06.03.2014 Views

Hydrates and Glycols - NTNU

Hydrates and Glycols - NTNU

Hydrates and Glycols - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hydrates</strong> <strong>and</strong> <strong>Glycols</strong><br />

MEG (Mono Ethylene glycol) Injection <strong>and</strong> Processing<br />

<strong>NTNU</strong> september 9, 2010<br />

Kristian S<strong>and</strong>engen<br />

Classification: Internal 2010-08-25


Agenda<br />

•General Introduction<br />

•“chemical” challenges for long multiphase flowlines<br />

–<strong>Hydrates</strong><br />

–Corrosion<br />

–Scale<br />

•How do we battle these problems?<br />

•Use of Glycol (MEG) as hydrate inhibitor<br />

–What do we mean by a MEG loop?<br />

–MEG regeneration<br />

• Note: MEG is a common antifreeze agent, used e.g. in cars.<br />

Classification: Internal 2010-08-25<br />

MEG= Mono Ethylene Glycol


Midgard/Mikkel Tie-in on Åsgard<br />

Classification: Internal 2010-08-25


Why are we using MEG?<br />

Low temp, high pressure <strong>and</strong> water????<br />

Colder: Water condense – Multiphase flow<br />

Reservoir gas contains water<br />

dissolved as H 2<br />

O molecules<br />

in the gas<br />

MEG<br />

Classification: Internal 2010-08-25<br />

MEG= Mono Ethylene Glycol


Water condensation<br />

•Water in gas<br />

–Water condense at low T<br />

–Water evaporate at low P<br />

90<br />

80<br />

1.4<br />

1.2<br />

•At 5°C<br />

–95-99% of water has<br />

condensed<br />

Condensed water volume (m3/d)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Water in gas (mol%)<br />

Condensed water volume<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Water in gas (mol%)<br />

Vega example:<br />

Gas 7 MSm 3 /d<br />

FW 10 m 3 /d<br />

P 150-85 bar<br />

T 110-5 °C<br />

0<br />

120<br />

100<br />

80 60 40<br />

Flowline temperature (°C)<br />

20<br />

0<br />

0<br />

Classification: Internal 2010-08-25


<strong>Hydrates</strong><br />

•Hydrate is water in a solid structure with small gas molecules in cavities<br />

–Much like snow/ice<br />

• Water freeze at 0ºC, what about hydrates?<br />

•Requirements for hydrate formation<br />

–Free water<br />

–Small gas molecules (N 2 , CO 2 , CH 4 , C 2 ,C 3 ,…)<br />

–Low temperature<br />

–High pressure<br />

Classification: Internal 2010-08-25


Hydrate phase diagram<br />

Hydrate equilibrium curve<br />

Water Gas Hydrate<br />

200<br />

180<br />

160<br />

140<br />

Hydrats can form<br />

Pressure (bar)<br />

120<br />

100<br />

80<br />

Equilbrium curve<br />

60<br />

40<br />

20<br />

0<br />

Hydrats can NOT form<br />

0 5 10 15 20 25<br />

Temperature (°C)<br />

Classification: Internal 2010-08-25


Water in pipeline - problems<br />

•Water condensates<br />

•Low T -High P -Free water<br />

=> Hydrate formation<br />

Well<br />

P High<br />

T High<br />

Pipeline<br />

P High<br />

T Low<br />

Classification: Internal 2010-08-25


Hydrate equilibrium curve<br />

200<br />

180<br />

Hydrate prevention<br />

Pressure (bar)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

Hydrats can form<br />

Equilbrium curve<br />

60<br />

•How to avoid hydrate formation<br />

–Keep temperature high<br />

–Keep pressure low<br />

–Dilute water<br />

40<br />

20<br />

Hydrats can NOT form<br />

0<br />

0 5 10 15 20 25<br />

Temperature (°C)<br />

Water Gas Hydrate<br />

•Dilute water means separating water molecules <strong>and</strong> make it more difficult<br />

