010<br />

http://www.isibang.ac.<strong>in</strong>/˜ statmath/epr<strong>in</strong>ts<br />

<strong>Sub<strong>groups</strong></strong> <strong>of</strong> <strong>algebraic</strong> <strong>groups</strong> <strong>which</strong> <strong>are</strong><br />

<strong>clopen</strong> <strong>in</strong> <strong>the</strong> S-congruence topology<br />

A. W. Mason and B. Sury<br />

Indian Statistical Institute, Bangalore Centre<br />

8th Mile Mysore Road, Bangalore, 560059 India


SUBGROUPS OF ALGEBRAIC GROUPS WHICH<br />

ARE CLOPEN IN THE S-CONGRUENCE<br />

TOPOLOGY<br />

BY<br />

A. W. Mason<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, University <strong>of</strong> Glasgow<br />

Glasgow G12 8QW, Scotland, U.K.<br />

e-mail:awm@maths.gla.ac.uk<br />

AND<br />

B. Sury<br />

Statistics-Ma<strong>the</strong>matics Unit, Indian Statistical Institute<br />

Bangalore 560 059, India<br />

e-mail: sury@isibang.ac.<strong>in</strong><br />

Abstract<br />

Let K be a global field and S be a f<strong>in</strong>ite set <strong>of</strong> places <strong>of</strong> K <strong>which</strong><br />

<strong>in</strong>cludes all those <strong>of</strong> archimedean type. Let G be an <strong>algebraic</strong> group<br />

over K and G K be its K-rational po<strong>in</strong>ts. The authors provide a detailed<br />

pro<strong>of</strong> <strong>of</strong> a lemma <strong>of</strong> Raghunathan <strong>which</strong> states that (under fairly<br />

weak restrictions) <strong>the</strong> closure <strong>of</strong> a subgroup <strong>of</strong> G K normalized by an S-<br />

arithmetic subgroup <strong>in</strong> <strong>the</strong> S-congruence topology is also open. This<br />

leads to a significant simplification <strong>in</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> one <strong>of</strong> <strong>the</strong> pr<strong>in</strong>cipal<br />

results <strong>in</strong> a recent jo<strong>in</strong>t paper <strong>of</strong> <strong>the</strong> authors.<br />

By apply<strong>in</strong>g <strong>the</strong> lemma to S-arithmetic lattices <strong>in</strong> K-rank one G we<br />

can provide a lower estimate for <strong>the</strong> number <strong>of</strong> sub<strong>groups</strong> <strong>of</strong> a given<br />

<strong>in</strong>dex <strong>in</strong> such a lattice <strong>which</strong> <strong>are</strong> not S-congruence. This extends previous<br />

results <strong>of</strong> <strong>the</strong> first author and Andreas Schweizer.<br />

Ma<strong>the</strong>matics Subject Classification (2000): 11F06, 20E08, 20H10,<br />

11R58<br />

1


Introduction<br />

Let K be a global field and let S be a f<strong>in</strong>ite nonempty set <strong>of</strong> places <strong>of</strong> K<br />

<strong>which</strong> conta<strong>in</strong>s all <strong>the</strong> archimedean places. Let G be an <strong>algebraic</strong> group over<br />

K. This note is motivated by <strong>the</strong> follow<strong>in</strong>g result [R, 4.3 Lemma].<br />

Raghunathan’s Lemma Suppose that G is connected, simply-connected<br />

and K-simple with strictly positive S-rank. Let Γ be an S-arithmetic subgroup<br />

<strong>of</strong> G K , <strong>the</strong> K-rational po<strong>in</strong>ts <strong>of</strong> G. If N is any noncentral subgroup<br />

<strong>of</strong> G K <strong>which</strong> is normalized by Γ <strong>the</strong>n <strong>the</strong> closure <strong>of</strong> N <strong>in</strong> <strong>the</strong> S-congruence<br />

topology is also open.<br />

Our attention was first drawn to this result because it provides a significant<br />

simplification <strong>in</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> one <strong>of</strong> <strong>the</strong> pr<strong>in</strong>cipal results <strong>in</strong> a recent<br />

paper [MPSZ]. A result <strong>in</strong>volv<strong>in</strong>g a subgroup <strong>which</strong> is <strong>clopen</strong> with respect to<br />

<strong>the</strong> S-congruence topology is central to Weisfeiler’s celebrated work [W] on<br />

