07.03.2014 Views

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Modeling and control modes <strong>of</strong> PM synchronous motor drives<br />

Ld + Lq Lq −Ld j2( θr θK) j( θr θK)<br />

Ψ<br />

sK<br />

= ( ) IsK − ( ) I ∗ sK<br />

e − +Ψ<br />

PM<br />

e<br />

− (2.20)<br />

2 2<br />

Stator fixed system ( α,<br />

β )<br />

Taking the angular speed <strong>of</strong> the reference frame to be Ω<br />

K<br />

= 0 and θ<br />

K<br />

= 0 , the set <strong>of</strong><br />

synchronous machine vector equations (2.19) and (2.20) my be written as:<br />

U<br />

d Ψ<br />

sαβ<br />

sαβ<br />

= Rs<br />

Isαβ<br />

+ (2.21)<br />

dt<br />

Ld + Lq Lq −Ld ∗ j2θr<br />

jθ<br />

r<br />

Ψ<br />

sαβ = ( ) I<br />

sαβ − ( ) Isαβ<br />

e +Ψ<br />

PM<br />

e<br />

(2.22)<br />

2 2<br />

Substituting to above equations the following expressions for complex vectors<br />

U U jU<br />

= s sα<br />

+ , αβ sβ<br />

s sα<br />

sβ<br />

I αβ = I + jI , Ψ αβ =Ψ<br />

sα<br />

+ jΨ sβ<br />

and splitting into real and<br />

s<br />

imaginary parts one can obtain the scalar form <strong>of</strong> the machine equations in stationary<br />

α,<br />

β reference frame:<br />

U<br />

U<br />

dΨ<br />

dt<br />

sα<br />

sα<br />

= RsIsα<br />

+ (2.23a)<br />

dΨ<br />

sβ<br />

sβ<br />

= RsIsβ<br />

+ (2.23b)<br />

dt<br />

Ld + Lq Lq −Ld Lq −Ld<br />

( cos2 θ ) Is<br />

( )sin2θ Is<br />

cosθ<br />

2 2 2<br />

Ψ = − − +Ψ (2.24a)<br />

sα r α r β PM r<br />

Lq − Ld Ld + Lq Lq −Ld<br />

Ψ<br />

sβ =− ( )sin 2 θrIsα + [( ) + ( )cos2 θr] Isβ<br />

+Ψ<br />

PM<br />

sinθ<br />

(2.24b)<br />

r<br />

2 2 2<br />

Note, that in the flux-current equations (2.24a and b) still we can observe that value <strong>of</strong><br />

inductances depends on rotor position θ<br />

r<br />

.<br />

Stator flux fixed system ( x,<br />

y )<br />

In order to take advantage <strong>of</strong> the set <strong>of</strong> equations (2.19) and (2.20) in rotating coordinate<br />

system, one assumes that the coordinate system rotates <strong>with</strong> the stator flux linkage<br />

angular speed Ω<br />

K<br />

=Ω<br />

Ψ<br />

and θK<br />

= θ Ψ<br />

. As a<br />

sx s<br />

Ψ =Ψ , δ = −( θ − θ )<br />

Ψ<br />

r<br />

Ψ<br />

d Ψ<br />

U R I j<br />

dt<br />

sxy<br />

sxy<br />

=<br />

s sxy<br />

+ + ΩΨsΨ (2.25)<br />

sxy<br />

Ld + Lq Lq −Ld ∗ − j2δΨ<br />

− jδΨ<br />

Ψ<br />

sxy<br />

= ( ) Isxy − ( ) Isxy<br />

e +Ψ<br />

PM<br />

e<br />

(2.26)<br />

2 2<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!