for them to react.<br />

Classification: Internal 2010-08-25


Hydrate prevention<br />

•How to avoid hydrate formation<br />

–Keep temperature high<br />

–Keep pressure low<br />

–Dilute water<br />

Water Gas Hydrate<br />

•Dilute water means separating water molecules <strong>and</strong> make it more difficult<br />

for them to react.<br />

•We need to add something:<br />

–Salts works<br />

–Alcohol works (example methanol)<br />

–Glycol works (example MEG <strong>and</strong> TEG)<br />

Classification: Internal 2010-08-25


Hydrate prevention<br />

•Hydrate formation reaction (simplified)<br />

•Chemical potential<br />

–If <br />

0<br />

reaction will go<br />

l gas H O hyd<br />

<br />

H<br />

2O<br />

<br />

2<br />

<br />

hyd l<br />

HO HO gas<br />

2 2<br />

•Chemical potential of gas is mainly given by pressure <strong>and</strong> temperature<br />

<strong>and</strong> can normally not be changed<br />

•Chemical potential of hydrate can not be changed<br />

•Chemical potential of water<br />

l<br />

<br />

<br />

RT ln a RT ln x<br />

H O H O H O H O H O H O<br />

2 2 2 2 2 2<br />

–If we dilute water to get x H2O lower, the chemical potential of water will be<br />

lower <strong>and</strong> the reaction is shifted to the left -> no hydrates<br />

Classification: Internal 2010-08-25


Hydrate prevention – diluting the water<br />

•<strong>Hydrates</strong> can be prevented with “anything” that reduces the molefraction<br />

of water<br />

60<br />

Hydrate inhibition effect<br />

Decrease in Hydrate temperature (C)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

dT MeOH<br />

dT Ethylene Glycol<br />

dT Diethylene Glycol<br />

Nielsen <strong>and</strong> Bucklin<br />

Alcohols<br />

Salt<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Molefraction inhibitor<br />