<strong>the</strong> Strong Approximation Theorem. (P<strong>in</strong>k [P] has extended <strong>the</strong>se to <strong>in</strong>clude,<br />

for example, global fields <strong>of</strong> all positive characteristic.) Weisfeiler’s start<strong>in</strong>g<br />

po<strong>in</strong>t is a subgroup <strong>of</strong> G K <strong>which</strong> is both f<strong>in</strong>itely generated and Zariski dense.<br />

As we shall see <strong>the</strong> hypo<strong>the</strong>ses on N ensure that it is Zariski dense. However<br />

Raghunathan’s Lemma does not follow from [W] s<strong>in</strong>ce <strong>in</strong> general such<br />

an N is not f<strong>in</strong>itely generated. In fact we will apply <strong>the</strong> Lemma to such<br />

sub<strong>groups</strong>. The pro<strong>of</strong> [R, 4.3 Lemma] provided by Raghunathan is merely<br />

a sketch. Given <strong>the</strong> importance <strong>of</strong> this result (and <strong>the</strong> fact that <strong>the</strong> likely<br />

readership <strong>of</strong> this note will <strong>in</strong>clude group-<strong>the</strong>orists who <strong>are</strong> not experts <strong>in</strong><br />

<strong>algebraic</strong> <strong>groups</strong>) it seems appropriate to provide a detailed version.<br />

We apply this <strong>the</strong>orem to <strong>the</strong> classical case <strong>of</strong> an S-arithmetic lattice, Λ, <strong>in</strong><br />

G Kv , where G has K-rank one, v is fixed and S = {v}. We prove a result<br />

on <strong>the</strong> ubiquity <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex sub<strong>groups</strong> <strong>of</strong> Λ <strong>which</strong> <strong>are</strong> not S-congruence.<br />

This extends results [MS] <strong>of</strong> <strong>the</strong> second author and Andreas Schweizer for<br />

<strong>the</strong> special case where Λ is a so-called Dr<strong>in</strong>feld modular group.<br />

The pro<strong>of</strong> <strong>of</strong> Raghunathan’s Lemma is not elementary. It <strong>in</strong>volves, for example,<br />

<strong>the</strong> Inverse Function Theorem from Lie <strong>the</strong>ory. We conclude by show<strong>in</strong>g<br />

that for some special (and important) cases <strong>the</strong> Lemma can be proved us<strong>in</strong>g<br />

only elementary methods.<br />

1. Raghunathan’s lemma<br />

2


We will use throughout <strong>the</strong> follow<strong>in</strong>g notation.<br />

K a global field;<br />

S a f<strong>in</strong>ite non-empty set <strong>of</strong> places <strong>of</strong> K <strong>in</strong>clud<strong>in</strong>g all archimedean places;<br />

O(S) <strong>the</strong> r<strong>in</strong>g <strong>of</strong> all S-<strong>in</strong>tegers <strong>in</strong> K;<br />

K v <strong>the</strong> completion <strong>of</strong> K with respect to a nonarchimedean place v;<br />

O v <strong>the</strong> valuation r<strong>in</strong>g <strong>of</strong> K v ;<br />

p v <strong>the</strong> maximal ideal <strong>of</strong> O v ;<br />

F v <strong>the</strong> residue field <strong>of</strong> O v ;<br />

G an <strong>algebraic</strong> group over K;<br />

G F <strong>the</strong> group <strong>of</strong> F -rational po<strong>in</strong>ts <strong>of</strong> G, where F ≥ K;<br />

G O(S) <strong>the</strong> group <strong>of</strong> S-<strong>in</strong>tegral po<strong>in</strong>ts <strong>of</strong> G.<br />

We note that K v is a local field and that O v is a local r<strong>in</strong>g whose residue field<br />

F v is f<strong>in</strong>ite. By def<strong>in</strong>ition<br />

O(S) = ⋂ v∉S(K ∩ O v ).<br />

After Margulis [Mar, p.60] we will assume that G is a K-subgroup <strong>of</strong> GL n ,<br />

for some n and we will use this embedd<strong>in</strong>g as a standard way <strong>of</strong> represent<strong>in</strong>g<br />

G, <strong>in</strong>clud<strong>in</strong>g its S-congruence sub<strong>groups</strong>. For each non-zero O(S)-ideal a we<br />

def<strong>in</strong>e<br />

G(a) = {X ∈ G K : X ≡ I n (mod a)}.<br />

The sub<strong>groups</strong> G(a), where a ≠ {0}, form <strong>the</strong> basis <strong>of</strong> a topology on G<br />

called <strong>the</strong> S-congruence topology. The group G Kv <strong>in</strong>herits ano<strong>the</strong>r (more<br />

