06.03.2014 Views

Application Note AN-1046 - International Rectifier

Application Note AN-1046 - International Rectifier

Application Note AN-1046 - International Rectifier

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Application</strong> <strong>Note</strong> <strong>AN</strong>-<strong>1046</strong><br />

Dual Synchronous PWM Controller and LDO<br />

Controller in TSSOP Package Eases Multi-Output<br />

and Two-Phase Power Supply Solutions<br />

By Parviz Parto, <strong>International</strong> <strong>Rectifier</strong><br />

Table of Contents<br />

Page<br />

DDR Memory <strong>Application</strong>.....................................................................1<br />

Independent Mode ...............................................................................2<br />

Dual-Phase Mode with Programmable Current Sensing......................3<br />

Salient Features ...................................................................................5<br />

Many applications like DDR memory, and set top boxes require at least two output voltages.<br />

And then there are some others such as graphics cards where the output power exceeds any<br />

single input power budget. Or, an application when the current required is too large and a twophase<br />

solution should be used. <strong>International</strong> <strong>Rectifier</strong>’s IRU3046, a monolithic dual synchronous<br />

PWM controller with a built-in linear regulator controller, offers unprecedented flexibility to<br />

configure these multiple types of power supplies.<br />

www.irf.com<br />

<strong>AN</strong>-<strong>1046</strong><br />

cover


APPLICATION NOTE<br />

<strong>International</strong> <strong>Rectifier</strong> • 233 Kansas Street, El Segundo, CA 90245<br />

<strong>AN</strong>-<strong>1046</strong><br />

USA<br />

Dual Synchronous PWM Controller and LDO Controller In TSSOP<br />

Package Eases Multi-Output and Two-Phase Power Supply Solutions<br />

By Parviz Parto, <strong>International</strong> <strong>Rectifier</strong><br />

Many applications like DDR memory, and set top<br />

boxes require at least two output voltages. And then<br />

there are some others such as graphics cards where<br />

the output power exceeds any single input power<br />

budget. Or, application when the current required<br />

is too large that two-phase solution should be used.<br />

<strong>International</strong> <strong>Rectifier</strong>’s IRU3046, a monolithic<br />