T<br />

72ln 1x<br />

<br />

Inhib<br />

<br />

Classification: Internal 2010-08-25


Thermodynamic Hydrate inhibitors<br />

•MEG (Mono Ethylene Glycol)<br />

inhibits hydrate formation<br />

–Freezing point lowered<br />

Pressure [bar]<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

<strong>Hydrates</strong><br />

M E G<br />

No inhib<br />

20% MEG<br />

40% MEG<br />

No hydrates<br />

0<br />

0 5 10 15 20 25 30<br />

Temperature [C]<br />

Inhibitor<br />

Water<br />

MeOH<br />

MEG<br />

TEG<br />

Density<br />

1.0<br />

0.79<br />

1.11<br />

1.12<br />

Viscosity (cp-25 o C)<br />

0.89<br />

0.5<br />

18<br />

36<br />

Freezing Point<br />

0 o C<br />

-94 o C<br />

-13 o C<br />

-5 o C<br />

Boiling Point<br />

100 o C<br />

65 o C<br />

198 o C<br />

278 o C<br />

Classification: Internal 2010-08-25


Type of inhibitor MeOH vs. MEG<br />

Fire/explosion hazard<br />

Health hazard<br />

Environmental impact<br />

Regeneration<br />

Salt solubility (scale)<br />

Quality<br />

Pumping (friction loss)<br />

Efficiency as hydrate inhibitor<br />

(remember that on a mole basis all inhibitors are ~equal)<br />

Loss of chemical to gas phase<br />

MeOH<br />

+<br />

+<br />

(more per Kg or L)<br />

?<br />

MEG<br />

+<br />

+<br />

+(?)<br />

+<br />

?<br />

+<br />

Classification: Internal 2010-08-25


Water in pipeline - problems<br />

•Water condensates<br />

•Low T - High P - Free water<br />

=> Hydrate formation<br />

•CO 2<br />

dissolved in condensed water<br />

CO 2 is a weak acid<br />

pH very low => Corrosion<br />

Typical pH~4<br />

Well<br />

P High<br />

T High<br />

Pipeline<br />

P High<br />

T Low<br />

Classification: Internal 2010-08-25


Corrosion inhibitor<br />

•For corrosion to occur, there has to be water in contact with the steel<br />

–Long pipelines = large quantities<br />

–Corrosion inhibitor (CI) often environmentally unfriendly<br />

Absorbing end<br />

Inhibitor<br />

Hydrophobic end<br />

H2O<br />

H2O<br />

H2O<br />

Classification: Internal 2010-08-25


Corrosion protection - “pH Stabilization”<br />

Initial FeCO 3<br />

precipitation<br />

Fe<br />

2<br />

<br />

CO<br />

2<br />

3<br />

<br />

FeCO<br />

3 (<br />

solid)<br />

Protective<br />

FeCO 3<br />

film<br />

Classification: Internal 2010-08-25


Corrosion<br />

Corrosion<br />

•Long pipelines: Carbon steel<br />

•Condensed water has no buffer capacity<br />

–CO 2 in gas -> pH=3.5 - 4.5<br />

•After start-up on Kollsnes they produced about 20 tons of iron!<br />

–Plugged: Heat exchangers, separators, filters, centrifuges etc.<br />

Classification: Internal 2010-08-25


pH stabilization<br />

Fe<br />

2<br />

CO<br />

2<br />

3<br />

FeCO<br />

3 (<br />

solid)<br />

•Increase pH in pipeline<br />

– Alkaline addition (NaOH) to leanMEG to<br />

form CO 3<br />

2-<br />

– Higher pH – less corrosive<br />

– Formation of FeCO 3<br />

protective film<br />

<br />

Kollsnes pH stabilization<br />

Decrease in iron concentration<br />

Classification: Internal 2010-08-25


What is scale?<br />

Scale is precipitation of inorganic<br />

salts (minerals) in production<br />

equipment.<br />

Classification: Internal 2010-08-25


Formation water – scale problem<br />

MEG/MeOH + Na 2 CO 3<br />

Scale<br />

P High<br />

T High<br />

Pipeline<br />

P High<br />

T Low<br />

Well<br />

Formation<br />

water<br />

•MEG/MeOH reduce salt solubility<br />

•Mixing point!<br />

– Ca 2+ from reservoir : Ca 2+ + CO 3<br />

2-<br />

= CaCO 3<br />

– Reacts with carbonate in the exact same manner as the (wanted) reaction with iron (Fe 2+ )<br />