“natural”) topology from that <strong>of</strong> K v . For this topology <strong>the</strong> pr<strong>in</strong>cipal congruence<br />

sub<strong>groups</strong>, G(p t v), where t ≥ 1, provide a base <strong>of</strong> neighbourhoods <strong>of</strong> <strong>the</strong><br />

identity <strong>in</strong> G Kv ; see [PR, p. 134]. Let X be <strong>the</strong> restricted topological product<br />

[PR, p.161] <strong>of</strong> G Kv with respect to <strong>the</strong> dist<strong>in</strong>guished (open, compact) subsets,<br />

G(O v ), where v /∈ S. By def<strong>in</strong>ition X is <strong>the</strong> set <strong>of</strong> all sequences {x v },<br />

where v /∈ S, such that<br />

(i) x v ∈ G Kv , for all v /∈ S,<br />

(ii) x v ∈ G(O v ), for all but f<strong>in</strong>itely many v.<br />

3


Then X is a topological group with a base <strong>of</strong> neighbourhoods <strong>of</strong> <strong>the</strong> identity<br />

consist<strong>in</strong>g <strong>of</strong> all sub<strong>groups</strong> <strong>of</strong> <strong>the</strong> form<br />

∏<br />

M v ,<br />

v∉S<br />

where each M v is an open subgroup <strong>of</strong> G Kv and M v = G(O v ), for all but<br />

f<strong>in</strong>itely many v /∈ S. Now G K embeds, via <strong>the</strong> “diagonal map”, <strong>in</strong> X. It is<br />

clear that <strong>the</strong> S-congruence topology on G K co<strong>in</strong>cides with that <strong>in</strong>duced on<br />

its embedd<strong>in</strong>g by <strong>the</strong> topology on X. Let H be any subgroup <strong>of</strong> G. Then<br />

we can identify <strong>the</strong> closure <strong>of</strong> H <strong>in</strong> X with <strong>the</strong> (pr<strong>of</strong><strong>in</strong>ite) completion <strong>of</strong> H<br />

with respect to its S-congruence topology. We beg<strong>in</strong> by provid<strong>in</strong>g a detailed<br />

version <strong>of</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> [R, 4.3. Lemma].<br />

Notation. Let H be a subgroup <strong>of</strong> G K . We denote <strong>the</strong> S-closure <strong>of</strong> H<br />

<strong>in</strong> G K (or X) by ¯H and <strong>the</strong> Zariski closure <strong>of</strong> H <strong>in</strong> G by Ĥ.<br />

Theorem 1.1 (Raghunathan) Suppose that G is connected, simply-connected<br />

and K-simple with strictly positive S-rank. Let Γ and N be sub<strong>groups</strong> <strong>of</strong> G K<br />

for <strong>which</strong>:<br />

(i) Γ is S-arithmetic, i.e. commensurable with G O(S) ;<br />

(ii) N is noncentral and normalized by Γ .<br />

Then ¯N is also open <strong>in</strong> <strong>the</strong> S-congruence topology on G K .<br />

Pro<strong>of</strong>. It suffices to prove that ¯N is open <strong>in</strong> X. We beg<strong>in</strong> by show<strong>in</strong>g that<br />

N is Zariski dense <strong>in</strong> G. Now ˆΓ normalizes ˆN. But ˆΓ = G by [Mar, 3.2.10,<br />

p.64] and ˆN is def<strong>in</strong>ed over k by [Mar, 2.5.3, p.56]. Hence ˆN = G.<br />

The closure <strong>of</strong> Γ <strong>in</strong> G K <strong>in</strong> <strong>the</strong> S-congruence topology is open and so ¯Γ (<strong>in</strong><br />

X) conta<strong>in</strong>s a subgroup <strong>of</strong> <strong>the</strong> type<br />

∏<br />

¯Γ v ,<br />

where<br />

v /∈S<br />

4


(i) each ¯Γ v is open <strong>in</strong> G Kv ,<br />

(ii) ¯Γ v = G(O v ), for all but f<strong>in</strong>itely many v.<br />

Then, s<strong>in</strong>ce ¯N is normalized by ¯Γ , ¯N conta<strong>in</strong>s<br />

∏<br />

[ ¯N v , ¯Γ v ],<br />

v /∈S<br />

where ¯N v is <strong>the</strong> projection <strong>of</strong> ¯N <strong>in</strong>to Gv . It suffices <strong>the</strong>refore to prove that,<br />

for all v /∈ S,<br />

(a) [ ¯N v , ¯Γ v ] is open <strong>in</strong> G Kv ,<br />

(b) [ ¯N v , ¯Γ v ] ≥ G(O v ), for all but f<strong>in</strong>itely many v.<br />

