07.03.2014 Views

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

Direct Torque Control with Space Vector Modulation (DTC-SVM) of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Direct</strong> <strong>Torque</strong> <strong>Control</strong> <strong>with</strong> <strong>Space</strong> <strong>Vector</strong> <strong>Modulation</strong><br />

Finally, the discrete transfer function <strong>of</strong> controlled plant G ( z ) can be written as:<br />

M<br />

Where:<br />

C<br />

M _ d<br />

⎛ A ⎞<br />

Md<br />

GM<br />

( z) = ( z−1) ⎜ 2<br />

⎟<br />

⎝ z − BMd<br />

z+<br />

CMd<br />

⎠<br />

2<br />

A<br />

BM<br />

A = e sin( T C − ) ,<br />

4<br />

BM<br />

− T<br />

M<br />

s<br />

2<br />

M _ d<br />

2<br />

s M<br />

BM<br />

CM<br />

−<br />

4<br />

BM<br />

Ts<br />

= e − and T<br />

s<br />

is sampling time.<br />

(5.78)<br />

BM<br />

2<br />

− Ts<br />

B<br />

2<br />

M<br />

BM _ d<br />

= 2e cos( Ts CM<br />

− )<br />

4<br />

Hence, the transfer function <strong>of</strong> closed torque control loop is obtained as:<br />

G<br />

M _ closed<br />

( z)<br />

M ( z) C ( z) G ( z) D( z)<br />

M ( z) 1 + C ( z) G ( z) D( z)<br />

e_<br />

ref M M<br />

= = =<br />

e M M<br />

K<br />

A ( K + K )( z−<br />

)<br />

pM<br />

M _ d pM iM<br />

KpM<br />

+ KiM<br />

3 2<br />

−<br />

M _ d<br />

+ [<br />

M _ d( pM<br />

+<br />

iM) +<br />

M _ d]<br />

−<br />

M _ d pM<br />

=<br />

z B z A K K C z A K<br />

(5.79)<br />

Selecting<br />

K Ψ<br />

, K Ψ<br />

will influence poles placement <strong>of</strong> closed torque control loop and as a<br />

p<br />

i<br />

consequence also torque step responses can be selected.<br />

The transfer function <strong>of</strong> closed torque control loop is more complicated than flux control loop<br />

(see design <strong>of</strong> PI-flux controller – section 5.3.1). One possibility is use to the SISO tools from<br />

Matlab package to tune parameters <strong>of</strong> PI torque controller [106].<br />

a) b)<br />

Figure 5.37. a) <strong>Torque</strong> step response for sampling time T = 200µ<br />

s, b) <strong>with</strong> denoted rise time,<br />

overshoot and settling time.<br />

As can be observed the response is characterized by overshoot about 40%, rise time 4 samples<br />

and settling time 17 samples.<br />

s<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!