05.03.2014 Views

ekS - Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN w Lublinie ...

ekS - Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN w Lublinie ...

ekS - Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN w Lublinie ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fig. 38. The three-rod TDR probe – A, and an Open-Ended Coax probe –<br />

B, used in the measurement of dielectric permittivity of soils. ...........91<br />

Fig. 39. Frequency change of real and <strong>im</strong>aginary parts of the complex<br />

dielectric permittivity of methanol for Cole-Cole modelled data<br />

and measured using open-ended coaxial probe ...................................92<br />

Fig. 40. Comparison of real, ε’, and <strong>im</strong>aginary, ε”, parts of the complex<br />

dielectric permittivity for the selected soils, calculated from the<br />

TDR and Open-Ended Coax probe measurements. ε b-TDR is the<br />

bulk dielectric constant measured by TDR..........................................93<br />

Fig. 41. TDR meter output – probe in air .........................................................97<br />

Fig. 42. Examples of electromagnetic microwave switches .............................99<br />

Fig. 43. Construction of SPDT switches build on PIN diodes: A – typical<br />

connections, B – serial connection of the diodes in a single<br />

channel increase isolation of the switch ............................................100<br />

Fig. 44. Scheme of connections of the tested prototype SP16T switches.......101<br />

Fig. 45. Insertion loss and isolation between channels related to frequency<br />

for the MMIC device HMC253QS24 <strong>im</strong>plemented in the<br />

prototype TDR switch .......................................................................102<br />

Fig. 46. Prototype one-to-eight microwave switch for the application in<br />

TDR soil water content meter............................................................103<br />

Fig. 47. Input pulse and output pulses from the tested SP16T switches.........104<br />

Fig. 48. The reflected signal attenuation introduced by the prototype reed<br />

relay and MMIC GaAs switches when the TDR probe was<br />

inserted into dry (left picture) and wet (right picture) sand...............104<br />

Fig. 49. Reflections observed from the tested SP16T switches and TDR<br />

probe in wet sand...............................................................................105<br />

Fig. 50. Reflectograms presenting reflections of the needle pulse from the<br />

TDR probe rods with the application of the prototype MMIC<br />

switch (right column) and without it (left column). Left axis<br />

represents voltage in mV, θ is the water content of the measured<br />

soil samples .......................................................................................106<br />

Fig. 51. Multi Interface Data Logger (in the middle between TDR soil<br />

water content, salinity and temperature meters)) in the<br />

configuration for the measurement of 16 TDR FP/mts probes..........109<br />

Fig. 52. Example setup of devices for soil and ground physico-chemical<br />

parameter monitoring system using wireless communication...........110<br />

Fig. 53. Direct connection of SLAVE modules to Internet network ..............112<br />

Fig. 54. S<strong>im</strong>plified functional diagram of the MIDL setup in SLAVE<br />

configuration .....................................................................................113<br />

147

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!