Part (a). Here <strong>the</strong> approach is based on Lie <strong>the</strong>ory as <strong>in</strong> Section 9 <strong>of</strong> [BT].<br />

Let L = L(G) be <strong>the</strong> Lie algebra <strong>of</strong> G and let<br />

L 0 = ∑ n∈ ¯N v<br />

(Ad(n) − 1)L.<br />

Now L 0 is <strong>in</strong>variant under Ad( ¯N v ). From <strong>the</strong> above ¯N v is Zariski dense <strong>in</strong> G<br />

(s<strong>in</strong>ce it conta<strong>in</strong>s N) and so<br />

(i) L 0 is <strong>in</strong>variant under Ad(G),<br />

(ii) (Ad(g) − 1)x ∈ L 0 , for all g ∈ G, x ∈ L.<br />

We now make use <strong>of</strong> use <strong>of</strong> <strong>the</strong> hypo<strong>the</strong>sis that G is simply-connected to<br />

conclude that L 0 = L. (See [BT, 3.6].) S<strong>in</strong>ce L is a f<strong>in</strong>ite dimensional vector<br />

space <strong>of</strong> dimension d = dim G over <strong>the</strong> <strong>algebraic</strong> closure ˜K <strong>of</strong> K, <strong>the</strong>re exist<br />

n 1 , · · · , n d ∈ ¯N v such that<br />

d∑<br />

(Ad(n i ) − 1)L = L.<br />

i=1<br />

Now consider <strong>the</strong> morphism <strong>of</strong> K v -manifolds<br />

φ : G Kv × · · · × G Kv −→ G Kv ,<br />

5


def<strong>in</strong>ed by<br />

φ((g 1 , · · · , g d )) =<br />

d∏<br />

[n i , g i ].<br />

Let L v be <strong>the</strong> Lie algebra <strong>of</strong> (<strong>the</strong> K v -manifold) G Kv . Then <strong>the</strong> derivative <strong>of</strong><br />

φ at <strong>the</strong> identity (e, · · · , e),<br />

is given by<br />

i=1<br />

dφ : L v × · · · × L v −→ L v ,<br />

dφ((l 1 , · · · , l d )) =<br />

d∑<br />

(Ad(n i ) − 1)l i .<br />

i=1<br />

Now from <strong>the</strong> above and [PR, Lemma 3.1, p.113]<br />

d∑<br />

(Ad(n i ) − 1)L v = L v .<br />

i=1<br />

It follows that dφ is surjective <strong>in</strong> <strong>which</strong> case we may apply <strong>the</strong> Inverse Function<br />

Theorem [Se, LG, Chapter III, Section 9]. Then <strong>the</strong>re exist open neighbourhoods<br />

<strong>of</strong> <strong>the</strong> identities U, V <strong>in</strong> G v × · · · × G Kv and G Kv , respectively,<br />

and a restriction φ r <strong>of</strong> φ such that<br />

φ r : U −→ V<br />

is a homeomorphism. Restrict<strong>in</strong>g φ r fur<strong>the</strong>r to (<strong>the</strong> open set) U ∩ ( ¯Γ v × · · · ×<br />

¯Γ v ) we conclude that [ ¯N v , ¯Γ v ] is open (<strong>in</strong> G Kv ).<br />

Part (b). We may assume without loss <strong>of</strong> generality that N is generated by<br />

<strong>the</strong> Γ -conjugates <strong>of</strong> f<strong>in</strong>itely many <strong>of</strong> its elements. It follows that <strong>the</strong>re exists<br />

a f<strong>in</strong>ite set S ′ , conta<strong>in</strong><strong>in</strong>g S, such that, for all v /∈ S ′ ,<br />

(i) Γ ≤ G(O v ),<br />

(ii) ¯Γ v = G(O v ),<br />

(iii) N ≤ G(O v ).<br />

Let Ñv = [ ¯N v , ¯Γ v ]. Then from <strong>the</strong> above, for all v /∈ S ′ ,<br />

