06.03.2014 Views

Download - IRIS

Download - IRIS

Download - IRIS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Communications Enabling the Next<br />

Generation of Seismic Systems<br />

Frank Vernon<br />

2012 <strong>IRIS</strong> Workshop


Overview<br />

• Current use of communications in<br />

seismology<br />

• Technical requirements<br />

• Terrestrial communications<br />

• Marine communications<br />

• Summary


GLOBAL SEISMOGRAPHIC NETWORK<br />

KIP<br />

POHA<br />

JOHN<br />

XMAS<br />

RAR<br />

KDAK<br />

PTCN<br />

COLA<br />

FFC<br />

COR RSSD<br />

CMB<br />

NVAR<br />

WCI<br />

CCM<br />

HRV<br />

s PDAR<br />

SSPA<br />

ANMO<br />

PASC<br />

WVT<br />

BBSR<br />

PFO HKT<br />

TUC<br />

TXAR TEIG DWPF<br />

GTBY GRTK<br />

SJG<br />

SLBS<br />

ILAR<br />

PAYG<br />

RPN<br />

TGUH<br />

JTS<br />

MDTJ<br />

OTAV<br />

NNA<br />

SDDR<br />

BCIP<br />

LVC<br />

SDV<br />

ANWB<br />

BBGH<br />

GRGR<br />

PTGA<br />

SAML<br />

ALE<br />

SFJD<br />

CMLA<br />

MACI<br />

SACV<br />

RCBR ASCN<br />

KEV<br />

BILL<br />

BORG<br />

LVZ<br />

NRIL<br />

KONO<br />

TIXI<br />

YAK MA2<br />

OBN ARU<br />

ESK<br />

TLY<br />

GRFO<br />

KURK<br />

HIA<br />

MAKZ<br />

KIEV BRVK<br />

MDJ<br />

BFO<br />

KIV AAK<br />

PAB<br />

ULN<br />

WMQ<br />

BJT<br />

INCN<br />

ANTO GNI<br />

NIL LSA<br />

XAN SSE<br />

ABKT<br />

KBL<br />

KMI ENH<br />

SHEL<br />

KOWA<br />

MSKU<br />

KBS<br />

TSUM<br />

LBTB<br />

MBAR<br />

LSZ<br />

FURI<br />

RAYN<br />

KMBO<br />

ABP O<br />

UOSS<br />

MSEY<br />

PALK<br />

DGAR<br />

CHTO<br />

COCO<br />

MBWA<br />

PET<br />

YSS<br />

ERM<br />

MAJO<br />

TATO<br />

HKPS<br />

QIZ GUMO<br />

BTDF<br />

KAPI<br />

WRAB<br />

DAV<br />

2/2012<br />

PMG<br />

ATTU<br />

CTAO<br />

WAKE<br />

KWAJ<br />

HNR<br />

ADK<br />

TARA<br />

MIDW<br />

FUNA<br />

MSVF<br />

RAO<br />

KNTN<br />

AFI<br />

LCO<br />

TRQA<br />

TRIS<br />

SUR<br />

NWAO<br />

TAU<br />

SNZO<br />

EFI<br />

HOPE<br />

PMSA<br />

CASY<br />

MCQ<br />

VNDA<br />

WANT<br />

QSPA<br />

SBA<br />

<strong>IRIS</strong> / IDA Stations <strong>IRIS</strong> / USGS Stations Affiliate Stations Planned Stations