dual synchronous PWM controller with a built-in<br />

linear regulator controller, offers unprecedented<br />

flexibility to configure these multiple types of<br />

power supplies.<br />

Until now, the traditional way to address these<br />

requirements has been to use separate controllers<br />

for each output with associated passive and discrete<br />

components. Now, with the introduction of<br />

IRU3046, that task is tremendously simplified.<br />

Housed in a low-cost 24-pin plastic TSSOP<br />

package, this single versatile bipolar device allows<br />

the user to configure two independent voltage<br />

outputs with either common or different inputs. Or,<br />

create a dual-phase design for single output with<br />

programmable current sharing when<br />

using two different input supplies. Or, two-phase<br />

application when high output current and high<br />

efficiency are required. In addition, it offers a<br />

separate linear controller for an additional<br />

independent adjustable voltage output. In short, the<br />

IRU3046 brings flexibility to the power supply<br />

designer that is unmatched.<br />

DDR Memory <strong>Application</strong><br />

One such solution with two outputs for DDR<br />

memory is shown in figure 1. The channel 1<br />

generates the Vcore (VDDQ) and the channel 2<br />

generates the termination voltage (VTT=1/2 VDDQ)<br />

by tracking the Vcore, this is achieved by sensing<br />

the VDDQ and using the integrated uncommitted<br />

error amplifier (Vp2). The two external resistors<br />

(R5, R9) generate the reference voltage for channel<br />

2 to track the VDDQ. The VTT tracking accuracy is<br />

about 1.5% for optimized data rate transfer<br />

accuracy. Figures 2 and 3 show how the VTT tracks<br />

the VDDQ both statically when the VDDQ changes<br />

from 2.5V to 2.87V and dynamically when the<br />

output current for VDDQ steps from 0-to 2A.<br />

Figure 1. IRU3046 configured for DDR Memory<br />

application<br />

www.irf.com<br />

1


<strong>Application</strong> <strong>Note</strong><br />

<strong>AN</strong>-<strong>1046</strong><br />

VDDQ<br />

VTT<br />

Figure 2. VDDQ changes from 2.5V to 2.87V and<br />

VTT tracks the half of VDDQ<br />

VDDQ<br />

Independent Mode<br />

In the independent mode, the output voltage of<br />

each independent channel is set and controlled<br />

by the output of the error amplifier. The<br />

output voltages can be set between 1.25 V and<br />

close to the input voltage. It is capable of<br />

supplying 10-15 A from single 5 V or 12 V.<br />

However, the input can be from the same<br />

supply or a separate operation for the two<br />

independent outputs. The output voltage of the<br />

each channel is set and controlled by the<br />

output of error amplifier and can be<br />

programmed by using two external resistors.<br />

This output voltage is defined by using the<br />

following equation:<br />

V out1 = V REF x (1 + R 7 /R 8 )<br />

Similarly, the output voltage of the linear<br />

regulator is programmed using the voltage<br />

reference and the external voltage divider (see<br />

figure 4).<br />

VTT<br />

2A<br />

0A<br />

Figure 3. Transient Response for VDDQ, VTT<br />

tracks VDDQ - Ch1: VDDQ, Ch2: VTT, Ch4:<br />

IDDQ, Step load 0-2A<br />

2


<strong>Application</strong> <strong>Note</strong><br />

<strong>AN</strong>-<strong>1046</strong><br />

12V<br />

5V<br />

C1<br />

33uF<br />

3.3V<br />

C6<br />

47uF<br />

2.5V<br />

@ 2A<br />

PGood<br />

C7<br />

47uF<br />

L1<br />

1uH<br />

C5<br />

1uF<br />

Q1<br />

IRLR2703<br />

R1<br />

1K<br />

C3<br />

1uF<br />

R2<br />

1K<br />

C8<br />

2200pF<br />

C4<br />

1uF<br />

R3<br />

22K<br />

R4<br />

C9<br />

25K<br />

1500pF<br />

C10<br />

0.1uF<br />

Vcc<br />

VCL<br />

VccLDO<br />

VSEN33<br />

VOUT3<br />

Fb3<br />

Rt<br />

Sync<br />

Comp1<br />

Comp2<br />

PGood<br />

SS<br />

VcH1<br />

VcH2<br />

HDrv1<br />

LDrv1<br />

PGnd<br />

U1<br />

Fb1<br />

IRU3046<br />

VREF<br />

Vp2<br />

HDrv2<br />

Gnd<br />

LDrv2<br />

Fb2<br />

C2<br />

33uF<br />

C13<br />

1uF<br />

D1<br />

L2<br />

1uH<br />

Q2<br />

IRF7460<br />

Q3<br />

IRF7457<br />

C14<br />

2x 47uF<br />

C17<br />

2x 150uF<br />

Q4<br />

IRF7457<br />

Q5<br />

IRF7457<br />

D2<br />

C11<br />

0.1uF<br />

L3<br />

4.7uH<br />

L4<br />

3.9uH<br />

R7<br />

442V<br />

R8<br />

1K<br />

R5<br />

1K<br />

R9<br />

1K<br />

1.8V<br />

@ 8A<br />

C16<br />

2x 150uF<br />

2.5V<br />

@ 8A<br />

C12<br />

2x 150uF<br />

Figure 4. IRU3046 configured for two independent outputs<br />

Dual-Phase Mode With Programmable<br />

Current Sharing<br />

The same device can also be configured for<br />

the application when the output power<br />

exceeds any single input power budget. For<br />

example we have the following application:<br />

Vout=1.5V @ 17A, Ptotal=25.5W. And two<br />

input supplies are Vin1=5V @ 3A, Pin1=15W<br />

and Vin2=12V @ 2A, Pin2=24W. As you see<br />

each of the inputs cannot provide the total<br />

output power. But, if we can combine the two<br />

inputs we can get the total output power<br />

(Fig.5). By appropriately selecting the two<br />

current sense resistors, the IRU3046 can<br />

combine these two input supplies and generate<br />

one single output with the total output power.<br />

5V<br />

12V<br />

D1<br />

BAT54S<br />

L2<br />

1uH<br />

C2<br />

33uF<br />

L1<br />

1uH<br />

C1<br />

33uF<br />

C3<br />

0.1uF<br />

C4<br />

47uF<br />

C5<br />

330uF<br />

C7<br />

1uF<br />

C32<br />

47uF<br />

C31<br />

330uF<br />

3.3V<br />

2.5V<br />

@ 2A<br />

C30<br />

1uF<br />

C8<br />

1uF<br />

C13<br />

47uF<br />

C18<br />

47uF<br />

Q3 IRLR2703<br />

R7 1K<br />

R6 10 V<br />

R10<br />

1K<br />

Vcc<br />

VCL<br />

VccLDO<br />

VSEN33<br />

VOUT3<br />

Fb3<br />

Rt<br />

VcH1<br />

U1<br />

IRU3046<br />

VcH2<br />

HDrv1<br />

LDrv1<br />

PGnd<br />

V REF<br />

Vp2<br />

D2<br />

BAT54A<br />

C9<br />

1uF<br />

Q1<br />

IRF7460<br />

Q2<br />

IRF7457<br />

L3 2.2uH<br />

C14<br />

470pF<br />

R5<br />

4.7 V<br />

C6<br />

1uF<br />

C10,C11,C12<br />

R3 3x 150uF<br />

5mV<br />

R8<br />

200<br />

C15<br />

1uF<br />

1.5V<br />

@ 16A<br />

Sync<br />

Fb1<br />

R13<br />

15K<br />

R16 C24<br />

29.4K 2200pF<br />

R21 C34<br />

16.5K 6.8nF<br />

Comp1<br />

Comp2<br />

Fb2<br />

HDrv2<br />

D4<br />

BAT54A<br />

Q4<br />

IRF7460<br />

C23<br />

1uF<br />

L4 3.3uH<br />

R17<br />

C19,C20,C21<br />

3x 150uF<br />

R12<br />

1K<br />

PGood<br />

C29<br />

0.1uF<br />

PGood<br />

SS<br />

Gnd<br />

LDrv2<br />

Q5<br />

IRF7457<br />

C26<br />

470pF<br />

R19<br />

4.7 V<br />

5mV<br />

Figure 5. IRU3046 configured as 2-phase converter with current sharing.<br />

5V input is the Master channel and set the output and 12V input is the slave channel that monitors the<br />