6


(i) Ñ v ∩ G(O v ) G(O v ),<br />

(ii) [Γ, N] ≤ Ñv ∩ G(O v ).<br />

Recall that F v is <strong>the</strong> (f<strong>in</strong>ite) residue field <strong>of</strong> O v (i.e. O v /p v ). For each s ≥ 0,<br />

let<br />

G(p s v) = {Y ∈ G(O v ) : Y − I n ∈ M n (p s v)}.<br />

It is known [PR, Proposition 3.20, p.146] that<br />

G(O v )/G(p v ) ∼ = G(F v ).<br />

It is also known [PR, Proposition 7.5, p.406] that, if |F v | ≥ 4, <strong>the</strong>n G(F v )<br />

has no nontrivial, noncentral normal sub<strong>groups</strong>. We wish to prove that, for<br />

all but f<strong>in</strong>itely many v /∈ S ′ , <strong>the</strong> normal subgroup Ñv ∩ G(O v ) does not<br />

map <strong>in</strong>to <strong>the</strong> centre <strong>of</strong> G(F v ). Suppose to <strong>the</strong> contrary that Ñv ∩ G(O v ) is<br />

central (mod G(p v )), for <strong>in</strong>f<strong>in</strong>itely many v. Then, for all <strong>the</strong>se v, [[N, Γ ], Γ ]<br />

is conta<strong>in</strong>ed <strong>in</strong> G(p v ). It follows that<br />

[[N, Γ ], Γ ] = 1.<br />

Now N and Γ <strong>are</strong> Zariski dense and so by [B, Proposition, p.59]<br />

[[G, G], G] = 1.<br />

This contradicts <strong>the</strong> fact that [G, G] = G. [B, Proposition, p.181].<br />

deduce that <strong>the</strong>re exists a f<strong>in</strong>ite set S ′′ , conta<strong>in</strong><strong>in</strong>g S ′ , for <strong>which</strong><br />

We<br />

(i) (Ñv ∩ G(O v )).G(p v ) = G(O v ),<br />

(ii) G(O v ) is perfect.<br />

For (ii) see [PrRag, Section 2.3]. 1 For each, v /∈ S ′′ , it follows that<br />

G(O v )/Ñv ∩ G(O v ) ∼ = G(p v )/Ñv ∩ G(p v ).<br />

Now [G(p s v), G(p t v)] ≤ G(p s+t<br />

v ) and so, by part (a), G(O v )/Ñv ∩ G(O v ) is<br />

solvable. By (ii) <strong>the</strong>n Ñv ∩ G(O v ) = G(O v ). This completes <strong>the</strong> pro<strong>of</strong>. □<br />

1 The authors <strong>are</strong> <strong>in</strong>debted to Pr<strong>of</strong>essor Rap<strong>in</strong>chuk for provid<strong>in</strong>g this reference.<br />

7


The follow<strong>in</strong>g consequence is immediate.<br />

Corollary 1.2. With <strong>the</strong> notation <strong>of</strong> <strong>the</strong> Theorem 1.1, <strong>the</strong>re exists q 0 ≠ {0}<br />

such that<br />

¯N = ⋂<br />

N.G(q) = N.G(q 0 ).<br />

q≠{0}<br />

The ideal q 0 is, <strong>of</strong> course, not unique. It is clear that if Corollary 1.2 holds<br />

for q 0 <strong>the</strong>n it also holds for any nonzero ideal q ′ 0 conta<strong>in</strong>ed <strong>in</strong> q 0 . In practise<br />

it is convenient to choose q 0 so that <strong>the</strong> <strong>in</strong>dex |G(O S ) : G(q 0 )| is m<strong>in</strong>imal.<br />

In <strong>the</strong> f<strong>in</strong>al section we will show <strong>in</strong> some detail how N and q 0 <strong>are</strong> related <strong>in</strong><br />

some special cases.<br />

Theorem 1.1, <strong>of</strong> course, holds trivially for <strong>the</strong> case where N is commensurable<br />

with Γ . For a nontrivial example <strong>of</strong> N to <strong>which</strong> it applies consider <strong>the</strong><br />

case <strong>of</strong> <strong>the</strong> classical modular group, i.e. G = SL 2 , K = Q, S = {∞ ′ } and<br />

Γ = SL 2 (Z). Let M be a normal subgroup <strong>of</strong> f<strong>in</strong>ite <strong>in</strong>dex <strong>in</strong> Γ . Then with<br />

f<strong>in</strong>itely many exceptions M is a free nonabelian group <strong>of</strong> f<strong>in</strong>ite rank. For<br />

such an M take N = [M, M]. Then N is free <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite rank and hence is<br />

not S-arithmetic.<br />

2. Arithmetic lattices <strong>in</strong> rank one <strong>groups</strong><br />

Throughout this section we assume that <strong>the</strong> characteristic <strong>of</strong> K is nonzero.<br />

We fix a (nonarchimedean) place v <strong>of</strong> k and let S = {v}. (The simplest<br />

example <strong>of</strong> such an O(S) is <strong>the</strong> polynomial r<strong>in</strong>g F q [t], where F q is <strong>the</strong> f<strong>in</strong>ite<br />

field <strong>of</strong> order q.) In addition to <strong>the</strong> hypo<strong>the</strong>ses <strong>in</strong> <strong>the</strong> statement <strong>of</strong> Theorem<br />