Global Seismic Network<br />

Telemetry<br />

• Essentially all stations have real time<br />

telemetry<br />

• Data used for real time processing by<br />

multiple users<br />

• Rapid earthquake notification<br />

• Source parameter estimation (location,<br />

magnitudes, ...)<br />

• Tsunami warning<br />

• Telemetry to nearest Internet POP<br />

• Satellite<br />

• Direct link


Regional Networks -Alaska


National and Regional Seismic<br />

Networks Telemetry<br />

•<br />

Essentially all stations have real time<br />

telemetry<br />

• Data used for real time processing<br />

• Rapid earthquake notification<br />

• Source parameter estimation (location,<br />

magnitudes, ...)<br />

• Tsunami warning<br />

• Telemetry to nearest Internet POP<br />

• Dedicated networks<br />

• Satellite<br />

• Mobile phone


PASSCAL Ad Hoc Telemetry


PASSCAL Ad<br />

Hoc Telemetry


USArray Transportable Array


Station Photos<br />

C35A Minnesota<br />

958A Florida<br />

142A Louisiana<br />

E27A North Dakota


Modularity in Communications<br />

Cellular Modem<br />

Solar VSAT<br />

AC VSAT<br />

• 96% Cellular<br />

• 3% VSAT


Telemetry Feasibility<br />

Sites are selected with the telemetry option as part of the plan.<br />

The available options in order of preference are;<br />

• Verizon digital service (EVDO)<br />

• AT&T (GPRS / GSM)<br />

• Radio to a VSAT located near AC Power<br />

• Radio to a location with AC power that has DSL or Cable<br />

Modem service available, not landowners.<br />

• Radio to a VSAT powered by solar panels.<br />

Radio range is 20 km line of sight. It is most often a few hundred meters.


VSAT<br />

• Works in remote locations<br />

• Slow connections<br />

• Longer to install<br />

• During Recon:<br />

• Check for 35 degree elevation<br />

angle, south-southwest<br />

• Locate near a power source<br />

(AC Plug)<br />

• Radio line of sight to seismic<br />

vault


Current telemetry<br />

Network<br />

Station<br />

Spacing<br />

Bandwidth<br />

# stas<br />

Station<br />

Power<br />

GSN ~2000 km ~5 kbit/s ~150 100+ w<br />

Reg/Nat 20 - 500 km ~20 kbit/s 20 - 300 5 - 100+ w<br />

TA 70 km ~5 kbit/s 450+ 6 w<br />

PASSCAL 0.02-100 km 0 - 30 kbit/s 10 - 1000 2 - 6 w


Current telemetry<br />

Network<br />

Station<br />

Spacing<br />

Bandwidth<br />

# stas<br />

Station<br />

Power<br />

GSN ~2000 km ~5 kbit/s ~150 100+ w<br />

Reg/Nat 20 - 500 km ~20 kbit/s 20 - 300 5 - 100+ w<br />

TA 70 km ~5 kbit/s 450+ 6 w<br />

PASSCAL 0.02-100 km 0 - 30 kbit/s 10 - 1000 2 - 6 w


Terrestrial Telemetry options<br />

Comm Type Power Distance BW bytes/Joule<br />

Wireless mobile 2 w ~20 km 300 kbs 19 kB/j<br />

Wireless Freewave 3 w 100+ km 154 kbs 6.4 kB/j<br />

Wireless Afar 5 w 50 km 2750 kbs 68 kB/j<br />

Satellite Wild Blue 30 w 1000+ km 50 kbs 0.2 kB/j<br />

Satellite Began 4 w 1000+ km 250 kbs 7.8 kB/j<br />

Satellite Iridium 5 w 1000+ km 2.4 kbs 0.06 kB/j


Current Realtime Data at DMC


Current Realtime Data at DMC


Goals<br />

• Transition to telemetry based systems<br />

• Near real time access to data<br />

• Better QC<br />

• Better data return<br />

• Access to data from remote sites<br />

• Connection to nearest Internet Point of Presence (POP)