Classification: Internal 2010-08-25


pH stabilization<br />

Fe<br />

2<br />

CO<br />

2<br />

3<br />

FeCO<br />

3 (<br />

solid)<br />

•Increase pH in pipeline<br />

– Alkaline addition (NaOH) to leanMEG to<br />

form CO 3<br />

2-<br />

– Higher pH – less corrosive<br />

– Formation of FeCO 3<br />

protective film<br />

<br />

Kollsnes pH stabilization<br />

Decrease in iron concentration<br />

Classification: Internal 2010-08-25


Scale<br />

pH stabilization<br />

Fe<br />

2<br />

2<br />

Ca<br />

CO<br />

2<br />

3<br />

<br />

CaCO<br />

3 (<br />

solid)<br />

Kollsnes pH stabilization<br />

•Increase pH in pipeline<br />

– Alkaline addition (NaOH) to leanMEG to<br />

form CO 3<br />

2-<br />

Calcium comes from the formation water<br />

Classification: Internal 2010-08-25


A typical MEG loop<br />

Pipeline<br />

Rich MEG<br />

MEG: 60 wt%<br />

Rate: 220-300 m 3 /d<br />

Process plant with<br />

MEG regeneration<br />

Water <strong>and</strong> waste<br />

Rate: 70-110 m 3 /d<br />

Wells<br />

Water<br />

Condensed water: 70-100 m 3 /d<br />

Formation water: 0-10 m 3 /d<br />

MEG injection line<br />

Lean MEG<br />

MEG: 90 wt%<br />

Rate: 150-200 m 3 /d<br />

Classification: Internal 2010-08-25


Thermodynamics<br />

•Mono Ethylene Glycol (MEG)<br />

–MEG has a higher boiling point than water!<br />

–By heating one can distil water-MEG mixtures<br />

• Water prefers gas phase<br />

• MEG prefers liquid phase<br />

Classification: Internal 2010-08-25


MEG regeneration<br />

Rich MEG<br />

MEG 50-70 wt%<br />

(MEG + Water)<br />

MEG regeneration<br />

Lean MEG<br />

MEG 90 wt%<br />

Water<br />

Classification: Internal 2010-08-25


Water removal (regeneration)<br />

Kollsnes<br />

Pressure: 1.1-1.3 bar<br />

Temperature: 140-150°C<br />

Snøhvit<br />

Classification: Internal 2010-08-25


Cooling water<br />

Heat exchanger<br />

Classification: Internal 2010-08-25


Recycle heater<br />

Classification: Internal 2010-08-25


Energy consumption<br />

•Water must be evaporated!<br />

Water<br />

MEG<br />

–Example:<br />

• Feed: 300 m 3 /d 60 wt% MEG<br />

• Feed temp: 30°C, boiling temp, 120°C<br />

Heat capacity (kJ/ kg K) 4.16 3.1<br />

Heat of vaporization (kJ/kg) 2603 968<br />

–Answer:<br />

• MEG<br />

• H 2 O<br />

180 m 3 /d=180 000 kg/d<br />

120 m 3 /d=120 000 kg/d<br />

–Heating from 30 to 120°C<br />

• MEG 180 000*3.10*90=5.02*10 7 kJ/d = 580 kW<br />

• H 2 O 120 000*4.16*90=4.49*10 7 kJ/d = 520 kW 1 100 kW<br />

–Vaporization<br />

• Not all water is evaporated (only to get 90wt% MEG)<br />

• H 2 O 90 000*2603=3.12*10 8 kJ/d = 2711 kW 2 700 kW 3.8 MW<br />

Classification: Internal 2010-08-25


MEG regeneration<br />

Rich MEG<br />

MEG 50-70 wt%<br />

(MEG + Water)<br />

MEG regeneration<br />

Lean MEG<br />

MEG 90 wt%<br />

Water<br />

Classification: Internal 2010-08-25


MEG regeneration<br />

Rich MEG<br />

MEG regeneration<br />

Lean MEG<br />

MEG 50-70 wt%<br />

Water<br />

pH stabilizer<br />

Salts<br />

Corrosion products<br />

other production chemicals<br />

Hydrocarbons<br />

MEG 90 wt%<br />

Water & Waste<br />

Classification: Internal 2010-08-25


Salt removal (reclamation)<br />

Vacum<br />

pump<br />

•Need to remove<br />

something!<br />

–Dissolved<br />

salt/chemicals etc.<br />

–Removal<br />

• Up concentrate<br />

until “pollutants”<br />

solidify<br />

• Remove solid<br />

material<br />

–Evaporate all<br />

water+MEG<br />

Salt<br />

feed<br />

Flash<br />

separator<br />

Snøhvit<br />

Salt free<br />

vapour<br />

Circulation pump<br />

Heat<br />

exchanger<br />

Lean MEG<br />

Vacum<br />

reciever<br />

Water<br />

Pressure: 0.1-25 bar<br />

Temperature: 110-130°C<br />

Solids removal<br />

Classification: Internal 2010-08-25


Energy consumption - reclamation<br />

•In a reclaimer, both MEG <strong>and</strong> water is evaporated<br />