1.1, we assume that G is absolutely almost simple and that <strong>the</strong> K v -rank <strong>of</strong><br />

G is 1.<br />

Let Λ be a nonuniform, S-arithmetic lattice <strong>in</strong> (<strong>the</strong> locally compact group)<br />

G Kv . By def<strong>in</strong>ition<br />

(i) Λ is a discrete subgroup <strong>of</strong> G(k v ) ;<br />

(ii) µ(G(K v )/Λ) is f<strong>in</strong>ite, where µ is a Haar measure on G(K v ) ;<br />

(iii) G(K v )/Λ is not compact;<br />

(iv) Λ is commensurable with G O(S) .<br />

8


For our purposes, it suffices to assume that Λ is a (f<strong>in</strong>ite <strong>in</strong>dex) subgroup <strong>of</strong><br />

G O(S) .<br />

Notation. For each nonzero O S ideal q let<br />

U Λ (q) = 〈u ∈ Λ ∩ G(q) : u, unipotent〉.<br />

An immediate application <strong>of</strong> Theorem 1.1 is <strong>the</strong> follow<strong>in</strong>g.<br />

Lemma 2.1. The closure <strong>of</strong> U Λ (q) <strong>in</strong> G K <strong>in</strong> <strong>the</strong> S-congruence topology is<br />

also open.<br />

N.B. It is well-known that <strong>in</strong> this case SL 2 (O(S)) and hence U Λ (q) <strong>are</strong> not<br />

f<strong>in</strong>itely generated. (This extends a classical result for SL 2 (F q ) due to Nagao.)<br />

One important consequence <strong>of</strong> Lemma 2.1 is that Lemma 5.7 <strong>in</strong> [MPSZ] is<br />

true for all q so that, <strong>in</strong> <strong>the</strong> term<strong>in</strong>ology <strong>of</strong> [MPSZ], <strong>the</strong> pr<strong>in</strong>cipal result always<br />

holds. This leads to a significant simplification <strong>in</strong> <strong>the</strong> pro<strong>of</strong>s <strong>of</strong> [MPSZ].<br />

Specifically Zel’manov’s solution [Z] <strong>of</strong> <strong>the</strong> restricted Burnside problem for<br />

topological <strong>groups</strong> is no longer required.<br />

Associated with G Kv is its Bruhat-Tits build<strong>in</strong>g <strong>which</strong> <strong>in</strong> this case is a tree T<br />

(s<strong>in</strong>ce <strong>the</strong> K v -rank <strong>of</strong> G is 1). Bass-Serre <strong>the</strong>ory shows how a presentation<br />

for Λ can be <strong>in</strong>ferred from its action on T , via <strong>the</strong> structure <strong>of</strong> <strong>the</strong> quotient<br />

graph Λ\T . In confirm<strong>in</strong>g a conjecture <strong>of</strong> Serre, Lubotzky has shown [L,<br />

Theorem 7.5] that Λ conta<strong>in</strong>s <strong>in</strong>f<strong>in</strong>itely many f<strong>in</strong>ite sub<strong>groups</strong> <strong>which</strong> <strong>are</strong> not<br />

S-congruence, i.e. so-called S-noncongruence sub<strong>groups</strong>. Our results can be<br />

used to provide <strong>in</strong>formation on <strong>the</strong> ubiquity <strong>of</strong> <strong>the</strong> S-noncongruence sub<strong>groups</strong><br />

<strong>of</strong> Λ.<br />

It is known [L, Theorem 6.1] that <strong>the</strong> first Betti number <strong>of</strong> Λ\T , b 1 (Λ\T ),<br />

is f<strong>in</strong>ite.<br />

Theorem 2.2. Let F r be <strong>the</strong> free group on r generators, where r = b 1 (Λ\T )<br />

and let f(r, n) denote <strong>the</strong> number <strong>of</strong> <strong>in</strong>dex n sub<strong>groups</strong> <strong>of</strong> F r . Let nc(Λ, n) be<br />

<strong>the</strong> number <strong>of</strong> S-noncongruence sub<strong>groups</strong> <strong>of</strong> <strong>in</strong>dex n <strong>in</strong> Λ. Then <strong>the</strong>re exists<br />

a constant n 0 = n 0 (Λ) such that, if n > n 0 , <strong>the</strong>n<br />

nc(Λ, n) ≥ f(r, n).<br />

9


Moreover, if r ≥ 1, <strong>the</strong>n for all n > n 0 , <strong>the</strong>re exists at least one normal,<br />