Current Barriers<br />

• Power for PASSCAL type experiments<br />

• 2-30 W for comms<br />

• Bandwidth in remote areas<br />

• IRIDIUM<br />

• Installation<br />

• Additional equipment (antennas, cables, telemetry, time)<br />

• Line-of-sight to nearest neighbor or Internet POP<br />

• terrain and vegetation<br />

• Software configuration<br />

• automated initiation of dataflow (currently done on TA)<br />

• Transformation to streaming processing model from batch<br />

offline processing model


Opportunities<br />

• Radio and Satellite technologies are mature<br />

• Improvements being made<br />

• power management<br />

• efficient use of bandwidth<br />

• duty cycling<br />

• Communications for interstation spacings > 10 km<br />

• mobile<br />

• ad hoc networking<br />

• satellite<br />

• controlled by physics - line of sight, power


Present Mobile Coverage


Present Mobile Coverage


Opportunities<br />

Communications for interstation spacings < 1 km<br />

dedicated mesh networks<br />

exemplar company - wireless SEISMIC<br />

max 15000 channels<br />

up to 21 days of battery<br />

200 - 2000 sps (.5 mil - 5 mil)<br />

currently single channel<br />

no local storage


• Experiment design<br />

Opportunities<br />

• 40 by 40 grid ( 50 meter spacing )<br />

• 3 component<br />

• 4800 channels<br />

• 200 sps<br />

• Challenges<br />

• 30 Mbits/sec<br />

• 350 GBytes/day<br />

• 10 TBytes/month<br />

TA<br />

2.5 Mbits/sec<br />

20 Gbytes/day<br />

0.6<br />

TBytes/mont


Ocean Bottom GSN Stations<br />

• There are none<br />

• Still large areas of globe uncovered by GSN<br />

• Appropriate technology<br />

• Broadband OBS technology fairly advanced<br />

• Satellite telemetry mature technology<br />

• Principal reasons for little progress<br />

• Required sites are very remote and often extreme weather<br />

• Real-time data acquisition requires surface “gateway”<br />

• Deep ocean buoys costly to deploy and maintain<br />

• Cost of deployment and maintenance


A 3000 km Coverage Hole


WHOI Nootka Buoy<br />

• Deployed 80 km off<br />

Vancouver Island 2004-<br />

2005<br />

• Acoustical link to buoy<br />

collected 500kB-1MB/day<br />

• Iridium link to shore


Neptune Canada


OOI Regional Scale Network<br />

Grays<br />

Harbor Line<br />

Axial<br />

Mid<br />

Plate<br />

Portland<br />

CyberPOP<br />

0<br />

Meters<br />

Hydrate<br />

Ridge<br />

Newport<br />

Line<br />

Primary Node<br />

Low Voltage Node<br />

Node - no science<br />

Coastal mooring<br />

3500<br />

Axial Seamount RSN Science Workshop<br />

5-7 October 2011<br />

30


An “outside-the-box” solution<br />

• Use current broadband OBS technology<br />

• Acoustic modems for ocean-column data transfer<br />

• Satellite telemetry for ocean-to-shore data transfer<br />

• Buoy-less real-time “gateway”<br />

• Ship-less deployment<br />

• Liquid Robotics Wave Glider


• Accomplishments<br />

Iridium ®<br />

Demonstrated that Wave<br />

Glider can station-keep<br />

and transit with acoustic<br />

communications<br />

(ACOMMS) payload<br />

Demonstrated that Wave<br />

Glider can support<br />

ACOMMS to seafloor<br />

sensor<br />

Wave Glider<br />

Acoustic modem link<br />

Seafloor sensor


Wall Street Journal 2010<br />

Front Page WSJ<br />

September 27, 2010


Modem Power Requirements<br />

• Data acquisition rate 3 chan x /sec x 16 bits/sample =<br />

48 bps. Let’s use 100 bps as design goal.<br />

• With 4 kbyte packet accumulate 1 packet in 320s, so<br />

270 packets/day.<br />

• At acoustic modem rate of 2400 bps each packet takes<br />

13.65s to xmit + 1.2s startup overhead ~15s. So 270<br />

packets/day takes 4050 s/day xmit time.<br />

• At 20 W xmit power power required ~ 25 W-hr/day or ~<br />

average 1 W power draw.<br />

• OBS takes about another 1 W average


Operational Scenario<br />

• Deployment by research vessel<br />

• Data collection via surface glider<br />

• 2+ year operational life for bottom batteries<br />

• Abandonment or ‘sleep’ till vessel of opportunity passes<br />

• Investigate autonomous deployment …


Underwater<br />

Cables<br />

REPEATER<br />

USA<br />

Internet<br />

access on<br />

seafloor<br />

75 - 100 km<br />

spacing<br />

Australia<br />

Seismometers Digitizer


USA<br />

Blue Green<br />

Acoustic laser - link -<br />

100 2.4 kbits+<br />

Australia


Underwater mesh<br />

network


Summary<br />

• Need to acquire data from all regions on planet<br />

• Data rates and bandwidth scale inversely with station<br />

spacing<br />

• Mesh and ad hoc networking are possible if stations have<br />

line of sight with others<br />

• Bandwidth to Internet POP a limitation<br />

• Internet POPs are spreading rapidly in terrestrial<br />

environment<br />

• Internet POPs may become available in marine<br />

environment<br />

• Bound by physical limits of power, distance, and<br />

line-of-sight

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!