–Example:<br />

• Feed: 300 m 3 /d 60 wt% MEG<br />

• Feed temp: 30°C, boiling temp, 120°C<br />

Water MEG<br />

Heat capacity (kJ/kg K) 4.16 3.1<br />

Heat of vaporization (kJ/kg) 2603 968<br />

–Answer:<br />

• MEG<br />

• H 2 O<br />

180 m 3 /d=180 000 kg/d<br />

120 m 3 /d=120 000 kg/d<br />

–Heating from 30 to 120°C<br />

• MEG 180 000*3.10*90=5.02*10 7 kJ/d = 580 kW<br />

• H 2 O 120 000*4.16*90=4.49*10 7 kJ/d = 520 kW 1 100 kW<br />

–Vaporization<br />

• MEG 180 000*968 =1.74*10 8 kJ/d = 2 016 kW<br />

• H 2 O 120 000*2603=3.12*10 8 kJ/d = 3 615 kW 5 631 kW 6.7 MW<br />

Classification: Internal 2010-08-25


MEG recovery<br />

•MEG regeneration<br />

–Only water is evaporated<br />

–MEG passes through the<br />

facility as liquid phase<br />

–Any salts, chemicals etc.<br />

remains in the MEG<br />

–i.e. MEG loop can be<br />

”polluted”<br />

•MEG reclamation<br />

–Both water <strong>and</strong> MEG is<br />

evaporated<br />

–Salts, chemicals etc. are left<br />

behind in the liquid phase<br />

–i.e. salts/chemicals can be<br />

removed<br />

Classification: Internal 2010-08-25


Solids removal<br />

•Sediment Tanks<br />

–Onshore<br />

•Centrifuges<br />

–Offshore<br />

Classification: Internal 2010-08-25


Hydrate equilibrium curve<br />

200<br />

What have we learned?<br />

HYDRATES<br />

Pressure (bar)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

Hydrats can form<br />

Equilbrium curve<br />

40<br />

•<strong>Hydrates</strong><br />

20<br />

–An ice/snow like solid<br />

0<br />

–Forms at low temperature <strong>and</strong> high pressure<br />

• Need water (liquid or solid) + small molecules (e.g. CH 4 , C 2 H 6 )<br />

–Reversible reaction<br />

• i.e. can be removed by de-pressurization or heating<br />

•Hydrate formation can be inhibited by:<br />

–Anything that dilutes water i.e. is mixable with water<br />

• Salt<br />

• Alcohol<br />

–Works because water molecules are separated<br />

60<br />

Hydrats can NOT form<br />

0 5 10 15 20 25<br />

Temperature (°C)<br />

•MEG<br />

–Denotes Mono Ethylene Glycol<br />

• Is an alcohol<br />

–Used as antifreeze agent in cars<br />

–Much used as hydrate inhibitor in oil industry<br />

• Methanol <strong>and</strong> ethanol are other much used chemicals<br />

Classification: Internal 2010-08-25


What have we learned?<br />

CHEMISTRY<br />

•Corrosion<br />

–A problem in long carbon steel pipelines<br />

• Water from condensation + acidic environment due to CO 2<br />

–Can be avoided by addition of an alkaline chemical<br />

• E.g. NaOH (caustic soda)<br />

• Forms a protective, self-healing, film of FeCO 3<br />

2<br />

2<br />

Fe CO3<br />

FeCO solid)<br />

3(<br />

Liquid<br />

FeCO 3<br />

Metal<br />

•Scale<br />

–Unwanted formation of solids<br />

–Exact same mechanism as the wanted FeCO 3 protective film<br />

–Forms du to mixing of formation water (Ca 2+ ) with the added chemical (CO 3<br />

2-<br />

)<br />

Ca<br />

2<br />

CO<br />

2<br />

3<br />

<br />

CaCO<br />

3 (<br />

solid)<br />

Classification: Internal 2010-08-25<br />

Clogged choke


What have we learned?<br />

MEG Loop<br />

•MEG Loop<br />

– Continuous “circle”<br />

• MEG injected at templates<br />

• Recovered at facility<br />

– Lean MEG:<br />

• “lean in water” typically 90% MEG<br />

– Rich MEG:<br />

• “Rich in water” typically 60% MEG<br />

•MEG Recovery<br />

– Recovered by distillation<br />

• Evaporation dem<strong>and</strong>s a lot of energy<br />

– Regeneration; Only water is removed<br />

• MEG loop will be “polluted” over time<br />

– Reclamation; water <strong>and</strong> MEG evaporated<br />

• Salt etc. can be removed<br />

• Can control “pollution” of MEG loop<br />

– Expected amount of formation water dictates which<br />

type of facility (or combination) that is needed<br />

Classification: Internal 2010-08-25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!