S-noncongruence subgroup <strong>of</strong> <strong>in</strong>dex n <strong>in</strong> Λ.<br />

Pro<strong>of</strong>. Let Λ(q) = Λ ∩ G(q). Then by Corollary 1.2 and Lemma 2.1<br />

Λ(q 0 ) ≤ ⋂<br />

U Λ (O S ).Λ(q),<br />

q≠{0}<br />

for some nonzero q 0 . We choose q 0 so that n 0 = |Λ : Λ(q 0 )| is m<strong>in</strong>imal.<br />

Now let Λ V be <strong>the</strong> subgroup <strong>of</strong> Λ generated by all <strong>the</strong> stabilizers <strong>in</strong> Λ <strong>of</strong><br />

<strong>the</strong> vertices <strong>of</strong> T . By standard Bass-Serre <strong>the</strong>ory we have<br />

Λ/Λ V<br />

∼ = Fr .<br />

In addition, s<strong>in</strong>ce U Λ (O(S)) is generated by elements <strong>of</strong> f<strong>in</strong>ite order,<br />

U Λ (O(S)) ≤ Λ V .<br />

Suppose Λ c is a congruence subgroup <strong>of</strong> Λ conta<strong>in</strong><strong>in</strong>g Λ V . Then by <strong>the</strong> above<br />

Λ(q 0 ) ≤ Λ c ,<br />

<strong>which</strong> implies that |Λ : Λ c | ≤ n 0 . The first part follows.<br />

For <strong>the</strong> second part note that when r ≥ 1 <strong>the</strong>re exists an epimorphism<br />

θ : Λ/Λ V ↠ Z.<br />

Notes.<br />

□<br />

(i) In many cases b 1 (Λ\T ) is nonzero. More precisely it is known [MPSZ,<br />

Lemma 3.7] that <strong>in</strong> this situation every arithmetic S-arithmetic lattice<br />

conta<strong>in</strong>s lattices <strong>of</strong> <strong>the</strong> same type with arbitrarily large first Betti<br />

numbers.<br />

(ii) The Dr<strong>in</strong>feld modular group. For <strong>the</strong> case where G = SL 2 (with as<br />

above S = {v}) <strong>the</strong> group SL 2 (O(S)) is a nonuniform S-arithmetic<br />

lattice <strong>in</strong> G Kv . It plays a fundamental role [G] <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Dr<strong>in</strong>feld<br />

10


modular curves, analogous to that <strong>of</strong> <strong>the</strong> modular group SL 2 (Z) <strong>in</strong> <strong>the</strong><br />

classical <strong>the</strong>ory <strong>of</strong> modular forms. It is known [MS, Theorem 2.10] precisely<br />

when b 1 (SL 2 (O(S))\T ) is zero. (This happens <strong>in</strong> only 4 cases.)<br />

In addition when Λ = SL 2 (O(S)) it is known [MS, Theorem 1.2] that<br />

Theorem 2.1 holds for all n ≥ 1, i.e. n 0 = 1, equivalently, q 0 = O(S).<br />

3. The case G = SL 2<br />

In <strong>the</strong> f<strong>in</strong>al section we show <strong>in</strong> some restricted circumstances it is possible<br />

prove an explicit version <strong>of</strong> Raghunathan’s Lemma <strong>in</strong> an elementary way<br />

<strong>which</strong> does not <strong>in</strong>volve any Lie <strong>the</strong>ory. We revert here to K <strong>of</strong> any characteristic<br />

and any S.<br />

Def<strong>in</strong>ition. Let H be a subgroup <strong>of</strong> SL 2 (O(S)). The order <strong>of</strong> H, o(H), is<br />

<strong>the</strong> O(S)-ideal generated by all h 12 , h 21 , h 11 − h 22 , where (h ij ) ∈ H.<br />

Def<strong>in</strong>ition. For each O(S)-ideal q let<br />

{ 12q , char(K) = 0<br />

φ(q) =<br />

q 4 , char(K) ≠ 0<br />

Lemma 3.1. Let N be a noncentral normal subgroup <strong>of</strong> SL 2 (O(S)), with<br />

o(N) = n(≠ {0}). Let q be any nonzero O(S)-ideal q. If n ′ = n + q, <strong>the</strong>n<br />