currents for achieving an accurate current sharing<br />

3


<strong>Application</strong> <strong>Note</strong><br />

<strong>AN</strong>-<strong>1046</strong><br />

In this Mode, the first error amplifier (E/A)<br />

acts as a master and sets the output voltage,<br />

while the second E/A acts as a slave and<br />

monitors the currents for current sharing. The<br />

slave’s error amplifier measures the voltage<br />

drop across the current sense resistors, and the<br />

differential of these signals is amplified and<br />

compared with the ramp signal to generate the<br />

fixed-frequency pulses of variable duty cycle<br />

to match the output currents.<br />

Two sense resistors (R3, R17 in figure 5) are<br />

used for current sharing. The relationship<br />

between the master and slave output current is<br />

expressed by:<br />

Rsen1*Imaster = Rsens2*Islave<br />

For equal current sharing Rsens1=Rsen2.<br />

To ensure accurate current sharing, proper<br />

attention must be paid to layout to create a<br />

symmetrical path.<br />

Because the two output stages are 180 degrees<br />

out of phase, the two inductor ripple currents<br />

cancel each other to result in a substantial<br />

reduction of output ripple current, thereby<br />

permitting a smaller output capacitor for the<br />

same ripple voltage requirement, Figure 6<br />

shows the inductors ripple current and current<br />

matching.<br />

Figure 6. Inductors current matching.<br />

Ch1: Gate signal for sync FET(master)<br />

(10V/div).<br />

Ch2: Gate signal for sync FET(slave)<br />

(10V/div).<br />

Ch3: Inductor current for master channel<br />

(5A/div).<br />

Ch4: Inductor current for slave channel<br />

(5A/div).<br />

VMASTER=5V, VSLAVE=12V, IOUT=10A<br />

For fast load response and steady state output,<br />

the designer must pay careful attention to the<br />

feedback control loops. It must provide a loop<br />

gain function with a high bandwidth (high<br />

zero-crossover frequency) and adequate phase<br />

margin (for details see <strong>AN</strong>-1043).<br />

Figure 7 shows load transient response when<br />

the output current steps from 0 to 10A.<br />

4


<strong>Application</strong> <strong>Note</strong><br />

<strong>AN</strong>-<strong>1046</strong><br />

Salient Features<br />

VOUT<br />

0A<br />

0.5<br />

0.4<br />

I RMS (IN)<br />

0.3<br />

I OUT<br />

10A<br />

Figure 7. Load Transient Response, 0-10A<br />

Ch1:Vout, Ch4:Iout<br />

However, if single supply powers both the<br />

phases, the 2-phase configuration reduces the<br />

input ripple current. This results in much<br />

smaller RMS current in the input capacitor<br />

and reduction of input capacitor. Figure 8<br />

shows the estimate RMS current for 2-phase<br />

versus single-phase converters.<br />

Single -<br />

phase<br />

Other key features offered by this device<br />

include programmable soft-start,<br />

programmable switching frequency up to 400<br />

kHz, under-voltage lockout (UVLO) function,<br />

power good signal, shutdown mode, shortcircuit<br />

protection and frequency<br />

synchronization. While soft-start controls the<br />

output voltage and limits the current surge at<br />

the start-up, the UVLO circuit assures that the<br />

MOSFET driver outputs and LDO controller<br />

remain in the off-state whenever the supply<br />

voltages drop below set parameters. Normal<br />

operation will resume once the supply<br />

voltages rise above the set values. Likewise,<br />

the IRU3046 provides a power good pin,<br />

which is an open collector output that switches<br />

low when any of the outputs are outside the<br />

specified under voltage trip point. By sensing<br />

the output voltage constantly, the unit shuts<br />

down the PWM signal and LDO controller<br />

when the output drops below the threshold,<br />

guaranteeing protection against short-circuit.<br />

The IRU3046 also allows frequency<br />

synchronization with an external clock signal<br />

using the Sync pin.<br />

More information for selecting of components<br />

and layout tips can be found on IRU3046 data<br />

sheet.<br />

0.2<br />

0.1<br />

Two<br />

phase<br />

0 0 0.1 0.2 0.3 0.4 0.5<br />

D<br />

Figure 8. Normalized input RMS current vs. duty<br />

cycle<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!