SL 2 (φ(n ′ )) ≤ N.SL 2 (q).<br />

Pro<strong>of</strong>. S<strong>in</strong>ce M = N.SL 2 (q) is an S-congruence subgroup whose level<br />

o(M) = n + q,<br />

we can apply [Mas, Theorems 3.6, 3.10, 3.14].<br />

□<br />

Theorem 3.2. Let N be a noncentral normal subgroup <strong>of</strong> SL 2 (O(S)). Then<br />

¯N = ⋂<br />

N.SL 2 (q) = N.SL 2 (φ(n)),<br />

where n = o(N).<br />

q≠{0}<br />

11


Under fur<strong>the</strong>r restrictions Theorem 3.2 can be improved. For example, from<br />

<strong>the</strong> results <strong>of</strong> [Mas] it follows that, if o(N) is prime to 6, <strong>the</strong>n<br />

¯N = ⋂<br />

N.SL 2 (q) = N.SL 2 (n).<br />

q≠{0}<br />

In particular, if o(N) = O(S), <strong>the</strong>n ¯N = SL 2 (O(S)).<br />

Acknowledgement<br />

The authors <strong>are</strong> <strong>in</strong>debted to Pr<strong>of</strong>essors Prasad and Raghunathan for assistance<br />

with <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 1.1.<br />

References<br />

[B] A. Borel, L<strong>in</strong>ear Algebraic Groups, (Spr<strong>in</strong>ger-Verlag, New York 1991).<br />

[BT] A. Borel and J. Tits, Homomorphismes “abstraits” de groupes algébriques<br />

simples, Ann. Math. (2) 97 (1973), 499-571.<br />

[G] E.-U. Gekeler, Dr<strong>in</strong>feld Modular Curves, Lecture Notes <strong>in</strong> Ma<strong>the</strong>matics<br />

1231, (Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1986).<br />

[L] A. Lubotzky, Lattices <strong>in</strong> rank one Lie <strong>groups</strong> over local fields, Geom.<br />

Funct. Anal. 1 (1991), 405-431.<br />

[Mar] G. A. Margulis, Discrete <strong>Sub<strong>groups</strong></strong> <strong>of</strong> Semisimple Lie Groups, (Spr<strong>in</strong>ger-<br />

Verlag, Berl<strong>in</strong>, Heidelberg 1991).<br />

[Mas] A. W. Mason, The order and level <strong>of</strong> a subgroup <strong>of</strong> GL 2 over a Dedek<strong>in</strong>d<br />

r<strong>in</strong>g <strong>of</strong> arithmetic type, Proc. Roy. Soc. Ed<strong>in</strong>burgh Sect. A 119 (1991),<br />

191-212.<br />

[MS] A. W. Mason and Andreas Schweizer, The m<strong>in</strong>imum <strong>in</strong>dex <strong>of</strong> a noncongruence<br />

subgroup <strong>of</strong> SL 2 over an arithmetic doma<strong>in</strong>, Israel J. Math.<br />

133 (2003), 29-44.<br />

[MPSZ] A. W. Mason, A. Premet, B. Sury and P. A. Zalesskii, The congruence<br />

kernel <strong>of</strong> an arithmetic group <strong>in</strong> a rank one <strong>algebraic</strong> group over a local<br />

field, J. Re<strong>in</strong>e Angew. Math. 623 (2008), 43-72.<br />

12


[P] R. P<strong>in</strong>k, Strong approximation for Zariski dense sub<strong>groups</strong> over arbitrary<br />

global fields, Comment. Math. Helv. 75 (2000), 608-643.<br />

[PR] V. P. Platonov and A. S. Rap<strong>in</strong>chuk, Algebraic Groups and Number<br />

Theory, (Academic Press, 1994).<br />

[PrRag] Gopal Prasad and M. S. Raghunathan, On <strong>the</strong> congruence subgroup<br />

problem: determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> “metaplectic kernel”, Invent. Math. 71<br />

(1983), 21-42.<br />

[R] M. S. Raghunathan, On <strong>the</strong> congruence subgroup problem II, Invent.<br />

Math. 85 (1986), 73-117.<br />

[Se] J-P. Serre, Lie Algebras and Lie <strong>groups</strong>. Second Edition. Lecture Notes<br />

<strong>in</strong> Ma<strong>the</strong>matics, vol. 1500 (Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1992).<br />

[W] B. Weisfeiler, Strong approximation for Zariski-dense sub<strong>groups</strong> <strong>of</strong> semisimple<br />

<strong>algebraic</strong> <strong>groups</strong>, Ann. <strong>of</strong> Math. (2) 120 (1984), 271-315.<br />

[Z] E. I. Zel’manov, On periodic compact <strong>groups</strong>, Israel J. Math. 77<br />

(1992), 83-95.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!